John von Neumann Institute for Computing N'C !

Kei Davis, Yannis Smaragdakis,
Jorg Striegnitz (Editors)

Multiparadigm
Programming with
Object-Oriented Languages

)

2001 —

Proceedings

Central Institute for Applied Mathematics

Publication Series of the John von Neumann Institute for Computing (NIC)
NIC Series Volume 7

John von Neumann Institute for Computing (NIC)

Kei Davis, Yannis Smaragdakis, Jorg Striegnitz (Eds.)

Multiparadigm Programming with
Object-Oriented Languages
(MPOOL)

1st International Workshop, 18 June 2001
Budapest, Hungary
Proceedings

organized by

John von Neumann Institute for Computing

in cooperation with

Los Alamos National Laboratory, New Mexico, USA

Georgia Institute of Technology, Georgia, USA

NIC Series Volume 7

ISBN 3-00-007968-8

Die Deutsche Bibliothek — CIP-Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die
Deutsche Bibliothek.

Publisher: NIC-Directors
Distributor: NIC-Secretariat
Research Centre Julich
52425 Jilich
Germany
Internet: www.fz-juelich.de/nic
Printer: Graphische Betriebe, Forschungszentrum Jilich

© 2001 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for pro£t or commercial advantage and
that copies bear this notice and the full citation on the £rst page. To
copy otherwise requires prior speci£c permission by the publisher
mentioned above.

NIC Series Volume 7
ISBN 3-00-007968-8

Preface

Welcome to MPOOL-the first Multiparadigm Programming with Object-
Oriented languages workshop. MPOOL was created out of the need to bring
together people who try to use or extend object-oriented tools in ways inspired
by different programming paradigms.

Programming paradigms are schools-of-thought for programmers. They fun-
damentally influence the way we think and the way we approach programming
problems. The influence of paradigms is evident in the tools we use (e.g., in
OO languages and environments). Nevertheless, tools themselves can have many
uses and often fit multiple paradigms. It is the forging of our thought process
after exposure to a programming paradigm that makes a real difference in our
programming endeavours.

As organizers of MPOOL, we hold a strong belief in the value of combining
paradigms. Different paradigms roughly correspond to different communities and
it is often the case that an advance in programming tools, concepts, or method-
ologies remains isolated in a single community because of lack of communication.
Communication across paradigm-based communities is certainly hard—often the
common background and vocabulary is limited. Nevertheless, we have found that
the interaction of different paradigms can be very fruitful.

Our hope is that MPOOL can help plant the seeds of a community with a
long-term interest in promoting multiparadigm programming. We hope that the
interaction of workshop attendees will be a big step in this direction. The nine
selected papers to be presented exhibit the diversity of the area. At the end of
the workshop, we believe you will share our views on the value of multiparadigm
interaction.

June 2001 Kei Davis
Yannis Smaragdakis
Jorg Striegnitz

Workshop Organizers

Kei Davis, Los Alamos National Laboratories, New Mexico, USA
Yannis Smaragdakis, Georgia Institute of Technology, Georgia, USA

Jorg Striegnitz, John von Neumann Institute for Computing, Germany

Table of Contents

Multi-Paradigm Implementation of an Object Database Evolution System. 1
Awais Rashid

Lazy Functional Parser Combinators in Java 11
Atze Dijkstra, Doaitse S. Swierstra

Side effects and partial function application in C+4.................... 43
Jaakko Jarvi, Gary Powell

Implementing Extensible Compilers 61
Matthias Zenger, Martin Odersky

Symbiotic Reflection between an Object-Oriented and a Logic Program-
ming Language e 81
Roel Wuyts, Stéphane Ducasse

An Environment-based Multiparadigm Language....................... 97
Mario BlaZevi¢ and Zoran Budimac

Support for Functional Programming in Brew 111
Gerald Baumgartner, Martin Jansche, Christopher D. Peisert

Extended Object-Oriented Programming in Cxx 127
Bing Swen (Bin Sun)

Extracts from the upcoming book “Concepts, Techniques, and Models of
Computer Programming” i 155
Peter Van Roy, Seif Haridi

iv

Multi-Paradigm Implementation of an Object
Database Evolution System

Awais Rashid

Computing Department, Lancaster University, Lancaster LA1 4YR, UK
awais@comp.lancs.ac.uk

Abstract. This paper provides an overview of the use of multiple
paradigms in the implementation of the SADES object database evo-
lution system. The discussion highlights how rules and declarative spec-
ification of cross-cutting instance adaptation behaviour have been sup-
ported in SADES. Language cross-binding during the implementation is
also discussed. It is argued that a multi-paradigm implementation is not
only influenced by the system requirements and design but also by the
constraints imposed by the implementation environment.

1 Introduction

This paper provides an overview of the use of multiple paradigms in the imple-
mentation of the SADES object database evolution system [10] [11] [13]. SADES
provides support for three key types of changes in an object database:

— Class hierarchy evolution
— Class structure evolution
— Object evolution

Class hierarchy and class structure evolution is carried out through a mech-
anism known as class versioning [7] [13] [14]. A new version of a class is created
each time it is modified. Objects and applications are bound to particular class
versions for effective forward and backward compatibility of changes. However,
the binding between objects and classes is flexible as objects can either be made
to simulate conversion or can be physically converted across versions of the same
class. This is termed instance adaptation. Changes to the state of an object are
managed through object versioning [4]. A new version of an object is created
each time its state needs to be preserved. This is complemented by suitable
workgroup support [4] and long transaction [4] mechanisms.

The various evolution operations in SADES are governed by a set of rules.
These rules are production rules [9] represented in a condition-action format
and must reside in an integrated rulebase so that evolution support may be
extended to them in future. Instance adaptation in SADES must be flexible so
that it may be customised to the specific needs of an organisation or application.
This implies that instance adaptation behaviour is to be specified by the main-
tainer in a declarative fashion. This problem is compounded by the fact that

this behaviour usually cuts across the various versions of a class [13]. The rest of
this discussion highlights how rules and declarative specification of cross-cutting
instance adaptation behaviour have been supported in SADES. Language cross-
binding during the implementation is also discussed. However, before proceeding
on to this discussion it is important to summarise the constraints imposed by
the development environment for a better appreciation of the problems.

2 Implementation Constraints

SADES has been implemented as a layer on top of the commercially available
Jasmine object database management system [3]. Most evolution operations re-
quire low-level access to the underlying Jasmine database and, hence, make
extensive use of the proprietary Jasmine language ODQL. ODQL is an object-
oriented language, is polymorphic in nature and can be used either through its
associated interpreter or by embedding its statements in C or C+4. SADES
employs a combination of both mechanisms; the implementation embeds ODQL
statements in C++ invoking the interpreter dynamically whenever the desired
operations cannot be performed through embedded statements (language cross-
binding will be discussed in detail in section 5). While both C++ and ODQL
provide the usual if-then conditional language constructs these are not suitable
for representing production rules. Conditional constructs cannot capture the se-
mantic information represented by production rules.

Since the ODQL/C++ implementation is fairly low-level a high-level access
to the evolution operations is provided through a Java API. This API is used
by both application programmers and maintainers. Due to the cross-cutting
nature of instance adaptation behaviour the obvious choice is the use of aspect-
oriented programming [6]. However, due to the requirement that this behaviour
be specified in a declarative fashion mechanisms such as composition filters [1]
and meta-object protocols [5] cannot be employed. Linguistic constructs and,
hence, an aspect language is an ideal solution. The use of AspectJ [2] is, however,
not possible in this context despite the fact that it has been developed for aspect-
oriented programming in Java. This is because the instance adaptation behaviour
specified by the maintainer relates to persistent entities (the class versions in
the database schema) and, hence, is persistent itself. AspectJ does not provide
support for persistent aspects at present1 .

