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ABSTRACT

An parallel tree code for rapid computation of long-rangaildmb forces based on the Warren-Salmon
‘Hashed Oct Tree’ algorithm is described. Communicatioarbead is minimised by bundling multipole
data for large groups of particles prior to shipment. Impatations on the Cray T3E and the IBM-p690
cluster show the expect& N log N) scaling with particle number, as well as good scaling priogewith
number of processors.

1. Introduction

The N-body problem for systems dominated by long-range potenisastill, even in the era of
Teraflop computing, a considerable algorithmic and contjmrtal challenge. The brute-force ap-
proach, in which allV (N — 1) interactions are computed directly, is both inefficient angractical
for many N-body systems such as plasmas, gravitational objectsyge faolecules in ionized so-
lution. This is particularly true when the global dynamichbeiour of the system is of primary
interest, rather than the microscopic details of indivighaaticle trajectories. For this class of prob-
lem there is no need to compute potentials and forces to haglairacy than the error incurred in
integrating the equations of motion, which can be anywhete#en10—* for a high-order Runge-
Kutta scheme, to around 1% for the simple 2nd-order Leapg-Rrethod.

In the mid-1980s two new algorithms were independently pseg in which multipole expansions
are substituted for distant groups of particles, leadingatstly improved algorithmic scalings of
O(Nlog N) or O(N). These techniqgues—the hierarchical Tree Code develop&aines & Hut
[1] and the Fast Multipole Method (FMM) by Greengard and Rih]—have revolutionized
long-rangeN-body simulation for scientists across a broad range ofdigd. The two meth-
ods differ in essentially one aspect: whereas the BarneégBHl) algorithm replaces the particle-
particle sum by lists of multipole expansions, each of lar@tlog ), the FMM makes additional
use of high-order cluster-cluster interactions (Taylqransions) to transfer multipole information
between well-separated regions of space, resulting in @dtieal O(N) overall effort. Despite
these advances, the advent of massively parallel architecin the 1990s has prompted a further
challenge: can hierarchical algorithms be effectivelylenpented on a parallel machine?

Not surprisingly, this problem has attracted consideralttention because of the potentially re-
warding prospect of billion-particle simulation which mesd Teraflop machines can then feasibly
offer. A parallel version of the original, non-adaptive 2DIM was proposed by Greengard himself
as early as 1990 [4]. This scheme, based on task-sharinglnaédhe separate near- and far-field
stages of the FMM, works well on shared memory machines, dag éfficiently on distributed
memory systems. Nonetheless, these ideas inspired thedinatel FMM for MD simulation of
macromolecules, developed and demonstrated by the Dukeetdity group in the early 1990s
[5]- A recent, optimized implementation by Dachsel [6] hakiaved machine-accuracy potential
summation for up td0? charges on an IBM-p690 SMP-cluster.



At first sight, the hierarchical data structure of BH tree emavould seem to rule out parallelism
altogether, but it was soon realised that the constructidnotin the tree and particle interaction lists
could at least b&ectorisedon a level-by-level basis [7, 8, 9], leaving a straightfortvd” x Ny,
force summation to contend with. However, this only work#iwghared memory. On distributed
memory machines, the tree structure either has to be gloladl processors—restricting the max-
imum simulation size—or somehow divided up equally amorgnth Either way, access to the
wholetree will be needed at some stage in order to build an inferadist. Various parallel tree
codes have been proposed and sucessfully implementeddiimglvirtual shared-memory versions
[10], and distributed memory schemes using geometricaladoiecomposition methods [11, 12].

One of the problems common to any distributed parallel sehenthat searching for nonlocal
nodes on remote processors requires the exchange of categlisets of messages to ensure that
the requested data is returned. Local tree data is typiaaltgssed via an address pointer, which if
shared amoung all processors, would lead to heavy duglicafihis problem was recognised early
by Salmon and Warren [13, 14], who practically reinventeziBi algorithm by scrapping pointers
in favour of a set of universal binary keys to represent plartand tree-node coordinates alike.
Given its key and owner, locating any node in the tree is reduo anO(1) operation. A further
advantage is that sorting the keys yields a space-fillinge;uproviding a natural and efficient
means of domain decomposition. Various derivatives of skhlseme are possible, depending on
the choice and ordering of the keys. Warren & Salmon origynased a simple Morton of-
order; other authors have advocated Peano-Hilbert ogidr@tause of its smoother connectivity
and hence improved communication properties [15, 16, 17].

