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ABSTRACT

An parallel tree code for rapid computation of long-range Coulomb forces based on the Warren-Salmon

‘Hashed Oct Tree’ algorithm is described. Communication overhead is minimised by bundling multipole

data for large groups of particles prior to shipment. Implementations on the Cray T3E and the IBM-p690

cluster show the expected O(N log N) scaling with particle number, as well as good scaling properties with
number of processors.

1. Introduction

The N -body problem for systems dominated by long-range potentials is still, even in the era of
Teraflop computing, a considerable algorithmic and computational challenge. The brute-force ap-

proach, in which allN(N−1) interactions are computed directly, is both inefficient and impractical
for many N -body systems such as plasmas, gravitational objects, or large molecules in ionized so-
lution. This is particularly true when the global dynamic behaviour of the system is of primary

interest, rather than the microscopic details of individual particle trajectories. For this class of prob-

lem there is no need to compute potentials and forces to higher accuracy than the error incurred in

integrating the equations of motion, which can be anywhere between 10−4 for a high-order Runge-

Kutta scheme, to around 1% for the simple 2nd-order Leap-Frog method.

In the mid-1980s two new algorithms were independently proposed in which multipole expansions

are substituted for distant groups of particles, leading to vastly improved algorithmic scalings of

O(N log N) or O(N). These techniques—the hierarchical Tree Code developed by Barnes & Hut
[1] and the Fast Multipole Method (FMM) by Greengard and Rohklin [2]—have revolutionized

long-range N -body simulation for scientists across a broad range of fields [3]. The two meth-
ods differ in essentially one aspect: whereas the Barnes-Hut (BH) algorithm replaces the particle-

particle sum by lists of multipole expansions, each of length O(log N), the FMM makes additional
use of high-order cluster-cluster interactions (Taylor expansions) to transfer multipole information

between well-separated regions of space, resulting in a theoretical O(N) overall effort. Despite
these advances, the advent of massively parallel architectures in the 1990s has prompted a further

challenge: can hierarchical algorithms be effectively implemented on a parallel machine?

Not surprisingly, this problem has attracted considerable attention because of the potentially re-

warding prospect of billion-particle simulation which modern Teraflop machines can then feasibly

offer. A parallel version of the original, non-adaptive 2D FMMwas proposed by Greengard himself

as early as 1990 [4]. This scheme, based on task-sharing in each of the separate near- and far-field

stages of the FMM, works well on shared memory machines, but less efficiently on distributed

memory systems. Nonetheless, these ideas inspired the first parallel FMM for MD simulation of

macromolecules, developed and demonstrated by the Duke University group in the early 1990s

[5]. A recent, optimized implementation by Dachsel [6] has achieved machine-accuracy potential

summation for up to 109 charges on an IBM-p690 SMP-cluster.
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At first sight, the hierarchical data structure of BH tree codes would seem to rule out parallelism

altogether, but it was soon realised that the construction of both the tree and particle interaction lists

could at least be vectorised on a level-by-level basis [7, 8, 9], leaving a straightforward N × Nlist

force summation to contend with. However, this only works with shared memory. On distributed

memory machines, the tree structure either has to be global to all processors—restricting the max-

imum simulation size—or somehow divided up equally among them. Either way, access to the

whole tree will be needed at some stage in order to build an interaction list. Various parallel tree

codes have been proposed and sucessfully implemented, including virtual shared-memory versions

[10], and distributed memory schemes using geometrical domain decomposition methods [11, 12].

One of the problems common to any distributed parallel scheme is that searching for nonlocal

nodes on remote processors requires the exchange of complicated sets of messages to ensure that

the requested data is returned. Local tree data is typically accessed via an address pointer, which if

shared amoung all processors, would lead to heavy duplication. This problem was recognised early

by Salmon and Warren [13, 14], who practically reinvented the BH algorithm by scrapping pointers

in favour of a set of universal binary keys to represent particle and tree-node coordinates alike.

Given its key and owner, locating any node in the tree is reduced to an O(1) operation. A further
advantage is that sorting the keys yields a space-filling curve, providing a natural and efficient

means of domain decomposition. Various derivatives of this scheme are possible, depending on

the choice and ordering of the keys. Warren & Salmon originally used a simple Morton or Z-
order; other authors have advocated Peano-Hilbert ordering because of its smoother connectivity

and hence improved communication properties [15, 16, 17].