3 Rulebase

The key question for implementing the rulebase in SADES was the choice of
an appropriate representation for rules. First-class objects seemed to be the
obvious choice due to the OO languages underlying the SADES implementation.
However, for performance reasons rules have not been implemented as first-class
objects in SADES. Instead, as shown in fig. 1, the action parts of all the rules

1 AspectJ 0.8b2.

are implemented as static methods of a single class. The conditions are specified
during the implementation of the evolution operation. If the condition is satisfied
the evolution operation delegates control to the appropriate rule. While at first
glance this might seem to be a poor design, the approach has several advantages:

— One rule can be triggered as a result of different conditions (or their combina-~
tions) to be true. By specifying conditions as part of the evolution operation
implementation the need to evaluate the conditions against a global database
state is avoided. Instead the condition is evaluated against the state defined
by the context of the evolution operation in question.

— Specifying conditions as part of the evolution operation makes the rule ex-
ecution sequences more explicit within the context of the given operation.
This highlights the interdependencies among the rules for a particular type of
change making future modifications to the behaviour of evolution operations
easy and less costly.

Meta-Class Class

RuleActions

// non-static method cee
addSubclass(...) {

>actionRulel(...)

WW .
if condition for Rule 1 De\eW actionRule2(...)

)

Fig. 1. Condition, action separation during rule implementation in SADES

4 Instance Adaptation

As discussed in [13] the instance adaptation behaviour in an object database
system is cross-cutting in nature. This is because traditionally the same adapta-
tion routines are introduced into a number of class versions. Consequently, if the
behaviour of a routine needs to be changed maintenance has to be performed
on all the class versions in which it was introduced. Adaptation routines for a
particular class version often reference the structure of other class versions hence
resulting in code tangling across various versions of a class. Due to the cross-
cutting nature of code handling instance adaptation behaviour aspect-oriented
programming techniques have been employed in SADES for implementing this
behaviour. The instance adaptation mechanism has been implemented as a com-
bination of two aspect-orientation mechanisms: composition filters and an aspect
language (and its associated weaver).

The aspect language is declarative in nature and has been modelled on As-
pectJ [2]. It provides three simple constructs facilitating:

— identification of join points between the aspects and class versions
— introduction of new methods into the class versions
— redefinition of existing methods in the class versions

The maintainer specifies the instance adaptation aspects as declarative state-
ments passed as strings to methods in the Java API. The aspect specification is
parsed to generate the persistent aspects which are in turn associated with the
class versions. The weaver supporting the aspect language has been developed
in Java. It provides support for persistent aspects and exposes its functionality
to the rest of the system through a weaver interface object.

v
Outgoing Interface
[tegend | Mismatch Messages

O Weaver Interface . Kemel Olpecl far lhe.
class version meta-obj ect
Object

E Dispatch Filters O Interface Layer for the
class version meta-obj ect

Fig. 2. Interception of interface mismatch messages and theirdelegation to the weaver
using composition filters

In order to trap interface mismatch messages arising from incompatibility
between objects and class version definitions used to access them, and delegate
these messages to the weaver to weave (or reweave), composition filters are em-
ployed (cf. fig 2). Composition filters are very effective in message interception
and hence are an ideal choice for this purpose. An output dispatch filter inter-
cepts any interface mismatch messages and delegates them to the weaver which
then dynamically weaves (or reweaves) the required instance adaptation aspect
based on a timestamp check. The appropriate instance adaptation routine is
then invoked to return the results to the application. It should be noted that
the composition filters mechanism is used by the system internally and, hence,
does not violate the system requirement for declarative specification of instance
adaptation behaviour.

5 Language Cross-Binding

As mentioned earlier SADES has been implemented using a combination of three
object-oriented programming languages: Java, C++ and ODQL. The system
comprises of two layers:

— The ODQL-C++ layer which provides most of the low-level functionality.
— The Java layer which employs the functionality exposed by the ODQL-C++
layer to offer a client API.

While all three languages used in the implementation support the OO
paradigm, they differ considerably in their nature and semantics. For example,
both ODQL and C++ support parametric polymorphism. However, in ODQL
users cannot define new parameterised types. Both ODQL and Java are single-
rooted while C++ is not. Sometimes the differences arise from the way the three
languages are supported by Jasmine. For example, ODQL is interpreted while
C++ is compiled. ODQL statements can be embedded within C++ but not
Java. Such differences make interaction and cross-binding among various system
parts (implemented using different languages) a challenging problem.

5.1 ODQL-C++ Layer

In order to achieve a balance between flexibility and performance, the static,
computation intensive behaviour has been implemented using C++ (which is
compiled to native code) while any dynamic behaviour (e.g. dynamic introduc-
tion of new classes, etc.) has been implemented using ODQL (which is inter-
preted) (cf. fig. 3). This approach offers an optimal point on the compiled-
interpreted continuum [8] (with fully interpreted systems at one end and fully
compiled systems on the other). ODQL statements embedded within the com-
piled C++ code and Jasmine-provided macros used within the ODQL code bind
the C+4 and ODQL code together (cf. fig. 3).

C++: Static, Computation gDQL?
: ynamic
g‘et;';ill‘;ir Embedded Behaviour
oboL

Fig. 3. Cross-binding C++ and ODQL in SADES

The interaction between the static and dynamic behaviour can be observed
in various parts of the system. One example is dynamic type casting. SADES
employs semantic relationships to connect the various entities within a system.
Implementation of the relationship mechanism has been kept generic so that

it is possible to connect a variety of system entities e.g. objects, classes, meta-
classes. This is dictated by the requirement for the system to be extensible. The
relationships can be defined, removed and modified dynamically. The generic
nature of the relationship mechanism means that most relationship manipulation
methods (written in ODQL due to the dynamic nature of relationships) are not
always aware (and do not need to be aware) of the real type of the object being
operated upon. As a result most return values and parameters are cast to the
class type at the root of the ODQL class hierarchy. Some methods, however, do
require that an object (which was passed to the method as an object of root
type) be cast to its actual type (the lowest type in the class hierarchy to which
the object can belong). The problem is compounded by the fact that this type
cannot be known at the time of writing the method code due to the evolving
nature of classes and bindings between objects and classes in the system. The
type needs to be discovered dynamically and the object needs to be cast to the
correct type. The mechanism to achieve this is shown in fig. 4 and demonstrates
the interaction between compiled and interpreted code.

Dynamic Variable Definition ODQL
and Casting Command Interpreter

A C++ Method |System Method
with Embedded| For Dynamic

ODQL Casting Cast Variable Holding
Object Reference

iable

| Dispatch Object Ref.
Return Cast Varia

Receive ObjectRef S| 1 |

An ODQL
Method

Fig. 4. Dynamic type casting in the SADES ODQL-C++ layer

When an ODQL method needs to dynamically type cast an object to its
actual type it dispatches the object reference to a system method written in
C++ with embedded ODQL. The compiled code in this method, with the aid
of the embedded ODQL statements, discovers the type of the method (through
ODQL’s reflective capabilities) and sends a command to the ODQL interpreter
to define a variable of the correct type and assign the object reference to it
with the correct type cast. ODQL interpreter is used because this is the only
means for dynamically defining variables in Jasmine. Note that this results in

the variable being defined for the ODQL interpreter instance associated with
the current process. As a result the C++ code keeps track of the variable names
used within the process so that duplicate names are avoided and recycles the
variable names once the process and its associated ODQL interpreter instance
are terminated. The correctly type cast variable holding the object reference is
returned to the ODQL method.

