000029175 001__ 29175 000029175 005__ 20180210134034.0 000029175 0247_ $$2DOI$$a10.1016/0009-2614(03)00770-X 000029175 0247_ $$2WOS$$aWOS:000183945900028 000029175 037__ $$aPreJuSER-29175 000029175 041__ $$aeng 000029175 082__ $$a540 000029175 084__ $$2WoS$$aChemistry, Physical 000029175 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical 000029175 1001_ $$0P:(DE-HGF)0$$aAntol, I.$$b0 000029175 245__ $$aValence and Rydberg states of protonated formaldehyde 000029175 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2003 000029175 300__ $$a587 - 593 000029175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000029175 3367_ $$2DataCite$$aOutput Types/Journal article 000029175 3367_ $$00$$2EndNote$$aJournal Article 000029175 3367_ $$2BibTeX$$aARTICLE 000029175 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000029175 3367_ $$2DRIVER$$aarticle 000029175 440_0 $$01200$$aChemical Physics Letters$$v374$$x0009-2614 000029175 500__ $$aRecord converted from VDB: 12.11.2012 000029175 520__ $$aMR-CISD and MR-CISD + Q calculations have been performed for the vertical excitations of protonated formaldehyde in comparison to formaldehyde. Singlet and triplet states have been investigated. It is shown that the protonation causes the Rydberg states to be shifted to higher energies by several eV. This finding is discussed by means of the Rydberg formula in terms of quantum defects for the two lowest vertical ionization energies. For protonated formaldehyde the pi-pi(*) valence state is energetically the second lowest state at 9.80 eV, about 1.50 eV below the first Rydberg n-3s state. This finding is in strong contrast to the case of formaldehyde where the pi-pi(*) state is embedded within a series of Rydberg states. (C) 2003 Elsevier Science B.V. All rights reserved. 000029175 536__ $$0G:(DE-Juel1)FUEK254$$2G:(DE-HGF)$$aBetrieb und Weiterentwicklung des Höchstleistungsrechners$$cI03$$x0 000029175 588__ $$aDataset connected to Web of Science 000029175 650_7 $$2WoSType$$aJ 000029175 7001_ $$0P:(DE-HGF)0$$aEckert-Maksic, M.$$b1 000029175 7001_ $$0P:(DE-Juel1)132204$$aMüller, T.$$b2$$uFZJ 000029175 7001_ $$0P:(DE-HGF)0$$aDallos, M.$$b3 000029175 7001_ $$0P:(DE-HGF)0$$aLischka, H.$$b4 000029175 773__ $$0PERI:(DE-600)1466293-0$$a10.1016/0009-2614(03)00770-X$$gVol. 374, p. 587 - 593$$p587 - 593$$q374<587 - 593$$tChemical physics letters$$v374$$x0009-2614$$y2003 000029175 8567_ $$uhttp://dx.doi.org/10.1016/0009-2614(03)00770-X 000029175 909CO $$ooai:juser.fz-juelich.de:29175$$pVDB 000029175 9131_ $$0G:(DE-Juel1)FUEK254$$bInformation$$kI03$$lWissenschaftliches Rechnen$$vBetrieb und Weiterentwicklung des Höchstleistungsrechners$$x0 000029175 9141_ $$y2003 000029175 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000029175 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0 000029175 970__ $$aVDB:(DE-Juel1)25408 000029175 980__ $$aVDB 000029175 980__ $$aConvertedRecord 000029175 980__ $$ajournal 000029175 980__ $$aI:(DE-Juel1)JSC-20090406 000029175 980__ $$aUNRESTRICTED 000029175 981__ $$aI:(DE-Juel1)JSC-20090406