This report describes a fresh implementation of a parallel tree code—PEPC—designed primarily

with modelling of nonlinear, complex plasma systems in mind. Needless to say, with appropriate

choice of units and boundary conditions, the code can easily be adapted for any molecular dynamics

problem dominated by Coulomb forces. For PEPC, we have opted for the orginal WS scheme,

largely because of its simplicity and ease of implementation: nearly all of the bit-operations needed

for key manipulation are available via single internal function calls. As we shall see in Section 3,

this choice does not seem to harm the code’s performance significantly when combined with an

asynchronous tree traversal (see Section 2.5.

From a very early stage, this code has been integrated with the visualisation package VISIT [18]

both to assist in visualising the tree structure and domain decomposition for geometrically com-

plex systems, and to permit computational steering of plasma simulations running on the T3E

and the new IBM-p690 cluster (JUPP). This is particularly useful when modelling large-scale, 3-

dimensional laser-plasma interactions, for example, in verifying start-up parameters such as the

initial alignment of laser and target, to monitor the progress of a lengthy run without disrupting its

progress, or for performing trial simulations with reduced particle number as a prelude to full-blown

production. Live demonstrations of this capability have already been made at a number of recent

conferences [19] and will be reported in detail elsewhere [20].

2. The Hashed Oct Tree algorithm

2.1. Construction of particle keys and domain decomposition

As mentioned earlier, the strategy adopted here is based on the scheme of Warren & Salmon (1995),

who use binary coordinate keys to map the 3-dimensional spatial structure onto a one-dimensional

space-filling curve. The basic idea is to convert the coordinate triple of each particle into a single,

unique 64-bit integer key. The keys do not replace the coordinates, but as we shall see, provide a

natural and rapid means of sorting the particles and building up the tree structure around them.
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In the present code, the keys are constructed from the binary interleave operation:

key = placebit+
nbits−1∑

j=0

8j(4 × bit(iz, j) + 2 × bit(iy, j) + bit(ix, j))

The function bit() selects the jth bit of the integer coordinate component (ix, iy, iz), which are
computed from:

ix = x/s, etc.,

where

s = L/2nlevels

and L is the simulation box length; nlevels the maximum refinement level. The latter obviously
depends on the machine precision, and for a 64-bit machine, we can have 21 bits per coordinate (or

nlevels=20) plus a place-holder bit:

placebit = 263.

This procedure yields a space-filling curve following the so-called Morton or Z-ordering, a 2-

dimensional example of which is shown in Fig. 1 below.

Figure 1: 2-dimensionalMorton (Z-) ordering of 200 simulation particles, equally shared among 4 processor
domains.

The simulation particles are then sorted according to the list of binary keys generated above. In an

early version of the code, the key-sort was implemented sequentially, which requires all N keys to
be gathered onto the root processor. This would appear to ruin the overall parallelism, but in fact the

N log N sorting effort which then results is a worst case—typically encountered at the beginning of
the simulation when the particles have been randomly distributed. Once they are sorted, only a few

particles cross processor domain-boundaries between timesteps, so that this routine actually takes

a negligible amount of time. Nonetheless, the necessity of gathering all keys onto one processor

limits the maximum simulation size to less than a million particles on the T3E.

The fully parallel sort currently implemented is an adaptation of the PSRS (parallel sort by regular

sampling) algorithm originally proposed in Ref. [21]. Since the distribution of keys depends sensi-

tively on the geometry of the system simulated—that is, whether the particles are initially arranged

in a cube, sphere or more complex object—regular sampling tends to produce highly imbalanced
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particle numbers across the processors. To compensate this effect, we instead use weighted sam-

pling, which allows for the actual distribution of keys along the whole space-filling curve (Fig. 1).