5.2 Java Layer

The Java layer provides the SADES server and the client API. As shown in fig. 5
the SADES server is an RMI server which interacts with the ODQL-C++ layer
through an implementation of the Java Naming and Directory Interface (JNDI)
in Jasmine J-API, one of the several Jasmine Java APIs. The client API provides
wrappers around remote method calls to simplify the programming interface for
developers not familiar with RMI [12].

JNDI SADES
(Jasmine J-API) ﬁ RMI

Server
C++: Static, Computation gDQL
Inensive 1o e dded e ;
Behaviour § SADES Client API
ODQL ‘ (Wrappers Around
Remote Method Calls)

Jasmine
OODB

Fig. 5. SADES Java layer linked with the C+4, ODQL layer

Transaction Transaction

Start End
g
Java CH & ODQL Java
Define SADES Gene.rate Required Flush Compile
Classes » Jasmine Classes > Queue
and Objects
ODQL
Compile Interpreter

Queue

Fig. 6. Dynamic compilation in SADES

The interaction between the Java layer and ODQL-C++ layer can be ob-
served in various parts of the system. One example is dynamic compilation.
Since classes and their methods can be dynamically introduced, removed or
modified they also need to be dynamically compiled or recompiled. The ODQL
interpreter (which also invokes the C++ compiler for native code compilation)
cannot be invoked from within a transaction. Classes and methods, on the other
hand, must be introduced, removed or modified within transaction boundaries
as they are persistent entities; classes and objects in SADES are mapped on
to Jasmine classes and objects for storage purposes. The solution employed in
SADES is shown in fig. 6 and shows the interaction between the Java layer and
the ODQL-C++ layer. The classes are defined in the Java layer and passed on to
the ODQL-C++ layer which generates the required Jasmine classes and objects.
Any affected classes (new or old) are placed on a compilation queue before the
transaction ends. Once the transaction is complete the Java layer invokes the
ODQL interpreter with the contents of the compilation queue as parameters.

6 Conclusions and Future Work

This paper has summarised the implementation of a rulebase and a hybrid
aspect-orientation mechanism involving a declarative aspect language and a
weaver supporting persistent aspects within a highly object-oriented environ-
ment. Cross-binding and interaction between three different OO languages have
also been discussed. The discussion has demonstrated that a multi-paradigm im-
plementation is not only influenced by the system requirements and design but
also by the constraints imposed by the implementation environment. In case of
SADES the performance requirements for the system dictated that rules should
not be implemented as first-class objects. On the other hand, a specific aspect
language and weaver had to be developed as existing implementation tools were
either inadequate or unsuitable. The ODQL-C++ layer employed a combination
of compiled-interpreted behaviour to strike a balance between the performance

and flexibility requirements. The Java layer, however, needed a specific dynamic
compilation mechanism due to the transaction constraints imposed by Jasmine.

The work in the future will draw upon these experiences to develop guidelines

for multi-paradigm implementation and language cross-binding based on both
system requirements and implementation constraints.

References

(1]

Aksit, M. and Tekinerdogan, B. Aspect-Oriented Programming using Composition
Filters. ECOOP ’98 AOP Workshop, 1998:

Xerox PARC, USA, AspectJ Home Page, http://aspectj.org/

The Jasmine Documentation. 1996-1998 ed. 1996: Computer Associates Interna-
tional, Inc. & Fujitsu Limited.

Katz, R.H., Toward a Unified Framework for Version Modeling in Engineering
Databases. ACM Computing Surveys, 1990, 22(4): p. 375-408.

Kiczales, G., et al., The Art of the Metaobject Protocol. 1991: MIT Press.
Kiczales, G., et al. Aspect-Oriented Programming. ECOOP, 1997: Springer-Verlag,
Lecture Notes in Computer Science 1241:

Monk, S. and Sommerville, 1., Schema Evolution in OODBs Using Class Version-
ing. ACM SIGMOD Record, 1993, 22(3): p. 16-22.

Parsons, D., et al. A "Framework’ for Object Oriented Frameworks Design. Tech-
nology of Object Oriented Languages and Systems (TOOLS FEurope), 1999: IEEE
Computer Society Press: 141-151

Paton, N.W., Supporting Production Rules Using ECA Rules in an Object-
Oriented Context. Information and Software Technology, 1995, 37(12): p. 691-699.
Rashid, A., A Database Evolution Approach for Object-Oriented Databases. PhD
Thesis, Computing Department, Lancaster University, UK, 2000

Rashid, A. and Sawyer, P., Object Database Evolution using Separation of Con-
cerns. ACM SIGMOD Record, 2000, 29(4): p. 26-33.

Rashid, A. and Sawyer, P., Transparent Dynamic Database Evolution from Java.
L’ Object, 2000, 6(3): p. 373-386.

Rashid, A., Sawyer, P., and Pulvermueller, E. A Flexible Approach for Instance
Adaptation during Class Versioning. ECOOP 2000 Symposium on Objects and
Databases, 2000: Springer-Verlag, Lecture Notes in Computer Science 1944: 101-
113

Skarra, A.H. and Zdonik, S.B. The Management of Changing Types in an Object-
Oriented Database. 1st OOPSLA Conference, 1986: 483-495

Lazy Functional Parser Combinators in Java

Atze Dijkstra! and Doaitse S. Swierstra?

! Institute of Information and Computing Sciences, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands,
atze@cs.uu.nl,
http://www.cs.uu.nl/"atze
2 doaitse@cs.uu.nl,
http://www.cs.uu.nl/"doaitse

Abstract. A parser is a program that checks if a text is a sentence
of the language as described by a grammar. Traditionally, the program
text of a parser is generated from a grammar description, after which it is
compiled and subsequently run. The language accepted by such a parser
is, by the nature of this process, hardcoded in the program. Another
approach, primarily taken in the context of functional languages, allows
parsers to be constructed at runtime, thus dynamically creating parsers
by combining elements from libraries of higher level parsing concepts; this
explanins the the name “parser combinators”. Efficient implementation
of this concept relies heavily on the laziness that is available in modern
functional languages [13, 14]. This paper shows how to use parser com-
binators in a functional language as well as Java, and shows how parser
combinators can be implemented in Java. Implementing parser combi-
nators is accomplished by combining two libraries. The first one, written
in Haskell, defines error-correcting and analysing parser combinators [2].
The second one consists of a small Java library implementing lazy func-
tional behavior. The combinator library is straightforwardly coded in
Java, using lazy behavior where necessary. In this paper all three as-
pects, the two libraries and its combination, are explained.

1 Introduction

Creating a parser for a grammar normally is a two step process. As a starting
point some tool specific notation for a grammar specification is used. From this
grammar specification an executable specification in a programming language
is generated using a parser generator, subsequently compiled into an executable
format. For example, using Java [4], one could use JavaCC [1] to generate a Java
program to be compiled subsequently.

This two step process makes it possible to create highly efficient parsers.
The parser generation phase usually analyses a grammar and takes advantage
of programming language properties. However, this efficiency does not come
without a price.

Generally, all information about the original grammar has been lost when a
separate program is generated. Though this information can be added as ‘debug’

11

information to the generated parser, it will not repair the fact that the structure
of a grammar has been hardcoded into the generated program. In general, this
prevents the programmatic (runtime) manipulation of the original parser (and
grammar) as this would require (runtime) rebuilding of the generated informa-
tion.

Losing the ability to perform runtime manipulation and creation of parsers
often is not such a high price to pay, except in situations where the input language
described by a grammar may influence the grammar itself. For example, Haskell
[5, 13] allows the programmer to define operators with their priority as well as
associativity. The following lines, specifying the priority and left associativity of
some operators, are from the prelude of Hugs [9]:

infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘, :%, %
infixl 6 +, -

These declarations influence the way expressions are parsed and the abstract
syntax tree for expressions is constructed. A parser needs this runtime gathered
information about the precedence of operators to do its job. This can be accom-
plished via precedence parsing (see e.g. [3]) in the form of additional information
steering the parsing process. However, such a solution is tailored for this spe-
cial problem, that is, parsing expressions. A more general solution would be to
construct a parser at runtime using the declared fixity and priority information
about the operators. This is generally not possible when a generator is used.