This report describes a fresh implementation of a parakel tode—PEPC—designed primarily
with modelling of nonlinear, complex plasma systems in miNegedless to say, with appropriate
choice of units and boundary conditions, the code can ebsidapted for any molecular dynamics
problem dominated by Coulomb forces. For PEPC, we have dptethe orginal WS scheme,
largely because of its simplicity and ease of implementatieearly all of the bit-operations needed
for key manipulation are available via single internal fiime calls. As we shall see in Section 3,
this choice does not seem to harm the code’s performancéisignly when combined with an
asynchronous tree traversal (see Section 2.5.

From a very early stage, this code has been integrated véthitiualisation package VISIT [18]
both to assist in visualising the tree structure and domagouhposition for geometrically com-
plex systems, and to permit computational steering of pdasimulations running on the T3E
and the new IBM-p690 cluster (JUPP). This is particularlgfuswhen modelling large-scale, 3-
dimensional laser-plasma interactions, for example, iifwing start-up parameters such as the
initial alignment of laser and target, to monitor the pragref a lengthy run without disrupting its
progress, or for performing trial simulations with redugediticle number as a prelude to full-blown
production. Live demonstrations of this capability haveadly been made at a number of recent
conferences [19] and will be reported in detail elsewhe@g.[2

2. The Hashed Oct Tree algorithm

2.1. Construction of particle keys and domain decompositio

As mentioned earlier, the strategy adopted here is basdtb@theme of Warren & Salmon (1995),
who use binary coordinate keys to map the 3-dimensionalaitucture onto a one-dimensional
space-filling curve. The basic idea is to convert the coatirtriple of each particle into a single,
unigue 64-bit integer key. The keys do neplacethe coordinates, but as we shall see, provide a
natural and rapid means of sorting the particles and bgjldimthe tree structure around them.



In the present code, the keys are constructed from the bintagjeave operation:

nbits—1
key = placebit + » = 8/(4 x bit(i.,j) +2 X bit(iy, ) + bit(iz, )
j=0

The functionbi t () selects thgth bit of the integer coordinate componét, i,, . ), which are
computed from:
iz = x/s,etc.,

where
g = L/2n1evels

andL is the simulation box lengtiml evel s the maximum refinement level. The latter obviously
depends on the machine precision, and for a 64-bit machieeaw have 21 bits per coordinate (or
nl evel s=20) plus a place-holder bit:

placebit = 263,

This procedure yields a space-filling curve following thecstled Morton or Z-ordering, a 2-
dimensional example of which is shown in Fig. 1 below.

Figure 1: 2-dimensional Morton (Z-) ordering of 200 simulation peles, equally shared among 4 processor
domains.

The simulation particles are then sorted according to Htefibinary keys generated above. In an
early version of the code, the key-sort was implementedesgally, which requires allV keys to
be gathered onto the root processor. This would appearridheioverall parallelism, but in fact the
N log N sorting effort which then results is a worst case—typicathgountered at the beginning of
the simulation when the particles have been randomly diged. Once they are sorted, only a few
particles cross processor domain-boundaries betweestép®e so that this routine actually takes
a negligible amount of time. Nonetheless, the necessityatifaging all keys onto one processor
limits the maximum simulation size to less than a milliontjgdes on the T3E.

The fully parallel sort currently implemented is an adaptabf the PSRS (parallel sort by regular
sampling) algorithm originally proposed in Ref. [21]. Sénhe distribution of keys depends sensi-
tively on the geometry of the system simulated—that is, wethe particles are initially arranged
in a cube, sphere or more complex object—regular samplimgstéo produce highly imbalanced



particle numbers across the processors. To compensateffdnds we instead use weighted sam-
pling, which allows for the actual distribution of keys afpthe whole space-filling curve (Fig. 1).