A big advantage of binary coordinate ordering over standard addressing techniques in tree codes is

that the hierarchical structure is recovered automatically. Keys of parent and neighbour cells can

be obtained by simple bit operations, so that the average access-time for any particle or node in the

tree is O(1) instead of the usual O(log N). The obvious drawback is that the number of possible
keys, 263

≃ 1019 on a 64-bit machine, vastly exceeds the memory available, typically ∼ 105
− 106

locations per processor. This mismatch is resolved by using a hashing function to map the key onto

a physical address in memory, for example:

address = key AND (2h
− 1), (1)

where h is the number of bits available for the address. This address then acts as a pointer to the
particle or cell properties. In case two or more keys give the same address (collision), a linked-

list is constructed to resolve it. Clearly a high occurence of collisions will ultimately degrade

performance; however, as Warren & Salmon pointed out [14], the distribution of particles and nodes

between many processors with their own address-spaces helps to reduce their number considerably.

Domain decomposition is then reduced to the almost trivial task of cutting out equal portions of

the sorted list and allocating these to the processors. An decomposition example for 200 particles

divided amoung 4 processors is also displayed by Fig. 1. Note that with this scheme, load balancing

can be easily introduced by biasing the key-list segments according to the number of interactions

computed for each particle in the force summation (performed later).

2.2. Construction of local trees

Once a set of particles has been allocated to a particular processor, and their associated properties

(mass, charge, velocity etc.) have been fetched from their original location, one can immediately

begin to construct the local trees. This can be done very efficiently because the particle keys implic-

itly contain the necessary information on all their ancestor nodes up to the root. As the 2D example

in Fig. 2 shows, the parent of a particle or twig-node is simply found by a 3-bit shift operation:

parent key = RIGHTSHIFT(key,3) (2)

Likewise, if a node’s children are numbered from 0 to 7 (in a 3D oct-tree), their keys can be obtained

by the inverse operation:

child key = LEFTSHIFT(key,3) OR child(0-7), (3)

The local sorted list of particle keys would thus provide a natural starting point for determining their

parent nodes if we knew how they were distributed. In a dynamic application we cannot assume

anything about their distribution, however, so instead we start from the highest (coarsest) level and

work down to the leaves. As in a sequential algorithm [3], all particles are initially attached to

the root, a cube encompassing the whole simulation region. Next, the region is subdivided into 8

sub-boxes, and the particles re-attached accordingly. A sub-box containing exactly one particle is

defined as a leaf; a box with 2 or more constitutes a twig and empty boxes are discarded. This

procedure is continued at the next highest level until each particle sits in its own box. Each new leaf

or twig node created this way is added to the local hash-table via the same hash function (1) as the

particles. Collisions are again dealt with via a simple linked list. As yet, no attempt has been made

to optimise the distribution of hash-table addresses (thereby saving memory): the sharing of keys

across a number of processors keeps the collision count down to tolerable levels.
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Figure 2: Level-by-level local tree construction.

2.3. Global branch nodes

At their coarsest level, the local trees will contain ‘incomplete’ twig nodes; that is, nodes which

cross domain boundaries. Information from neighbouring domains is therefore needed to complete

them. To facilitate the exchange of information (and later multipole moments) between processors,

a set of local ‘branch’ nodes is defined first, comprising the minimum number of complete twig and

leaf nodes covering the whole local domain—Fig.3.

Figure 3: Branch nodes belonging to 4 processor domains.

This set of branch nodes is then broadcast to all other processors, so that each one subsequently

knows where to find (or request) any missing non-local particle or tree node. For example, a

branch’s child nodes can immediately be found from a byte code stored with the hash-table en-

try, the first 8 bits of which declare which children exist at the next refinement level. Applying the

operation (3) yields each (still non-local) child key. A branch’s hash-entry will also contain the total
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number of particles contained beneath it, so that the top level nodes above can now be filled in up

to the root. At this point the local trees comprise 3 types of node: i) twig or leaf nodes covering

the local domain, ii) branch nodes and iii) top level twig nodes, each covering the whole simulation

region—Fig.4. Leaf node entries contain a pointer to the actual particle coordinates, charge and

mass, as well as a globally unique label for tracking purposes. Twig nodes, including the special

branch nodes, contain pointers to the multipole moments of their associated charge distributions,

together with some flags indicating the status of non-local child nodes (in particular, whether a local

copy already exists).

a) b)

Figure 4: Local trees for a) processor 0 and b) processor 2 prior to tree-walk. The shaded boxes represent
the branch nodes gathered from all remote processors.