In contrast, runtime manipulation of parsers is one of the strong points of
parser combinators [7, 6, 8, 10, 16, 15]. In the context of parser combinators, a
parser is a first class value, to be used or combined as part of other parsers and
passed around like any other (programming) language value.

Another advantage of parsers being first class citizens is that it allows the
definition of building blocks and the construction of abstract grammatical con-
structs out of these building blocks. This is similar to regular expressions (see
e.g. [3]) where regular expressions can be optional (using ?), be grouped (using (,
)) and repeated (using *, +). Parser combinators allow us to go one step further
by letting the programmer define his own abstractions. These abstractions then
can ease the construction of a parser for a grammar.

The flexibility of parser combinators however has its usual price: decreased
performance. Straightforward implementations of parser combinators [7, 6] rely
on backtracking, to determine which alternatives in a grammar production
rule are the ones matching a given input. Because of the non-linear (w.r.t. in-
put length and/or grammar size) runtime costs this is unacceptable except for
demonstration purposes. Monad based parser combinators [8, 10] allow the re-
striction of backtracking but this requires a careful grammar design. Only when
(runtime) analysis is done on combined parsers backtracking can be avoided
[16, 15] and a useful way of error recovery can be offered.

Parser combinator implementations which provide error correction and re-
porting as well as grammar analysis thus offer a solution to the grammar and
parser writer in which both flexibility and performance are at an acceptable level.
Efficient implementations for parser combinators however are generally written

12

in a functional language like Haskell, mainly because of the easy embedding of
parser combinators into the language. Also, the advanced type systems offered
by functional languages assist in detection of errors in an already complex im-
plementation. And, last but not least, parser combinator implementations need
laziness to allow “infinite” grammars, and to avoid unnecessary computations
while retaining their notational flexibility.

The aim of this paper is to make parser combinator implementations available
for imperative programming environments, and more specific, for Java. This
paper elaborates on several different, but related subjects. First, we want to show
how parser combinators can be used (section 2) and implemented (section 3).
Second, we want to show how parser combinators can be used in Java (section 4).
Finally, we will discuss how this can be implemented in Java (section 5).

It is assumed that the reader is familiar with Haskell as well as Java. Some
familiarity with parser combinators would be helpful. This is also the case for
implementation techniques for functional languages, especially graph reduction.
This paper does not go further than marginally explaining these subjects as it
is the goal to tie together different aspects of different paradigms.

As a running example we will use a small grammr, the foobar of parsing,
expressed in EBNF:

<expr> 1i= <term> (P4 | ’-=?) <term>)* .
<term> = <factor> ((’*’> | ’/?) <factor>)* .
<factor> = (°0°..°9)+ | *(’ <expr> ’)’

2 Parsing with parser combinators

2.1 Basics

Conceptually, a parser is something which takes textual input and returns a value
which is calculated using the recognised structure of the textual input. Using
generated parsers, this is often done explicitly by using a stack of (intermediate)
results. Each recognised nonterminal results in a value, which is pushed onto the
stack. The arithmetic value of the expression is used as an example throughout
this paper. A parser combinator captures this notion more directly by defining
a parser to be a function returning a result. The basic idea of such a parser’s
functionality is written in Haskell as:

type Parser = String -> Int
expr :: Parser
expr = ...

Thus a parser is a function taking an input string and yielding an integer
result.

This definition of what a parser is (i.e. its type) turns out to be insufficient
as it is unknown how much of the input has been used by a parser. A parser
only consumes part of the input, so, what is left over after a parser returns its
result should also be returned:

type Parser = String -> (Int,String)

13

‘ HBNF |Combinator|Result |

EE) EP)

symbol ||’s pSym ’s’ S
choice ||x | y|x ’<I>’ y |result of x or result of y

sequence||x y |x ’<*>’ y |result of x applied to result of y
empty pSucceed v|v

Fig. 1. Basic parser combinators and BNF.

The result of a parse now has become a tuple containing the result and the
remainder of the input.

A second problem is the handling of errors. We will look at error recovery
later (section 3.2) and for the time being consider an error to be a situation where
no result can be computed. This can be encoded by letting a parser return a list
of results. The empty list indicates an error:

type Parser = String -> [(Int,String)]

This also allows a parser to return multiple results, a feature which is used
by the simplest implementation to handle alternatives of a grammar production
rule. This definition is the most commonly ([7, 6]) used. Finally, we generalise
the Parser type by parameterising it with the type of the input symbols and
the tupe of the result:

type Parser sym res = Eq sym => [sym] -> [(res,[sym])]

In this setting the BNF constructs have their parser combinator counterparts
defined as functions. A parser for terminal symbol ’a’ is constructed using the
basic function pSym:

pSucceed :: a -> Parser s a

pSym :: EQ s =>s -> Parser s s
<1>) :: EQ s => Parser s a -> Parser s a -> Parser s a
(<*>) :: EQ s => Parser s (b -> a) -> Parser s b -> Parser s a

Sequencing and choice are explicitly constructed using <*> and <|> respec-
tively (see figure 1). The <factor> nonterminal of the example grammar now
translates to

pFact = pNat
<|> pSym ’(’ <*> pExpr <*> pSym ’)’

This definition is not yet correct. Apart from a missing definition for pNat
it is unclear what the result of pFact is. BNF does not enforce the grammar
writer to specify anything about results since a BNF grammar definition only
says something about the concrete syntax, not the underlying semantics.

Each parser returns a value as the result of parsing a piece of input. The sym-
bol parser pSym just returns the parsed symbol itself, whereas the choice parser

14

combinator <|> conceptually returns the result of the chosen alternative'. The
parser for the empty string pSucceed returns the passed parameter as its result
because no input was parsed to derive a value from. The sequence combinator
requires the result of its left argument to be a function, which is then applied
to the result of the second parser. With these rules in mind the definition for
pFact can be written as:

pFact = pNat
<|> pSucceed (_ e _ -> e)
<*> pSym ’(’ <*> pExpr <*> pSym ’)’

The result of pNat now is a natural number or the value of another expression,
both an Int in the example. The result values of the parenthesis are not used.

2.2 Higher order parser combinators

One of the nicest features of using parser combinators embedded in a general
purpose programming language is that it allows the programmer to define his
own combinators and abstractions. For example, the second alternative of the
definition for pFact in the preceding section parses an expression surrounded by
parenthesis. We could abstract over this ‘surrounded by parenthesis’ by defining:

pParens x = pSucceed (_ e _ -> e) <*> pSym ’(’ <*> x <*> pSym ’)’

The combinator pParens itself is a special case of the combinator pPacked
representing the abstraction ‘surrounded by ...":

pPacked 1 r x = pSucceed (_ e _ -> e) <*> 1 <*> x <¥> r
pParens pPacked (pSym ’(’) (pSym ’)’)

The combinator pPacked itself may be built upon several ‘throw a result
away’ abstractions:

pPacked 1 r x = 1 *> (x <*x r)

The *> and <* combinators are variants of the sequence combinator <*>
which throw away the result of the left respectively right parser given as argu-
ment to the respective combinators:

f <$> p = pSucceed £ <*> p
P <*x q = (\ x _ > x) <$> p <x> q
p*> q =N _x->x) <$> p <*> g

The application parser combinator <$> is a shorthand for the already used
combination of pSucceed f followed by an arbitrary parser p, used for applying
a function to the result of p.