A big advantage of binary coordinate ordering over standddtessing techniques in tree codes is
that the hierarchical structure is recovered automagicédkeys of parent and neighbour cells can
be obtained by simple bit operations, so that the averagesadane for any particle or node in the
tree isO(1) instead of the usuaD(log V). The obvious drawback is that the number of possible
keys,2%3 ~ 10! on a 64-bit machine, vastly exceeds the memory availalgpégaily ~ 105 — 106
locations per processor. This mismatch is resolved by wsimagshing function to map the key onto
a physical address in memory, for example:

address = key AND (2" — 1), 1)

whereh is the number of bits available for the address. This address acts as a pointer to the
particle or cell properties. In case two or more keys givestime address (collision), a linked-
list is constructed to resolve it. Clearly a high occurenéeallisions will ultimately degrade

performance; however, as Warren & Salmon pointed out [hé]distribution of particles and nodes
between many processors with their own address-spacestbakduce their number considerably.

Domain decomposition is then reduced to the almost tridak tof cutting out equal portions of
the sorted list and allocating these to the processors. Aandgosition example for 200 particles
divided amoung 4 processors is also displayed by Fig. 1. thatewith this scheme, load balancing
can be easily introduced by biasing the key-list segmentsrdig to the number of interactions
computed for each particle in the force summation (perfarhater).

2.2. Construction of local trees

Once a set of particles has been allocated to a particulaegsor, and their associated properties
(mass, charge, velocity etc.) have been fetched from thigjmal location, one can immediately
begin to construct the local trees. This can be done veryagitig because the particle keys implic-
itly contain the necessary information on all their ancestmles up to the root. As the 2D example
in Fig. 2 shows, the parent of a particle or twig-node is sinfplind by a 3-bit shift operation:

parent key = RIGHTSH FT(key, 3) (2)

Likewise, if a node’s children are numbered from 0 to 7 (in aigbtree), their keys can be obtained
by the inverse operation:

childkey = LEFTSH FT(key,3) OR child(0-7), 3)

The local sorted list of particle keys would thus provide tre starting point for determining their
parent nodes if we knew how they were distributed. In a dyoaapplication we cannot assume
anything about their distribution, however, so instead taet $rom the highest (coarsest) level and
work down to the leaves. As in a sequential algorithm [3],paliticles are initially attached to
the root, a cube encompassing the whole simulation regiaxt,the region is subdivided into 8
sub-boxes, and the particles re-attached accordingly. bAbsx containing exactly one particle is
defined as a leaf; a box with 2 or more constitutes a twig andteingxes are discarded. This
procedure is continued at the next highest level until eaetighe sits in its own box. Each new leaf
or twig node created this way is added to the local hash-tabléhe same hash function (1) as the
particles. Collisions are again dealt with via a simple didKist. As yet, no attempt has been made
to optimise the distribution of hash-table addresses dthesaving memory): the sharing of keys
across a number of processors keeps the collision count tioteterable levels.



level 1

get_parent

Figure 2: Level-by-level local tree construction.
2.3. Global branch nodes

At their coarsest level, the local trees will contain ‘inqalete’ twig nodes; that is, nodes which
cross domain boundaries. Information from neighbouringnaias is therefore needed to complete
them. To facilitate the exchange of information (and lateitipole moments) between processors,
a set of local ‘branch’ nodes is defined first, comprising ttimum number otompletewig and
leaf nodes covering the whole local domain—Fig.3.

Figure 3: Branch nodes belonging to 4 processor domains.

This set of branch nodes is then broadcast to all other pgocgsso that each one subsequently
knows where to find (or request) any missing non-local partar tree node. For example, a
branch’s child nodes can immediately be found from a byteecstdred with the hash-table en-
try, the first 8 bits of which declare which children exist la¢ thext refinement level. Applying the
operation (3) yields each (still non-local) child key. A bca’'s hash-entry will also contain the total



number of particles contained beneath it, so that the togl lewdes above can now be filled in up
to the root. At this point the local trees comprise 3 typesaren i) twig or leaf nodes covering

the local domain, ii) branch nodes and iii) top level twig aedeach covering the whole simulation
region—Fig.4. Leaf node entries contain a pointer to theagbarticle coordinates, charge and
mass, as well as a globally unique label for tracking purpodevig nodes, including the special
branch nodes, contain pointers to the multipole momentseif fissociated charge distributions,
together with some flags indicating the status of non-lob#étiaodes (in particular, whether a local
copy already exists).

a) b)

Figure 4: Local trees for a) processor 0 and b) processor 2 prior tevidk. The shaded boxes represent
the branch nodes gathered from all remote processors.

