000028609 001__ 28609
000028609 005__ 20180210141637.0
000028609 0247_ $$2DOI$$a10.1016/S0021-9991(03)00073-1
000028609 0247_ $$2WOS$$aWOS:000182615000007
000028609 037__ $$aPreJuSER-28609
000028609 041__ $$aeng
000028609 082__ $$a530
000028609 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications
000028609 084__ $$2WoS$$aPhysics, Mathematical
000028609 1001_ $$0P:(DE-HGF)0$$aVamos, C.$$b0
000028609 245__ $$aGeneralized random walk algorithm for the numerical modeling of complex diffusion processes
000028609 260__ $$aOrlando, Fla.$$bAcademic Press$$c2003
000028609 300__ $$a527 - 544
000028609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000028609 3367_ $$2DataCite$$aOutput Types/Journal article
000028609 3367_ $$00$$2EndNote$$aJournal Article
000028609 3367_ $$2BibTeX$$aARTICLE
000028609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000028609 3367_ $$2DRIVER$$aarticle
000028609 440_0 $$09301$$aJournal of Computational Physics$$v186$$x0021-9991$$y2
000028609 500__ $$aRecord converted from VDB: 12.11.2012
000028609 520__ $$aA generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition. This procedure saves memory and computing time and no restrictions are imposed for the maximum number of particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random velocity field are performed and the main features of the stochastic mathematical model are numerically tested. (C) 2003 Elsevier Science B.V. All rights reserved.
000028609 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000028609 588__ $$aDataset connected to Web of Science
000028609 650_7 $$2WoSType$$aJ
000028609 65320 $$2Author$$adiffusion random walk
000028609 65320 $$2Author$$agroundwater
000028609 65320 $$2Author$$acontaminant transport
000028609 7001_ $$0P:(DE-HGF)0$$aSuciu, N.$$b1
000028609 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b2$$uFZJ
000028609 773__ $$0PERI:(DE-600)1469164-4$$a10.1016/S0021-9991(03)00073-1$$gVol. 186, p. 527 - 544$$p527 - 544$$q186<527 - 544$$tJournal of computational physics$$v186$$x0021-9991$$y2003
000028609 8567_ $$uhttp://dx.doi.org/10.1016/S0021-9991(03)00073-1
000028609 909CO $$ooai:juser.fz-juelich.de:28609$$pVDB
000028609 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000028609 9141_ $$y2003
000028609 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000028609 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0
000028609 970__ $$aVDB:(DE-Juel1)22826
000028609 980__ $$aVDB
000028609 980__ $$aConvertedRecord
000028609 980__ $$ajournal
000028609 980__ $$aI:(DE-Juel1)IBG-3-20101118
000028609 980__ $$aUNRESTRICTED
000028609 981__ $$aI:(DE-Juel1)IBG-3-20101118