Even more useful are combinators which encapsulate repetition, as the coun-
terpart of * and + in the EBNF grammar at the end of section 1. For example,
the parser pNat for an integer may be written as

! When using the implementation based on lists, as in this section, a list of results
will be returned.

15

pDigit = (\d -> ord d - ord ’0’) <$> pAnySym [’0’..’°9’]
pNat = foldl (\a b -> a*10 + b) 0 <$> pListl pDigit

The combinator pList1 takes a parser for a single element of a repetition and
uses it to parse a sequence of such elements. The result of pList1 is a non-empty
list of result values of the single element parser. In this example this list is then
converted to an Int value.

All the combinator variants parsing a sequence behave similarly to pList1.
The variants differ in the handling of the single element results and the minimum
number of repetitions:

p ‘opt v p <I> pSucceed v

pFoldr alg@(op,e) p = pfm where pfm = (op <$> p <*> pfm) ‘opt¢ e
plList p = pFoldr ((:), [1) p

pList1l P (:) <$> p <*> plList p

The basic building block of these sequencing combinators is the folding com-
binator pFoldr which works similar to the foldr from Haskell. A unit value e is
used as the result for an empty list and a result combining operator op is used
to combine two result values. The combinator pList then uses pFoldr to build
a list from the sequence. This list may be empty, i.e. no elements may be parsed,
whereas pListl parses a sequence non-zero length.

For pFoldr and its derivatives the way elements of a sequence are combined
is fixed. That is, the programmer specifies alg@(op,e) and the parsed input
does not influence this. However, this does not work for:

<term> 1:= <factor> ((’*> | ’/’) <factor>)* .

For <term> the combination of two factors within a sequence of factors is
determined by the operator in between. In other words, the result of parsing an
operator determines how two factors are to be combined. The parsing result of
(x> | °/?) thus somehow has to be used to combine two factors. This is done
by the chain combinator pChainl used to define pTerm and pExpr as follows:

pTerm = pChainl ((*) <$ pSym ’x*’
<|> div <$ pSym ’/’
)
pFact

pExpr = pChainl ((+) <$ pSym ’+’
<|> (-) <$ pSym ’-’
)

pTerm

The combinator pChainl (and its right associative variant pChainr) take
two parsers, one for the elements of a sequence and one for the separator be-
tween them. For pTerm the elements of the sequence are pFact’s, separated by
either a * or a /. The chain combinators expect the result of the separator
parser to be a function accepting (at least) two arguments. This is precisely
what (*) <$ pSym ’*’ and div <$ pSym ’/’ return.

16

module Extended0 where

import BasicO

infixl 4 <$>, <$, <x, *>, <kx>, <?7?7>
infixl 2 ‘opt®

pAnySym:: Eq s => [s] -> Parser s s
opt :: Eg s => Parser s a -> a -> Parser s a
(<$>) :: Eqs = (b -> a) -> Parser s b -> Parser s a
(<$) :: Eqs =>a -> Parser s b -> Parser s a
(<x) :: Eq s => Parser s a -> Parser s b -> Parser s a
(*>) :: Eq s => Parser s a -> Parser s b -> Parser s b
(<*xx>) :: Eq s => Parser s b -> Parser s (b->a) -> Parser s a
(<??>) :: Eq s => Parser s b -> Parser s (b->b) -> Parser s b
pAnySym = foldr (<|>) pFail . map pSym
p ‘opt‘ v = p <|> pSucceed v
f <$> p = pSucceed f <> p
f<$¢ p = comst f <$> p
p<x g =Nzx_->x) <$> p <*> q
p*> q =N _x->x) <$> p <*> g
p<¥*>q = (\xf->fzx)<$>pc<x>q
p <??>q = p <**> (q ‘opt¢ id)
pFoldr alg@(op,e) P

= pfm where pfm = (op <$> p <*> pfm) ‘opt‘ e
pFoldrSep alg@(op,e) sep p

= (op <$> p <*> pFoldr alg (sep *> p)) ‘opt‘ e
pFoldrPrefixed alg@(op,e) ¢ p = pFoldr alg (c *> p)
pList p = pFoldr H,) p
pListSep s p = pFoldrSep (), 1) sp
pListPrefixed ¢ p = pFoldrPrefixed ((:), [1) c p

pListl p = (:) <$> p <x> plList p
pChainr op x r where r = x <**> (flip <$> op <*> r ‘opt‘ id)
pChainl op x = £ <$> x <*> pList (flip <$> op <*> x)
where
fx[]=x
f x (func:rest) = f (func x) rest

pPacked 1 r x = 1 *> x <x* r

pOParen = pSym ’(’
pCParen = pSym °’)°
pParens = pPacked pOParen pCParen

Fig. 2. Higher order parser combinator functions.

17

module BasicO where
infixl 3 <[>
infixl 4 <*>

type Parser s a = ...

pSucceed :: a -> Parser s a

pFail :: Parser s a

pSym :: Eg s =>s -> Parser s s
<1>) :: EQ s => Parser s a -> Parser s a -> Parser s a
(<*>) :: Eq s => Parser s (b -> a) -> Parser s b -> Parser s a

pSucceed v input = ...
pFail input =
pSym a input =
(p <I> q) input =
(p <*> q) dinput = ...

data Reports = Error String Reports
| NoReports
deriving Eq

instance Show Reports where

show (Error msg errs) = msg ++ "\n" ++ (show errs)
show (NoReports) = o
parse :: Parser s a -> [s] -> (a,Reports)

parse p inp = ...

Fig. 3. Basic parser combinator functions.

The definition for the chain combinator as well as the other combinators can
be found in figure 2.

As we will consider different implementations of parser combinators in sec-
tion 3 we will interface with a parser via a function parse which hides the
invocation details and returns a result as well as error messages, see figure 3. In
figure 4 it is shown how the function parse is used in a small calculator based
on the preceding definitions for pExpr (see figure 5 for the complete listing).

3 Implementing parser combinators

Implementations of parser combinators have to take care of several aspects:

— checking if input is accepted by a grammar (error detection).
— returning a value as directed by the input (syntax directed computation).

18

on :: Show a => Parser Char a -> [Char] -> I0 ()

on p inp -- run parser p on input inp
= do let (res, msgs) = parse p inp
putStr (if msgs == NoReports then "" else "Errors:\n" ++ show msgs)

putStr ("Result:\n" ++ show res ++ "\n")

main :: I0 O

main = do putStr "Enter expression: "
inp <- getLine
pExpr ‘on‘ inp
main

Fig. 4. Usage of 'parse’ to interface with parser.

pDigit = (\d -> ord d - ord ’0’) <$> pAnySym [’0’..°9’]
pVNat = foldl (\a b -> a*10 + b) 0 <$> pListl pDigit

pFact = pNat
<|> pParens pExpr

pTerm = pChainl ((%) <$ pSym ’*’
<|> div <$ pSym ’/’
)
pFact

pExpr = pChainl ((+) <$ pSym ’+’
<I> (=) <$ pSym ’-°
)

pTerm

Fig. 5. Expression parser.

19

— if input is not accepted make attempts to repair (error recovery).
— minimizing the amount of unnecessary parsing steps by performing grammar
analysis.

The first and second of these aspects are easily implemented [7, 6] by follow-
ing the suggested representation of section 2. Error recovery attempts to repair
a parse by adding symbols to the inputstream or deleting symbols from the
inputstream. Finally, by analysing a grammar lookahead information can be ex-
tracted. Of these subjects all except the grammar analysis are covered in the
following paragraphs.

