000028482 001__ 28482
000028482 005__ 20200423203444.0
000028482 0247_ $$2pmid$$apmid:12496261
000028482 0247_ $$2DOI$$a10.1074/jbc.M209343200
000028482 0247_ $$2WOS$$aWOS:000181466800091
000028482 0247_ $$2Handle$$a2128/2642
000028482 037__ $$aPreJuSER-28482
000028482 041__ $$aeng
000028482 082__ $$a570
000028482 084__ $$2WoS$$aBiochemistry & Molecular Biology
000028482 1001_ $$0P:(DE-HGF)0$$aHaker, A.$$b0
000028482 245__ $$aThe two photocycles of photoactive yellow protein from Rhodobacter sphaeroides
000028482 260__ $$aBethesda, Md.$$bSoc.$$c2003
000028482 300__ $$a8442 - 8451
000028482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000028482 3367_ $$2DataCite$$aOutput Types/Journal article
000028482 3367_ $$00$$2EndNote$$aJournal Article
000028482 3367_ $$2BibTeX$$aARTICLE
000028482 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000028482 3367_ $$2DRIVER$$aarticle
000028482 440_0 $$03091$$aJournal of Biological Chemistry$$v278$$x0021-9258$$y10
000028482 500__ $$aRecord converted from VDB: 12.11.2012
000028482 520__ $$aThe absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.
000028482 536__ $$0G:(DE-Juel1)FUEK255$$2G:(DE-HGF)$$aNeurowissenschaften$$cL01$$x0
000028482 588__ $$aDataset connected to Web of Science, Pubmed
000028482 650_2 $$2MeSH$$aBacterial Proteins: chemistry
000028482 650_2 $$2MeSH$$aBacterial Proteins: physiology
000028482 650_2 $$2MeSH$$aModels, Molecular
000028482 650_2 $$2MeSH$$aPhotoreceptors, Microbial: chemistry
000028482 650_2 $$2MeSH$$aPhotoreceptors, Microbial: physiology
000028482 650_2 $$2MeSH$$aPhotosynthesis
000028482 650_2 $$2MeSH$$aProtein Conformation
000028482 650_2 $$2MeSH$$aRhodobacter sphaeroides: physiology
000028482 650_2 $$2MeSH$$aSpectrometry, Fluorescence
000028482 650_2 $$2MeSH$$aSpectroscopy, Fourier Transform Infrared
000028482 650_7 $$00$$2NLM Chemicals$$aBacterial Proteins
000028482 650_7 $$00$$2NLM Chemicals$$aPhotoreceptors, Microbial
000028482 650_7 $$00$$2NLM Chemicals$$aphotoactive yellow protein, Bacteria
000028482 650_7 $$2WoSType$$aJ
000028482 7001_ $$0P:(DE-HGF)0$$aHendriks, J.$$b1
000028482 7001_ $$0P:(DE-HGF)0$$avan Stokkum, I. H. M.$$b2
000028482 7001_ $$0P:(DE-Juel1)VDB572$$aHeberle, J.$$b3$$uFZJ
000028482 7001_ $$0P:(DE-HGF)0$$aHellingwerf, K. J.$$b4
000028482 7001_ $$0P:(DE-HGF)0$$aCrielaard, W.$$b5
000028482 7001_ $$0P:(DE-Juel1)131924$$aGensch, T.$$b6$$uFZJ
000028482 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.M209343200$$gVol. 278, p. 8442 - 8451$$p8442 - 8451$$q278<8442 - 8451$$tThe @journal of biological chemistry$$v278$$x0021-9258$$y2003
000028482 8567_ $$uhttp://hdl.handle.net/2128/2642$$uhttp://dx.doi.org/10.1074/jbc.M209343200
000028482 8564_ $$uhttps://juser.fz-juelich.de/record/28482/files/22133.pdf$$yOpenAccess
000028482 8564_ $$uhttps://juser.fz-juelich.de/record/28482/files/22133.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000028482 8564_ $$uhttps://juser.fz-juelich.de/record/28482/files/22133.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000028482 8564_ $$uhttps://juser.fz-juelich.de/record/28482/files/22133.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000028482 909CO $$ooai:juser.fz-juelich.de:28482$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000028482 9131_ $$0G:(DE-Juel1)FUEK255$$bLeben$$kL01$$lFunktion und Dysfunktion des Nervensystems$$vNeurowissenschaften$$x0
000028482 9141_ $$y2003
000028482 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000028482 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000028482 9201_ $$0I:(DE-Juel1)VDB57$$d31.12.2006$$gIBI$$kIBI-1$$lZelluläre Signalverarbeitung$$x0
000028482 9201_ $$0I:(DE-Juel1)VDB58$$d31.12.2006$$gIBI$$kIBI-2$$lBiologische Strukturforschung$$x1
000028482 970__ $$aVDB:(DE-Juel1)22133
000028482 9801_ $$aFullTexts
000028482 980__ $$aVDB
000028482 980__ $$aJUWEL
000028482 980__ $$aConvertedRecord
000028482 980__ $$ajournal
000028482 980__ $$aI:(DE-Juel1)ICS-4-20110106
000028482 980__ $$aI:(DE-Juel1)ISB-2-20090406
000028482 980__ $$aUNRESTRICTED
000028482 980__ $$aI:(DE-Juel1)ICS-6-20110106
000028482 980__ $$aFullTexts
000028482 981__ $$aI:(DE-Juel1)IBI-1-20200312
000028482 981__ $$aI:(DE-Juel1)IBI-7-20200312
000028482 981__ $$aI:(DE-Juel1)ICS-4-20110106
000028482 981__ $$aI:(DE-Juel1)ISB-2-20090406
000028482 981__ $$aI:(DE-Juel1)ICS-6-20110106