000029243 001__ 29243
000029243 005__ 20240712101002.0
000029243 0247_ $$2DOI$$a10.5194/acp-3-639-2003
000029243 0247_ $$2WOS$$aWOS:000183456700004
000029243 0247_ $$2Handle$$a2128/761
000029243 037__ $$aPreJuSER-29243
000029243 041__ $$aeng
000029243 082__ $$a550
000029243 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000029243 1001_ $$0P:(DE-HGF)0$$aBerresheim, H.$$b0
000029243 245__ $$aOH in the coastal boundary layer of Crete during MINOS : measurements and relationship with ozone photolysis
000029243 260__ $$aKatlenburg-Lindau$$bEGU$$c2003
000029243 300__ $$a639 - 649
000029243 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000029243 3367_ $$2DataCite$$aOutput Types/Journal article
000029243 3367_ $$00$$2EndNote$$aJournal Article
000029243 3367_ $$2BibTeX$$aARTICLE
000029243 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000029243 3367_ $$2DRIVER$$aarticle
000029243 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v3$$x1680-7316
000029243 500__ $$aRecord converted from VDB: 12.11.2012
000029243 520__ $$aHydroxyl radical (OH) concentrations were measured in August 2001 at Finokalia Station on the northeastern coast of Crete during the Mediterranean Intensive Oxidant Study (MINOS). OH was measured based on selected ion chemical ionization mass spectrometry (SI/CIMS) with a time resolution of 30 sec and signal integration of 5 min. The corresponding accuracy, precision, and detection limit were 20% (1sigma), 11% (1sigma), and 2.4 x 10(5) molecules cm(-3) (2sigma), respectively. OH levels showed a strong diurnal variability with high maxima (approximately 2 x 10(7) molecules cm(-3)) occurring around 13:30 LT (10:30 UTC) and nighttime values below the detection limit. Daily 24-hour average concentrations varied between 3.6-6.7 x 10(6) cm(-3). For the total measurement period (6-21 August) the mean and standard deviation were 4.5 +/- 1.1 x 10(6) cm(-3). The OH data set is analyzed based on a classification into three periods: I: Aug 6-8, II: Aug 9-11, III: Aug 13-18. For each of the three periods the measured OH concentrations are described by the empirical function [OH] = a J((OD)-D-1)(b), with J((OD)-D-1) being the ozone photolysis frequency and a = 1.4 x 10(10) s cm(-3), 1.7 x 10(10) s cm(-3), 2.2 x 10(10) s cm(-3), and b = 0.68, respectively. Taking into account the estimated precision of the OH measurements this empirical function using three values for a and one value for b explains 99% of the observed variance of OH. A detailed sensitivity analysis using a CH4-CO box model was performed to interpret this relationship, in particular the meanings of the pre-exponential factor a and the exponent b. It was found that the value of b which represents the total logarithmic dependence of [OH] on J((OD)-D-1) includes the individual contributions from the photolysis of O-3, NO2, HCHO, HONO, and H2O2 which could be determined using the box model. For the conditions prevailing during the MINOS campaign the exponent b was found to be dominated by the contributions from O-3- and NO2-photolysis. For the in-dividual functional dependences between [OH] and J((OD)-D-1), [OH] and J(NO2), and J(NO2) and J((OD)-D-1) the partial logarithmic derivatives were determined to be 0.5, 0.6, and 0.3, respectively. Overall, the box model yields a value of 0.70 for the exponent b in very good agreement with the corresponding value derived from the empirical analysis of the measurements. This empirical approach in which the chemical air mass characteristics influencing the OH radical balance and thereby, the self-cleansing efficiency of the atmosphere, are represented by only two parameters which are constant over quite substantial time periods may be used in future experiments to test and compare OH measurements made in different atmospheric environments.
000029243 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000029243 588__ $$aDataset connected to Web of Science
000029243 650_7 $$2WoSType$$aJ
000029243 7001_ $$0P:(DE-HGF)0$$aPlass-Dülmer, C.$$b1
000029243 7001_ $$0P:(DE-HGF)0$$aElste, T.$$b2
000029243 7001_ $$0P:(DE-HGF)0$$aMihalopoulos, N.$$b3
000029243 7001_ $$0P:(DE-Juel1)16347$$aRohrer, F.$$b4$$uFZJ
000029243 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-3-639-2003$$gVol. 3, p. 639 - 649$$p639 - 649$$q3<639 - 649$$tAtmospheric chemistry and physics$$v3$$x1680-7316$$y2003
000029243 8567_ $$uhttp://hdl.handle.net/2128/761$$uhttp://dx.doi.org/10.5194/acp-3-639-2003
000029243 8564_ $$uhttps://juser.fz-juelich.de/record/29243/files/25667.pdf$$yOpenAccess
000029243 8564_ $$uhttps://juser.fz-juelich.de/record/29243/files/25667.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000029243 8564_ $$uhttps://juser.fz-juelich.de/record/29243/files/25667.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000029243 8564_ $$uhttps://juser.fz-juelich.de/record/29243/files/25667.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000029243 909CO $$ooai:juser.fz-juelich.de:29243$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000029243 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000029243 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000029243 9141_ $$y2003
000029243 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000029243 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x0
000029243 970__ $$aVDB:(DE-Juel1)25667
000029243 9801_ $$aFullTexts
000029243 980__ $$aVDB
000029243 980__ $$aJUWEL
000029243 980__ $$aConvertedRecord
000029243 980__ $$ajournal
000029243 980__ $$aI:(DE-Juel1)IEK-8-20101013
000029243 980__ $$aUNRESTRICTED
000029243 980__ $$aFullTexts
000029243 981__ $$aI:(DE-Juel1)ICE-3-20101013
000029243 981__ $$aI:(DE-Juel1)IEK-8-20101013