3.1 Backtracking

When backtracking, a parser just returns all possible parses and makes no at-
tempt to predict if one will fail or not. In particular, a combinator just makes
an attempt to parse by trying out its components. The combinator pSym is the
only combinator really making a decision about the correctness of the input.
The parser actually works like a recursive descent parser and will -if necessary-
check all the returned solutions.

pSucceed v input = [(v , input)]
pFail input]

pSym a (b:rest) = if a == b then [(b,rest)] else []
pSym a [] 1

(p <I> q) input = p input ++ q input

(p <*> q) input = [(pv qv, rest)

| (pv , qinput) <- p input
, (qvn , rest) <- q qginput
]

parse :: Parser s a -> [s] -> (a,Reports)

parse p inp
= let results = p inp
filteredResults = filter (null . snd) results
in case filteredResults of
[] -> (undefined,Error "no correct parses" NoReports)
[(res,.) 1 -> (res,NoReports)
((res,_):rs) -> (res,Error "ambiguous parses" NoReports)

This ‘reference’ implementation (based on [7, 6]) of the building blocks for
parser combinators is not efficient. For smaller examples without many alterna-
tive productions for a nonterminal this approach still works. A grammar having
many alternatives will lead to a recursive descent parsing process where all al-
ternatives are descended, without making an attempt beforehand to determine
which alternatives surely will yield no valid parse.

Another deficiency of this implementation is that an error in the input is not
handled at all; the parser simply concludes that no parse tree can be built and

20

will return an empty list of results. No indication of the location of an error is
given.

Both of these problems can be remedied by passing extra information around.
In the basic ideas for passing this information around are discussed. As an exam-
ple of the error correction is taken. The grammar analysis required for preventing
unnecessary tryouts of alternatives is left out and can be found in [2].

3.2 Error recovery

Handling errors as well as performing grammar analysis requires a non-trivial
definition of a parser. This section only serves to give an idea of the required
structures and leaves out details. For an understanding of parser combinator
usage and its Java counterpart, this section may be skipped.

A parser still is something which accepts input and produces a value as a
result of parsing the given input. In the following definition of Parser this is
expressed by ([s] -> Result b) and ([s] -> Result (a,b)), which are the
functions performing the actual parsing.

type Result ¢ = ((c,String), [Int])
type Parser s a b = ([s] -> Result b)
-> ([s] -> Result (a,b))

A difference is that output not only contains a result, but error messages (a
String) and a list of costs (Int’s) as well. This is expressed in the definition of
Result. Each element of the list of costs describes the cost of a parsing step.

Another difference is that each parser is given a continuation representing
the stack of symbols that still have to be recognised. This can best be seen by
looking at the definition of pSucceed:

addresult v ~("(r,msgs), ss) = (((v,r), msgs) , ss)
pSucceed v = \k input -> (addresult v) (k input)

The combinator pSucceed is a function accepting the continuation parser
k and input. The combinator returns both the given v as well as the result of
parsing the rest of the input via the invocation k input. The construction of this
combination is performed in addresult. The result is obtained by applying the
continuation to the input. The input is by definition not modified by pSucceed
and passed along unmodified.

This definition for pSucceed and other parser combinators works because
an expression like k input is lazily evaluated. So it can be referred to, and be
returned as a result without being evaluated at all. Laziness becomes even more
important when the result of k input is inspected. This happens when choices
have to be made, in particular when a choice has to be made between error
corrections. The given construction then allows to inspect the parsing future.

The combinator pSym is the combinator where the actual comparison with
input takes place. Consequently, this is also the place where possible error cor-
rections can be tried:

21

addstep s “(v , ss) = (v , s:map (+s) ss)
addmsg m “("(r,msgs), ss) = ((r , m++msgs), ss)

insert a = addresult a.addstep (penalty a)

.addmsg (" Inserted:" ++ show a++"\n")
delete b = addstep (penalty b)

.addmsg (" Deleted :" ++ show b++"\n")
pSym a k inp@(b:bs) | a == = addstep 0.addresult b.k $ bs

| otherwise = best ((insert a) (k inp))
((delete b) (pSym a k bs))
pSym a k inpe[] (insert a) (k inp)
penalty s = if s == ’\EOT’ then 1000 else (ord s -ord ’a’)::Int
best = ...

Though more complicated than the previous version, pSym still inspects a
symbol of the input. If a matching symbol is found it is added as a result (via
addresult) with zero cost (via addstep). If the end of the input is reached an
insertion in the inputstream of the expected symbol will be made, followed by a
parse attempt of the continuation k on the input. If the expected symbol does
not match the actual input symbol two repair actions are possible. Either the
expected symbol is missing and should be inserted, or the actual input symbol
should be deleted from the inputstream. In all the cases where a correction is
made, a non-zero cost (penalty) is added to the result. The correction attempts
are tried and compared using the function best:

best left@(lvm, []) = left

best _ right@(rvm, [1) = right
best left@(lvm, 0:1s) right@(rvm, O:rs) =
addstep O (best (lvm, 1ls) (rvm, rs))
best left@(lvm, 1ls) right@(rvm, rs)
= (if (1s ‘beats® rs) 4 then lvm else rvm

, zipWith min 1s rs)

QN ‘beats‘ rs) _ = True

- ‘beats‘ []) = False
(¢ [1] ‘beats‘ (r:.)) _=1<r
((1:2) ‘beats® [r]) _=1<r

((1:1s) ‘beats® (r:rs)) n

(if n == 0 then 1l < r
else (1s ‘beats‘ rs) (n-1))

The function best compares two parses by comparing their costs and choos-
ing the parse with the lowest cost. If necessary, best looks into the ‘future’ until
it finds non-zero costs. These are then compared, but only a limited number of
steps ahead (here: 4) in order to avoid excessive tryouts of corrections.

Selecting between alternatives using best is seen more clearly in the definition
of the choice combinator <|>:

p <I>q = \k input -> p k input ‘best‘ q k input

p <*> q = \k input -> let (((pv, (qv, r)),m),st) = p (q k) input
in (((pv qv, r), m), st)

pFail =_ _ -> ((undefined, []), repeat 10000)

22

The combinator <*> is relatively simple since no comparisons have to be
made, only extraction of results and applying the result of p (pv) to the result
of p (pv). The messages and the costs are passed unmodified.

Further discussion of the implementation of these parser combinators falls
outside the scope of this paper. Part of its origin can be found in [16, 15].
However, it should be noted that the Haskell library for parser combinators is
constructed alongs the lines discussed here, and also allows different functions
best to be used. The Java version of the library consequently also allows this.

4 Parser combinators in Java

Writing a parser in Java, using parser combinators, (currently) boils down to
compiling the Haskell definition to its Java equivalent by hand. A library of
functions on top of a small lazy functional engine (section 5) has to be used for
this purpose. This library provides the same functionality as the parser combi-
nator library, combined with a minimal necessary subset of the Haskell prelude.

4.1 Lazy functional programming in Java

When using parser combinators, parsers are functions, and functions are repre-
sented by Objects which can be apply’d to arguments. Before we look at the
Java equivalent of the Haskell expression parser combinators, we first show how
lazy evaluation is realised in Java. The definition and usage of factorial in Haskell
is used to show how this is done:

facn=1if n > 0
then n * fac (n-1)
else 1

main = fac 10

We will give several equivalents in Java with the purpose of showing how
laziness can be used in varying degrees.
In Java, the factorial is normally (that is, imperatively) written as:

int fac(int n)

{
if (n>0)
return n * fac(n-1) ;
else
return 1 ;
}

However, Java is a strict language, all arguments are computed before being
passed to a method. This behavior has to be avoided because laziness is required
instead. Since it is not possible to rely on basic Java evaluation mechanisms,
basic functionality like integer arithmetic and method invocation is offered in a
functional Java equivalent, packaged in a small Java library.

