000029362 001__ 29362
000029362 005__ 20240709094406.0
000029362 0247_ $$2pmid$$apmid:12397473
000029362 0247_ $$2DOI$$a10.1007/s00216-001-1185-7
000029362 0247_ $$2WOS$$aWOS:000179404400002
000029362 037__ $$aPreJuSER-29362
000029362 041__ $$aeng
000029362 082__ $$a540
000029362 084__ $$2WoS$$aBiochemical Research Methods
000029362 084__ $$2WoS$$aChemistry, Analytical
000029362 1001_ $$0P:(DE-Juel1)VDB3001$$aNickel, J. P.$$b0$$uFZJ
000029362 245__ $$aAnalysis of corrosion layers on protective coatings and high temperature materials in simulated service environments of modern power plants using SNMS, SIMS, SEM, TEM, RBS and X-ray diffraction
000029362 260__ $$aBerlin$$bSpringer$$c2002
000029362 29510 $$a.
000029362 300__ $$a581 - 587
000029362 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000029362 3367_ $$2DataCite$$aOutput Types/Journal article
000029362 3367_ $$00$$2EndNote$$aJournal Article
000029362 3367_ $$2BibTeX$$aARTICLE
000029362 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000029362 3367_ $$2DRIVER$$aarticle
000029362 440_0 $$08664$$aAnalytical and Bioanalytical Chemistry$$v374$$x1618-2642$$y4
000029362 500__ $$aRecord converted from VDB: 12.11.2012
000029362 520__ $$aIn three different examples, the effects of the oxidation behaviour as well as the microstructural stability of high temperature materials and protective coatings was determined by combining the results of kinetic studies with extensive analytical investigations using, among other techniques, SNMS, SIMS, SEM, TEM, Rutherford back scattering (RBS) as well as X-ray diffraction. 1). The effect of water vapour on the oxidation behaviour of 9% Cr steels in simulated combustion gases has been determined. The effects of O2 and H2O content on the oxidation behaviour of 9% Cr steel in the temperature range 600-800 degrees C showed that in dry oxygen a protective scale was formed with an oxidation rate controlled by diffusion in the protective scale. In the presence of water vapour, after an incubation period, the scales became non-protective as a result of a change in the oxidation limiting process. The destruction of the protective scale by water vapour does not only depend on H2O content but also on the H2O/O2-ratio. 2). The increase of component surface temperature in modern gas turbines leads to an enhanced oxidation attack of the blade coating. Improvements in corrosion resistance and longer lifetime thermal barrier coatings in gas turbines have been achieved by improvement of the high temperature properties of MCrAlY coatings by additions of minor alloying elements such as yttrium, silicon and titanium. 3). The use of oxide dispersion strengthened (ODS) alloys provides excellent creep resistance up to much higher temperatures than can be achieved with conventional wrought or cast alloys in combination with suitable high temperature oxidation/corrosion resistance. Investigation of the growth mechanisms of protective chromia and alumina scales were examined by a two-stage oxidation method with 18O tracer. The distribution of the oxygen isotopes in the oxide scale was determined by SIMS and SNMS. The results show the positive influence of a Y2O3 dispersion on the oxidation resistance of the ODS alloys and its effect on growth mechanisms.
000029362 536__ $$0G:(DE-Juel1)FUEK24$$2G:(DE-HGF)$$aWerkstoff- und Bauteilentwicklung für fortschrittliche Kraftwerke$$c11.30.0$$x0
000029362 588__ $$aDataset connected to Web of Science, Pubmed
000029362 650_7 $$2WoSType$$aJ
000029362 65320 $$2Author$$acorrosion layers
000029362 65320 $$2Author$$acoatings
000029362 65320 $$2Author$$ahigh temperature materials
000029362 65320 $$2Author$$aSNMS
000029362 65320 $$2Author$$aSIMS
000029362 65320 $$2Author$$aSEM
000029362 65320 $$2Author$$aTEM/RBS
000029362 65320 $$2Author$$aX-ray diffraction
000029362 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, W. J.$$b1$$uFZJ
000029362 7001_ $$0P:(DE-Juel1)129795$$aSingheiser, L.$$b2$$uFZJ
000029362 773__ $$0PERI:(DE-600)1459122-4$$a10.1007/s00216-001-1185-7$$gVol. 374, p. 581 - 587$$p581 - 587$$q374<581 - 587$$tAnalytical and bioanalytical chemistry$$v374$$x1618-2642$$y2002
000029362 909CO $$ooai:juser.fz-juelich.de:29362$$pVDB
000029362 9131_ $$0G:(DE-Juel1)FUEK24$$bEnergietechnik$$k11.30.0$$lWerkstoffe der Energietechnik$$vWerkstoff- und Bauteilentwicklung für fortschrittliche Kraftwerke$$x0
000029362 9141_ $$y2001
000029362 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000029362 9201_ $$0I:(DE-Juel1)VDB2$$d31.12.2006$$gIWV$$kIWV-2$$lWerkstoffstruktur und Eigenschaften$$x0
000029362 970__ $$aVDB:(DE-Juel1)2547
000029362 980__ $$aVDB
000029362 980__ $$aConvertedRecord
000029362 980__ $$ajournal
000029362 980__ $$aI:(DE-Juel1)IEK-2-20101013
000029362 980__ $$aUNRESTRICTED
000029362 981__ $$aI:(DE-Juel1)IMD-1-20101013
000029362 981__ $$aI:(DE-Juel1)IEK-2-20101013