001     28661
005     20240712101059.0
024 7 _ |a 10.1029/2002JD002932
|2 DOI
024 7 _ |a WOS:000183555600001
|2 WOS
024 7 _ |a 0141-8637
|2 ISSN
024 7 _ |a 2128/20870
|2 Handle
037 _ _ |a PreJuSER-28661
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Shetter, R. E.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Photolysis Frequency of NO2: Measurement and Modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI)
260 _ _ |c 2003
|a Washington, DC
|b Union
300 _ _ |a IPM 3-1 - IPM 3-8
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Geophysical Research D: Atmospheres
|x 0148-0227
|0 6393
|y 16
|v 108
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a [1] The photolysis frequency of NO2, j(NO2), was determined by various instrumental techniques and calculated using a number of radiative transfer models for 4 days in June 1998 at the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI) in Boulder, Colorado. Experimental techniques included filter radiometry, spectroradiometry, and chemical actinometry. Eight research groups participated using 14 different instruments to determine j( NO2). The blind intercomparison experimental results were submitted to the independent experimental referee and have been compared. Also submitted to the modeling referee were the results of NO2 photolysis frequency calculations for the same time period made by 13 groups who used 15 different radiative transfer models. These model results have been compared with each other and also with the experimental results. The model calculation of clear-sky j(NO2) values can yield accurate results, but the accuracy depends heavily on the accuracy of the molecular parameters used in these calculations. The instrumental measurements of j(NO2) agree to within the uncertainty of the individual instruments and indicate the stated uncertainties in the instruments or the uncertainties of the molecular parameters may be overestimated. This agreement improves somewhat with the use of more recent NO2 cross-section data reported in the literature.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a photolysis
653 2 0 |2 Author
|a NO2 (nitrogen dioxide)
653 2 0 |2 Author
|a radiative transfer
653 2 0 |2 Author
|a intercomparison
700 1 _ |a Junkermann, W.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Swartz, W. H.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Frost, G. J.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Crawford, J. H.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Lefer, B. L.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Barrick, J. D.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Hall, S. R.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Hofzumahaus, A.
|b 8
|u FZJ
|0 P:(DE-Juel1)16326
700 1 _ |a Bais, A. F.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Calvert, J. G.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Cantrell, A. A.
|b 11
|0 P:(DE-HGF)0
700 1 _ |a Madronich, S.
|b 12
|0 P:(DE-HGF)0
700 1 _ |a Müller, M.
|b 13
|0 P:(DE-HGF)0
700 1 _ |a Kraus, A.
|b 14
|u FZJ
|0 P:(DE-Juel1)VDB832
700 1 _ |a Monks, P. S.
|b 15
|0 P:(DE-HGF)0
700 1 _ |a Edwards, G. D.
|b 16
|0 P:(DE-HGF)0
700 1 _ |a McKenzie, R.
|b 17
|0 P:(DE-HGF)0
700 1 _ |a Johnston, P.
|b 18
|0 P:(DE-HGF)0
700 1 _ |a Schmitt, R.
|b 19
|0 P:(DE-HGF)0
700 1 _ |a Griffioen, E.
|b 20
|0 P:(DE-HGF)0
700 1 _ |a Krol, M.
|b 21
|0 P:(DE-HGF)0
700 1 _ |a Kylling, A.
|b 22
|0 P:(DE-HGF)0
700 1 _ |a Dickerson, R. R.
|b 23
|0 P:(DE-HGF)0
700 1 _ |a Lloyd, S. A.
|b 24
|0 P:(DE-HGF)0
700 1 _ |a Martin, T. J.
|b 25
|0 P:(DE-HGF)0
700 1 _ |a Gardiner, B.
|b 26
|0 P:(DE-HGF)0
700 1 _ |a Mayer, B.
|b 27
|0 P:(DE-HGF)0
700 1 _ |a Pfister, G.
|b 28
|0 P:(DE-HGF)0
700 1 _ |a Röth, E. P.
|b 29
|u FZJ
|0 P:(DE-Juel1)16301
700 1 _ |a Koepke, P.
|b 30
|0 P:(DE-HGF)0
700 1 _ |a Ruggaber, A.
|b 31
|0 P:(DE-HGF)0
700 1 _ |a Schwander, H.
|b 32
|0 P:(DE-HGF)0
700 1 _ |a van Weele, M.
|b 33
|0 P:(DE-HGF)0
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1029/2002JD002932
|g Vol. 108, p. IPM 3-1 - IPM 3-8
|p IPM 3-1 - IPM 3-8
|q 108|t Journal of Geophysical Research
|v 108
|x 0148-0227
|y 2003
|t Journal of geophysical research / Atmospheres
856 7 _ |u http://dx.doi.org/10.1029/2002JD002932
856 4 _ |u https://juser.fz-juelich.de/record/28661/files/2002JD002932.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/28661/files/2002JD002932.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:28661
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k ICG-I
|l Stratosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB47
|x 1
920 1 _ |k ICG-II
|l Troposphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB48
|x 0
970 _ _ |a VDB:(DE-Juel1)23144
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)IEK-8-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21