23

First, we have to define the factorial function. The Java library for the func-
tional machinery contains a Function class which can be subclassed to define
a new function. To be more precise, for fac we have to subclass Functionl, a
subclass of Function for defining one-argument functions. It is required to de-
fine the method evall for the subclass of Functionl. This method is used by
the evaluation mechanism to perform the actual evaluation of a function once a
parameter has been bound:

import uu.jazy.core.x ;
import uu.jazy.prelude.* ;

public class Fac

{
static Eval fac =
new Function1()
{
public Object evall(Object n)
{
return
Prelude.ifThenElse.apply3
(Prelude.gt.apply2(n, Int.Zero)
, Prelude.mul.apply2
(n
, fac.applyl(Prelude.sub.apply2(n, Int.One))
)
, Int.One
)
}
s
}

The definition uses the core package because the class Functionl belongs
to it. The prelude package offers a subset of the Haskell prelude. For example
the test n > 0 is written as Prelude.gt.apply2(n, Int.Zero). Basically, all
function definitions in a Haskell program are translated to subclasses of Function
and all function applications are translated to the invocation of an appropriate
variant of apply on an instance of such a subclass.

The big difference between the two given Java solutions is that the first one
computes the result when invoked and the latter one creates an application data
structure describing the computation. Only when explicitly asked for, this data
structure is evaluated and returns the value represented by the data structure.
This is done by calling the method eval from class Eval:

public class Fac

{

public static void main(String args[])

24

{
System.out.println(fac(10)) ;
System.out.println
(((Int)Eval.eval(fac.applyl(Int.valueOf(10)))).intValue());

Both Java variants are shown for comparison. For the lazy variant, an appli-
cation of fac to 10 is built by wrapping the integer in a Int object?. The function
fac is then applied to this Int and the resulting application structure is passed
to eval for evaluation. The result is known to be an Int and downcasted as such
for printing.

The given program can be written in different varieties. For example, the
library provides builtin showing of values used by the library. The last line of
main could also have been written as

I0.showln(fac.applyl(Int.valueOf(10))) ;

The method showln offers the equivalent of Java’s println, but for the lazy
values used by the library.

It also is possible to mix the two programming paradigms. For example, it is
not necessary to delay the computation of the if n > 0 expression:

static Eval fac2 =
new Functioni()

{
public Object evall(Object n)
{
if (Int.evalToI(n) > 0)
return
Prelude.mul.apply2
(n
, fac2.applyl(Prelude.sub.apply2(n, Int.One))
)
else
return Int.One ;
}
}s

The decision made in the if n > 0 expression has to be made anyway, so, it
may as well be done immediately after entering evall. The overhead of laziness
is avoided by using the strict evaluation of Java. These optimisations eventually
will lead to the Java only solution. It is up to the programmer and the need for
laziness to decide how much laziness is required. As a conclusion of the discussion
of these mechanims a final variant as an optimisation example:

static Eval fac3 =
new Functioni()

{

2 Int is the equivalent of java.lang.Integer.

25

public Object evall(Object n)

{
int nn = Int.evalToI(n) ;
if (nn > 0)
return
Prelude.mul.apply2
(n
, fac3.applyl(Int.valueOf(nn-1))
)
else
return Int.One ;
}

}

The lazy subtraction is replaced by a strict one. This can also be done for
the multiplication.

As a final note, one can observe that all values manipulated by the library are
Object’s. As a consequence typing information is irretrievably lost. In practice,
this easily leads to difficult to detect bugs. This situation can best be avoided by
first making the program work in Haskell and then compile it by hand to Java
using this informally introduced compilation scheme.

4.2 Parser combinators
Let us now look at the definition of parser combinators in Java.

ParsingPrelude p = new ParsingPrelude(new ParsinglistsCore()) ;

/*
pExpr = pChainl ((+) <$ pSym °’+’
<|> (=) <$ pSym ’-’

)
pTerm
*/
Object pExpr =
p-pChainl
(p.p0Or
(p.pAppL(Int.add, p.pSym(’+’))
, p-pAppL(Int.sub, p.pSym(’-’))
)

, pTerm

) 3

This definition resembles the corresponding Haskell definition as closely as
possible. First, a parsing library ParsingPrelude is constructed. It is necessary
to do this because the parsing library itself is parameterised with the basic parser
combinators. The derived combinators are built on top of these core combinators.
In this case it is parameterised with the backtracking implementation using lists
(section 3.1).

26

Wherever possible, the fact that functions are Objects is hidden by using Java
wrapper methods. For example, the Java function pChainl actually is defined
to apply its arguments to the Java representation of a Haskell function:

public final Eval pChainl = ... ;

public final Eval pChainl(Object op, Object x)

{
return pChainl.apply2(op, x) ;
}

Other functions like integer addition are defined in separate libraries, most
of them can be found in the Prelude class or a specific class associated with
the type of a value. For example, the Java class Int defines the integer addition
function add used in the definition of pExpr. This function also can be found in
the Prelude but is defined more generically using a simple implementation of
the Haskell class mechanism. This is not further explained here.

Functions can also be defined by subclassing from subclasses of class
Function:

/*
pNat = foldl (\a b -> a*10 + b) 0 <$> pListl pDigit
*/
Object pNat =
p-pApp
(Prelude.foldl
(new Function2()

{
public Object eval2(Object a, Object b)
{
return
Int.valueOf
(Int.evalToI(a) * 10
+ Int.evalToI(b)) ;
}
}
, Int.Zero

)
, p.pList1(pDigit)
)

Here, a function taking two arguments, expressed by instantiating a subclass
of the Java class Function2, is passed to foldl. This new subclass of Function2
is required to define method eval2. The method eval2 (and similar ones with
similar names) computes the function result, in this case strictly by evaluating
the result immediately.

Finally, the parser built using the preceding definitions is used with some
input:

27

/*
on :: Show a => Parser Char a -> [Char] -> I0 ()
on p inp -- run parser p on input inp
= do let (res, msgs) = parse p inp
putStr (if msgs == NoReports
then ""
else "Errors:\n" ++ show msgs)
putStr ("Result:\n" ++ show res ++ "\n")

*/
protected static void on(ParsingPrelude parsing,
Object parser, String inp)

{
Tuple pres =
Tuple.evalToT
(parsing.parse(parser, Str.valueOf(inp))) ;
Object errors = Eval.eval(pres.second()) ;
if (errors != Reports.NoReports)
I0.putStr
(Prelude.concat2
(Str.valueOf("Errors:\n")
, Prelude.show(errors)
))
I0.showln(pres.first()) ;
}

The Java method on contains calls to eval, either directly on indirectly via
evalToT (evaluate to Tuple). As mentioned before, the method eval performs
the actual computation of function applications. The preceding definitions only
define the function applications but do not yet evaluate them.

5 Mapping lazy functional behavior to Java

To make parser combinators useable in Java we have chosen for a rather straight-
forward solution, namely to write down the Java solution in terms of functions.
In order to be able to use functions as they are used in a functional language, we
have to be able to treat them as first class citizens, that is, we have to be able
to pass functions as parameters, and return them as result. In Java, the only
kind of first class 'thing’ available is Object. Therefore, functions are modelled
as objects. Their basic usage has been shown in the previous section.

In a language like Java the application of a function to parameters, the evalu-
ation of parameters and the evaluation of a function are performed in one action,
the method invocation. For parser combinators, this does not work. Results of a
parse are already used before they are completely evaluated (see section 3.2). A
lazy implementation generally allows this. Though laziness is not always consid-
ered an essential ingredient of functional languages, it is essential to make our
parser combinators work.