2.4. Construction of multipole moments

Once the basic tree structure is in place, it is a straigivdiodl matter to accumulate multipole
moments for each node from the leaves up. Once again, thiequee is considerably simplified
by sorting the keys for the twig-nodes contained within fkedf local branch nodes. Twig nodes
with the highest keys will, by definition, have the highedtmement levels:

| evel = log(key) (4)

log 8

This means that multipole moments at higher levels can beessively shifted up to their parent
levels, for example:

> 4T — D GiT — Ty ;G
> qix? — Y@ — 2 Y i+ R Y g
DG = D T — Ts D GYi — Ys 2 GTi + TsYs i G

wherer is the shift vector from the child nodes to their parent.

This procedure is continued by working through the sortsddf twigs in reverse order up to the
local branch nodes, which then contain ttempletemultipole information for the local domain.



This information is then broadcast to all other processsosthat the remaining top-level nodes
can be filled in using the above shifting rules. At the end & ginocedure, each processor has the
complete multipole expansion for the whole system conthinghe root node.

2.5. Tree traversal: building interaction lists

By far the most important and algorithmically demandingt gdrthis code is the tree-traversal,
which combines a previous list-based vectorised algoriid2h with the asynchronous scheme of
Warren & Salmon [14] for requesting multipole informatiam'‘the fly’ from non-local processor

domains. In the present scheme, rather than performing letenppaversals for one particle at a
time, as many ‘simultaneous’ traversals are made as pessinls i) minimizing the duplication

incurred when the same non-local multipole node is reqdas&ny times and ii) maximising the
communication bandwidth by accumulating large numbersodies before shipment. In practice,
this means creating interaction lists for batches of 20081articles at a time, before actually
computing their forces. The routifEREE- WALK, which finds the interaction list for each batch
has the structure depicted in Fig. 2.5.

In the first half of this routine, traversals are made throtighlocal tree using the familiar divide-
and-conquer strategy common to sequential tree codes [#. multipole acceptance criterion
(MAC) determines whether to accept or subdivide local namesisual, but also provides for a
third possibility: the subdivision of aonlocal node for which child data is not yet available.
This is then placed on a special ‘request list' to be proakgsehe 2nd half of the routine when
all particles have completed their traversals as far as ¢heywith the available node data. Each
processor then compiles a lists of nodes it needs child data, fand sends them to the owners of
the parent nodes. In the first pass, these will just be thechrandes. On receipt of a request list,
a processor packages and ships back the multipole datagfa@htlidren. The use of non-blocking
SENDS and RECEIVES for the multipole information allows soowerlap of communication with
the creation of new hash-table entries locally. At the enallahe traversals, each processor’s local
tree contains all the nodes required to compute the forcéts anvn particles. The nodes fetched
during the traversals actually take up most of the spacecitioital hash-table, as Fig. 6 illustrates.

2.6. Force summation

Once an interaction list has been found for a particle, itdsa@ghtforward task to compute its force
and/or potential. Separation of the actual force sum froenttée traversal has the advantage that
this floating-point-intensive routine can be hardwardrogsed. Also, the physics and algorithm
are kept naturally apart, so that additional forces (fongple, short-range components or magnetic
fields) and/or boundary conditions (for example, corretifrom a periodic Ewald summation)
can be added with relative ease. In the present implemenjdtirces are computed for each batch
of interaction lists returned from the tree-walk routineneXsubtlety which arises here is that even
if overall load-balancing has been arranged during the dtochecomposition, it is not necessarily
guaranteed for each batch of particles (which may comprigeId100 of the total number on each
processor). To redress this problem, the batch Biztor each processor is determined individually,
so that the integral

> Nint(p) (5)

is the same, and each processor computes the same numberadtion pairs during each pass.



