000029175 001__ 29175
000029175 005__ 20180210134034.0
000029175 0247_ $$2DOI$$a10.1016/0009-2614(03)00770-X
000029175 0247_ $$2WOS$$aWOS:000183945900028
000029175 037__ $$aPreJuSER-29175
000029175 041__ $$aeng
000029175 082__ $$a540
000029175 084__ $$2WoS$$aChemistry, Physical
000029175 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000029175 1001_ $$0P:(DE-HGF)0$$aAntol, I.$$b0
000029175 245__ $$aValence and Rydberg states of protonated formaldehyde
000029175 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2003
000029175 300__ $$a587 - 593
000029175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000029175 3367_ $$2DataCite$$aOutput Types/Journal article
000029175 3367_ $$00$$2EndNote$$aJournal Article
000029175 3367_ $$2BibTeX$$aARTICLE
000029175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000029175 3367_ $$2DRIVER$$aarticle
000029175 440_0 $$01200$$aChemical Physics Letters$$v374$$x0009-2614
000029175 500__ $$aRecord converted from VDB: 12.11.2012
000029175 520__ $$aMR-CISD and MR-CISD + Q calculations have been performed for the vertical excitations of protonated formaldehyde in comparison to formaldehyde. Singlet and triplet states have been investigated. It is shown that the protonation causes the Rydberg states to be shifted to higher energies by several eV. This finding is discussed by means of the Rydberg formula in terms of quantum defects for the two lowest vertical ionization energies. For protonated formaldehyde the pi-pi(*) valence state is energetically the second lowest state at 9.80 eV, about 1.50 eV below the first Rydberg n-3s state. This finding is in strong contrast to the case of formaldehyde where the pi-pi(*) state is embedded within a series of Rydberg states. (C) 2003 Elsevier Science B.V. All rights reserved.
000029175 536__ $$0G:(DE-Juel1)FUEK254$$2G:(DE-HGF)$$aBetrieb und Weiterentwicklung des Höchstleistungsrechners$$cI03$$x0
000029175 588__ $$aDataset connected to Web of Science
000029175 650_7 $$2WoSType$$aJ
000029175 7001_ $$0P:(DE-HGF)0$$aEckert-Maksic, M.$$b1
000029175 7001_ $$0P:(DE-Juel1)132204$$aMüller, T.$$b2$$uFZJ
000029175 7001_ $$0P:(DE-HGF)0$$aDallos, M.$$b3
000029175 7001_ $$0P:(DE-HGF)0$$aLischka, H.$$b4
000029175 773__ $$0PERI:(DE-600)1466293-0$$a10.1016/0009-2614(03)00770-X$$gVol. 374, p. 587 - 593$$p587 - 593$$q374<587 - 593$$tChemical physics letters$$v374$$x0009-2614$$y2003
000029175 8567_ $$uhttp://dx.doi.org/10.1016/0009-2614(03)00770-X
000029175 909CO $$ooai:juser.fz-juelich.de:29175$$pVDB
000029175 9131_ $$0G:(DE-Juel1)FUEK254$$bInformation$$kI03$$lWissenschaftliches Rechnen$$vBetrieb und Weiterentwicklung des Höchstleistungsrechners$$x0
000029175 9141_ $$y2003
000029175 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000029175 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000029175 970__ $$aVDB:(DE-Juel1)25408
000029175 980__ $$aVDB
000029175 980__ $$aConvertedRecord
000029175 980__ $$ajournal
000029175 980__ $$aI:(DE-Juel1)JSC-20090406
000029175 980__ $$aUNRESTRICTED
000029175 981__ $$aI:(DE-Juel1)JSC-20090406