2.4. Construction of multipole moments

Once the basic tree structure is in place, it is a straightforward matter to accumulate multipole

moments for each node from the leaves up. Once again, this procedure is considerably simplified

by sorting the keys for the twig-nodes contained within the list of local branch nodes. Twig nodes

with the highest keys will, by definition, have the highest refinement levels:

level =
log(key)

log 8
(4)

This means that multipole moments at higher levels can be successively shifted up to their parent

levels, for example:

∑
i qixi →

∑
i qixi − xs

∑
i qi

∑
i qix

2
i →

∑
i qix

2
i − 2xs

∑
i qixi + x2

s

∑
i qi

∑
i qixiyi →

∑
i qixiyi − xs

∑
i qiyi − ys

∑
i qixi + xsys

∑
i qi,

where rs is the shift vector from the child nodes to their parent.

This procedure is continued by working through the sorted list of twigs in reverse order up to the

local branch nodes, which then contain the complete multipole information for the local domain.
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This information is then broadcast to all other processors, so that the remaining top-level nodes

can be filled in using the above shifting rules. At the end of this procedure, each processor has the

complete multipole expansion for the whole system contained in the root node.

2.5. Tree traversal: building interaction lists

By far the most important and algorithmically demanding part of this code is the tree-traversal,

which combines a previous list-based vectorised algorithm [22] with the asynchronous scheme of

Warren & Salmon [14] for requesting multipole information ‘on the fly’ from non-local processor

domains. In the present scheme, rather than performing complete traversals for one particle at a

time, as many ‘simultaneous’ traversals are made as possible, thus i) minimizing the duplication

incurred when the same non-local multipole node is requested many times and ii) maximising the

communication bandwidth by accumulating large numbers of nodes before shipment. In practice,

this means creating interaction lists for batches of 200–1000 particles at a time, before actually

computing their forces. The routine TREE-WALK, which finds the interaction list for each batch

has the structure depicted in Fig. 2.5.

In the first half of this routine, traversals are made through the local tree using the familiar divide-

and-conquer strategy common to sequential tree codes [22]. The multipole acceptance criterion

(MAC) determines whether to accept or subdivide local nodes as usual, but also provides for a

third possibility: the subdivision of a non-local node for which child data is not yet available.

This is then placed on a special ‘request list’ to be processed in the 2nd half of the routine when

all particles have completed their traversals as far as they can with the available node data. Each

processor then compiles a lists of nodes it needs child data from, and sends them to the owners of

the parent nodes. In the first pass, these will just be the branch nodes. On receipt of a request list,

a processor packages and ships back the multipole data for the children. The use of non-blocking

SENDS and RECEIVES for the multipole information allows some overlap of communication with

the creation of new hash-table entries locally. At the end of all the traversals, each processor’s local

tree contains all the nodes required to compute the forces on its own particles. The nodes fetched

during the traversals actually take up most of the space in the local hash-table, as Fig. 6 illustrates.

2.6. Force summation

Once an interaction list has been found for a particle, it is a straightforward task to compute its force

and/or potential. Separation of the actual force sum from the tree traversal has the advantage that

this floating-point-intensive routine can be hardware-optimised. Also, the physics and algorithm

are kept naturally apart, so that additional forces (for example, short-range components or magnetic

fields) and/or boundary conditions (for example, corrections from a periodic Ewald summation)

can be added with relative ease. In the present implementation, forces are computed for each batch

of interaction lists returned from the tree-walk routine. One subtlety which arises here is that even

if overall load-balancing has been arranged during the domain decomposition, it is not necessarily

guaranteed for each batch of particles (which may comprise only 1/100 of the total number on each

processor). To redress this problem, the batch sizeNb for each processor is determined individually,

so that the integral

Nb∑

p=1

Nint(p) (5)

is the same, and each processor computes the same number of interaction pairs during each pass.
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do while (any defer list still > 0)

do while (any particle not finished walk)

find next node on particles’ tree-walks

if (MAC OK)

