000002938 001__ 2938
000002938 005__ 20240712084511.0
000002938 0247_ $$2DOI$$a10.1063/1.2965117
000002938 0247_ $$2WOS$$aWOS:000258491000005
000002938 0247_ $$2Handle$$a2128/17177
000002938 037__ $$aPreJuSER-2938
000002938 041__ $$aeng
000002938 082__ $$a530
000002938 084__ $$2WoS$$aPhysics, Applied
000002938 1001_ $$0P:(DE-HGF)0$$aRockstuhl, C.$$b0
000002938 245__ $$aLocal versus global absorption in thin-film solar cells with randomly textured surfaces
000002938 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2008
000002938 300__ $$a061105
000002938 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000002938 3367_ $$2DataCite$$aOutput Types/Journal article
000002938 3367_ $$00$$2EndNote$$aJournal Article
000002938 3367_ $$2BibTeX$$aARTICLE
000002938 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000002938 3367_ $$2DRIVER$$aarticle
000002938 440_0 $$0562$$aApplied Physics Letters$$v93$$x0003-6951
000002938 500__ $$aWe acknowledge the partial financial support of this work by the Deutsche Forschungsgemeinschaft (PAK88) and the Federal Ministry of Education and Research (Nanovolt). We thank J. Hupkes for providing us with the samples for this study. Parts of computations were performed on the IBM p690 cluster JUMP of the JvN Forschungszentrum Julich, Germany and supported by a VSR project.
000002938 520__ $$aEnhanced light absorption in amorphous silicon thin films deposited on randomly textured zinc-oxide surfaces is investigated by means of a rigorous diffraction theory taking into account measured surface profiles and near-field optical data. Global absorption enhancement is obtained in the calculations for particular modifications of the random texture. We furthermore spatially resolve local domains of the surface texture, which show the strongest contribution to the absorption. Criteria on how random surfaces should look like to enhance absorption in thin-film solar cells are derived. (C) 2008 American Institute of Physics.
000002938 536__ $$0G:(DE-Juel1)FUEK401$$2G:(DE-HGF)$$aErneuerbare Energien$$cP11$$x0
000002938 588__ $$aDataset connected to Web of Science
000002938 650_7 $$2WoSType$$aJ
000002938 7001_ $$0P:(DE-HGF)0$$aFahr, S.$$b1
000002938 7001_ $$0P:(DE-HGF)0$$aLederer, F.$$b2
000002938 7001_ $$0P:(DE-Juel1)130219$$aBittkau, K.$$b3$$uFZJ
000002938 7001_ $$0P:(DE-Juel1)VDB81477$$aBeckers, T.$$b4$$uFZJ
000002938 7001_ $$0P:(DE-Juel1)VDB4964$$aCarius, R.$$b5$$uFZJ
000002938 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.2965117$$gVol. 93, p. 061105$$p061105$$q93<061105$$tApplied physics letters$$v93$$x0003-6951$$y2008
000002938 8567_ $$uhttp://dx.doi.org/10.1063/1.2965117
000002938 8564_ $$uhttps://juser.fz-juelich.de/record/2938/files/1.2965117.pdf$$yOpenAccess
000002938 8564_ $$uhttps://juser.fz-juelich.de/record/2938/files/1.2965117.gif?subformat=icon$$xicon$$yOpenAccess
000002938 8564_ $$uhttps://juser.fz-juelich.de/record/2938/files/1.2965117.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000002938 8564_ $$uhttps://juser.fz-juelich.de/record/2938/files/1.2965117.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000002938 8564_ $$uhttps://juser.fz-juelich.de/record/2938/files/1.2965117.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000002938 909CO $$ooai:juser.fz-juelich.de:2938$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000002938 9131_ $$0G:(DE-Juel1)FUEK401$$bEnergie$$kP11$$lErneuerbare Energien$$vErneuerbare Energien$$x0
000002938 9141_ $$y2008
000002938 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000002938 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000002938 9201_ $$0I:(DE-Juel1)VDB813$$d30.09.2010$$gIEF$$kIEF-5$$lPhotovoltaik$$x0
000002938 970__ $$aVDB:(DE-Juel1)108151
000002938 9801_ $$aFullTexts
000002938 980__ $$aVDB
000002938 980__ $$aConvertedRecord
000002938 980__ $$ajournal
000002938 980__ $$aI:(DE-Juel1)IEK-5-20101013
000002938 980__ $$aUNRESTRICTED
000002938 981__ $$aI:(DE-Juel1)IMD-3-20101013
000002938 981__ $$aI:(DE-Juel1)IEK-5-20101013