do while @ny defer list still> 0)

do while @ny particle not finished wajk
find next node on particles’ tree-walks

if (MAC OK)
put node on interaction list
wal k- key = next - node
else if (MAC not OK for local node)
subdivide:wal k- key = first-child
else if (MAC not OK fornon-local node)

wal k- key = next - node
put particle on ‘defer’ list
put node on request list

endif

remove finished particles from walk list
end do

gather request lists for non-local nodes from all procesaad discard duplicates

do for all remote processors

initiate receive buffer for incoming child data
send off requests for remote child data

end do

do for all remote processors

test for incoming request
package and ship back child multipole data to processordaaiested it

end do
do for all requests

test if data has arrived for requested node

if so, create new hash-table entries for each child
end do

copy particle defer lists to new walk lists for next pass tigio tree

end do

Figure 5: Parallel tree-walk algorithm for determining interacticsts for a batch of particles.
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a) b)

Figure 6: Tree for processor 1 (domain in bottom right quadrant): dpieeand b) after traversals for all
locally held particles.

Initialise particle properties;, v;, ¢;, m; N/P

Key construction:(x;, yi, z;) — k; N/P

Sort keys:ky, ko, ...kN N/Plog N
Domain decompositionky, ..ky,; knt1, --kon; i kn—n..kn N/P
Construct branch nodes 18 N/ P
Fill in top level local tree nodes log P

Build multipole moments log N/P
Construct interaction lists (tree traversal) N/Plog N
Compute forces and potential N/Plog N
Update particle velocities and positions N/P

Table 1: Algorithmic scaling of major routines in PEPC. The symbdlsand P represent the total number
of particles and processors respectively, and N/ P.

3. Algorithm scaling and benchmarking

The overall algorithm is depicted together with the theoatscaling of each major routine in Ta-

ble 1. We see that in principle, all of the above routines campérformed in parallel, and thus

require a computational effo@(N/P), give or take a slowly varying logarithmic factor. Single-

timestep benchmarks with this new code broadly confirm teerttical scalings indicated in Ta-

ble 1. As expected, most of the time is spent in the tree4tsaveand force-summation routines:

the total overhead incurred by the tree construction (whictudes the steps 2.3, 2.3 and 2.4 de-
scribed previously) is around 3%, although this figure edetutree-nodes copied locally during the
traversal—Table 2.

The increasing fraction of time spent in the tree traversidgcts the rising communication overhead
with number of CPUs. This fraction can also vary dependinghengeometry: high clustered
systems will require deeper searches for interaction pesfrand so longer traversals. Benchmarks
for both T3E and JUPP (IBM-p690 SMP-cluster) machines aplayed in Fig. 7. This test used a
sphere of randomly distributed charges: 3 force comporemdghe potential of each charge were
computed with a multipole acceptance /{’) parameterd = 0.5, giving a 1% rms force error



Routine/ No. CPUs 8 16 64

Domain decomposition 0.2 0.24 0.33

Tree building 23 23 27
Tree traversal 329 36.1 40.8
Force summation 64.4 61.2 55.7

Table 2: Breakdown of relative computational effort (percentagevall-clock time spent in each routine) in

the parallel tree code for a test case with 100k particlesBadé and 64 processors respectively on
the T3E-1200.

compared to direct (particle-particle summation). A gaat Fig. 7 shows that the IBM machine
is over 10 times faster than the Cray for the same problemasidenumber of processors. Not
surprisingly though, speedup saturation sets in conditleesrlier on the IBM than for the Cray.
Nevertheless, the parallel performance on both machirrespectable: for th&0®-particle system,
we have &2x speedup on 64 processors of the T3Ex on 16 IBM CPUs. The efficiency also
improves with system size, since the ratio of work to comroation goes up accordingly: fao®
particles, we achieve 5.2 x speedup on 16 CPUs of the IBM cluster.

10°

[ ] N=10k, T3E
] N=10k, JUPP

~— A N=10°, T3E
~e_ a N=10°, JUPP

100 ¢ T e 1 N=10° T3E
> N=10°, JUPP

e .
-~ ideal

Execution time (s/At)

1 2 5 10 20 50 100 200 500

# processors

Figure 7: Timings on T3E-1200 and IBM-p690 cluster for an 10k- and 0é@kd 1M-particle randomly
distributed spheres.

Whether this performance can be maintained across a lampderuof cluster nodes remains to
be seen: a hybrid approach combining shared-memory teEsawon each node with on-the-fly
exchange of multipole data between nodes may ultimatelyepto be more effective (albeit less
portable) than the pure distributed-memory MPI implemiotadescribed here.
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