put node on interaction list

walk-key = next-node

else if (MAC not OK for local node)

subdivide: walk-key = first-child

else if (MAC not OK for non-local node)

walk-key = next-node

put particle on ‘defer’ list

put node on request list

endif

remove finished particles from walk list

end do

gather request lists for non-local nodes from all processors and discard duplicates

do for all remote processors

initiate receive buffer for incoming child data

send off requests for remote child data

end do

do for all remote processors

test for incoming request

package and ship back child multipole data to processor that requested it

end do

do for all requests

test if data has arrived for requested node

if so, create new hash-table entries for each child

end do

copy particle defer lists to new walk lists for next pass through tree

end do

Figure 5: Parallel tree-walk algorithm for determining interaction lists for a batch of particles.
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a) b)

Figure 6: Tree for processor 1 (domain in bottom right quadrant): a) before and b) after traversals for all
locally held particles.

Initialise particle properties ri,vi, qi,mi N/P
Key construction: (xi, yi, zi) → ki N/P
Sort keys: k1, k2, ...kN N/P log N
Domain decomposition: k1, ..kn; kn+1, ..k2n; ...; kN−n...kN N/P
Construct branch nodes P log N/P
Fill in top level local tree nodes log P
Build multipole moments log N/P
Construct interaction lists (tree traversal) N/P log N
Compute forces and potential N/P log N
Update particle velocities and positions N/P

Table 1: Algorithmic scaling of major routines in PEPC. The symbols N and P represent the total number
of particles and processors respectively, and n = N/P .

3. Algorithm scaling and benchmarking

The overall algorithm is depicted together with the theoretical scaling of each major routine in Ta-

ble 1. We see that in principle, all of the above routines can be performed in parallel, and thus

require a computational effort O(N/P ), give or take a slowly varying logarithmic factor. Single-
timestep benchmarks with this new code broadly confirm the theoretical scalings indicated in Ta-

ble 1. As expected, most of the time is spent in the tree-traversal and force-summation routines:

the total overhead incurred by the tree construction (which includes the steps 2.3, 2.3 and 2.4 de-

scribed previously) is around 3%, although this figure excludes tree-nodes copied locally during the

traversal—Table 2.

The increasing fraction of time spent in the tree traversal reflects the rising communication overhead

with number of CPUs. This fraction can also vary depending on the geometry: high clustered

systems will require deeper searches for interaction partners, and so longer traversals. Benchmarks

for both T3E and JUPP (IBM-p690 SMP-cluster) machines are displayed in Fig. 7. This test used a

sphere of randomly distributed charges: 3 force components and the potential of each charge were

computed with a multipole acceptance (‘s/d’) parameter θ = 0.5, giving a 1% rms force error
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Routine/ No. CPUs 8 16 64

Domain decomposition 0.2 0.24 0.33

Tree building 2.3 2.3 2.7

Tree traversal 32.9 36.1 40.8

Force summation 64.4 61.2 55.7

Table 2: Breakdown of relative computational effort (percentage of wall-clock time spent in each routine) in
the parallel tree code for a test case with 100k particles and 8, 16 and 64 processors respectively on

the T3E-1200.

compared to direct (particle-particle summation). A glance at Fig. 7 shows that the IBM machine

is over 10 times faster than the Cray for the same problem size and number of processors. Not

surprisingly though, speedup saturation sets in considerably earlier on the IBM than for the Cray.

Nevertheless, the parallel performance on both machines is respectable: for the 105-particle system,

we have a 52× speedup on 64 processors of the T3E; 14× on 16 IBM CPUs. The efficiency also
improves with system size, since the ratio of work to communication goes up accordingly: for 106

particles, we achieve a 15.2× speedup on 16 CPUs of the IBM cluster.
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Figure 7: Timings on T3E-1200 and IBM-p690 cluster for an 10k- and 100k- and 1M-particle randomly
distributed spheres.

Whether this performance can be maintained across a large number of cluster nodes remains to

be seen: a hybrid approach combining shared-memory tree-access on each node with on-the-fly

exchange of multipole data between nodes may ultimately prove to be more effective (albeit less

portable) than the pure distributed-memory MPI implementation described here.
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