28

5.1 The basic lazy functional engine

Lazy implementations of functional languages come in different flavours [11]
among which the STG implementation [12] is considered to be the fastest. This
approach is also taken by [17] to compile for the Java virtual machine. The
approach taken here is to provide a graph reduction engine, without explicit
usage of a stack, constructed in such a way that the Java machinery is used as
effectively as possible while at the same time offering ease of use from the Java
programmers point of view.
As a starting point, let us look at the following Haskell program:

addOne :: [Int] -> [Int]
addOne []1 = []
addOne (1:1s) = 1+1 : addOne 1s

main = addOne [1,2,3]

The function addOne takes a list of integers and returns a list where each
integer element has been incremented by 1. The result of main is [2,3,4]. Using
the lazy functional Java library, the definition of add0One is expressed in Java as:

static Eval addOne =
new Functioni()

{
public Object evall(Object 1)
{
List 11 = List.evalToL(1) ;
if (11.isEmpty())
return List.Nil ;
else
return
List.Cons
(Prelude.add.apply2(11.head(), Int.One)
, addOne.applyl(11.tail()) /*<=x/
)
}
Y

The function uses the predefined class List to construct a new list. Nil
denotes the empty list. The method Cons constructs a new cons cell with head
and tail; it is the equivalent of Haskell’s :. The function is then used by passing
it the list [1,2,3] which is a convenient notation for (1:(2:(3:[]1))) where :
constructs a cons cell used in list representations. The application of addOne to
the list is subsequently evaluated and shown via I0.showln.

import uu.jazy.core.* ;
import uu.jazy.prelude.* ;

public class AddOne
{

29

public static void main(String args[])

{
List 1123 = List.Cons
(Int.0One, List.Cons
(Int.Two, List.Cons
(Int.Three, List.Nil
)))
I0.showln(addOne.applyl(1123)) ;
}

}

The function addOne can also be written using a Java method. The recursive
invocation of addOne then is done before the result of addOne is returned; the
essential difference can be found in the line marked with /*<-*/.

static Object addOne(Object 1)

{
List 11 = List.evalToL(1) ;
if (11l.isEmpty())
return List.Nil ;
else
return
List.Cons
(Prelude.add.apply2(1l.head(), Int.One)
, addOne(11.tail())
)
}
public static void main(String argsl[])
{
List 1123 = ...
I0.showln(addOne(1123)) ;
}

This produces the same result for the list [1,2,3] but is computed in a
different way. The recursive invocation of addOne is done strictly (non-lazy), by
computing the result of the invocation before passing it to the list constructor
List.Cons. Alternatively, strictness could also have been achieved by replacing
the line marked with /*<-*/ by:

static Eval addOne2 =
new Function2()
{...
, eval(addOne2.applyl(11.tail())) /*<-*/
L}

The strict evaluation order is enforced by the invocation of eval.

Strict evaluation order can be encoded more efficiently, but poses two prob-
lems when compared with lazy computation order. First, strict evaluation order
may compute more than is necessary. For example, suppose that from addOne

30

@ @
/N /N
left_child right_child @ right_child
/N

left_left_child left_right_child

(@) (b)

Fig. 6. Reduction graph.

[1,2,3] only the first element is needed. Using a strict evaluation order all
elements are computed before the result [2,3,4] is returned, whereas lazy eval-
uation returns the partially evaluated list (2: (addOne 2:(3:[]))) instead.

A second problem arises when addOne is passed an infinite list, as in

take 5 (addOne (repeat 1))

The Haskell function repeat produces an infinite list of 1’s. The function
take takes a certain amount of elements from a list (passed as arguments), here
producing the result [2,2,2,2,2]. Because strict evaluation evaluates the argu-
ment to addOne first an attempt is made to compute the infinite list [1,1,..].
In Java, the invocation of addOne prints the expected output, but the strict
variation addOne2 gives a stack or memory overflow:

Object lInfinite = Prelude.repeat.applyl(Int.One) ;
I0.showln(Prelude.take.apply2(Int.Five,addOne.applyl(1Infinite))) ;
I0.showln(Prelude.take.apply2(Int.Five,addOne2.applyl(1lInfinite))) ;

Figure 7(a) shows a graph representation of addOne [1,2,3]. The graph
encodes the structure of the computation of addOne [1,2,3]. In this graph
representation nodes either consists of an application, denoted by @, or a node
consists of plain data. Figure 6 shows a simple usage of @. The @ should be
read as “apply the left child to the right”, as indicated in figure 6(a). Its Java
equivalent is

left_child.applyl(right_child)
If the left child itself is also such an application (figure 6(b)) it reads as
(left_left_child.applyl(left_right_child)).applyl(right_child)

which is equivalent to

left_left_child.apply2(left_right_child, right_child)

31

/ @\ / @ \ /Cons\
addOne [1,2,3] @ @" 2 @
VRN VRN VRN

2 addOne [2,3] addOne [2,3]

@) (b) (c)

Fig. 7. Reduction graphs for addOne.

A computation step consists of the evaluation of a @ node in the graph de-
scribing the computation. The evaluation process replaces a @ by its result,
which may be a plain value or yet another @ node. In figure 7(c) the result
(2:(addOne 2:(3:[1))) of the application addOne [1,2,3] can be seen. The
graph for addOne [1,2,3] has been replaced by its result consisting of a Cons
cell. The Cons cell still contains an unevaluated value, the remaining application
addOne [2,3].

The Cons cell is considered to be in weak head normal form, because the
cell itself cannot be further evaluated, even though it still refers to unevaluated
applications. Only when the value of such an unevaluated application really is
needed, it has to be evaluated.

The difference between strictness and laziness can be found at the interme-
diate stage of the computation of addOne [1,2,3], shown in figure 7(b). The
evaluation of @" returns the Cons cell. Strictness requires the right child @" of
@’ to be evaluated before @" is evaluated, laziness does not.

Such is the power and convenience of laziness. This is consequently also the
mechanism which has to be imitated by the Java lazy functional library.

Figure 8 shows the Java class structure used to model a reducable graph.
Figure 9 shows instances of such graphs, the Java counterparts of figure 7. The
graph is used by an evaluator which considers anything except Apply objects to
be non-reducable (normal form).

The structure of the class diagram as well as its interpreter are derived from
a small evaluator for lambda expressions, see figure 10 for an overview of the
core functionality of the evaluator written in Haskell and figure 11 for the Java
variant. Only the Java variant is discussed here. The basic idea of the evalua-
tor is that it is given a graph representing a computation. This graph contains
either application nodes, that is, instances of (a subclass of) class Apply, or it
contains something else. Only if a node is an application node further compu-
tation steps are taken, otherwise it cannot be evaluated further and the node is
simply returned. This work is done in the method eval:

32

boundParams 0..n

S P —
=] Object =

funcOrVal
I [|
Eval | List | | Int |
applyX(..) é
evalSet() head
| Nil | | Cons I:
)\ tail
I |
L—] Apply Function
nParams
evalX(..)
Fig. 8. Class structure for lazy objects.
Apply Apply Cons
addOne Cons Appl Apply 2 Apply

NN N /N

1 : 2 addOne Cons addOne Cons

7N\

@ (b) (c)

Fig. 9. Example of a reducable graph.

33

public static Object eval(Apply av)
{
if (av.nrNeededParams == 0)
{
av.evalSet() ;
Object vv = av.funcOrVal ;
av.nrNeededParams = -1 ;
if (vv instanceof Apply)
return av.funcOrVal = eval((Apply)vv) ;
¥
else if (av.nrNeededParams > 0)
return av ;
else
return av.funcOrVal ;

}

public static Object eval(Object v)
{
if (v instanceof Apply)
return eval((Apply)v) ;
return v ;

An Apply object contains a field nrNeededParams used for remembering the
state an Apply instance is in. A value < 0 is used to indicate that it is already
evaluated, > 0 means that not enough arguments are available and == 0 means
that it should be evaluated. The actual evaluation is delegated to the Apply
object itself via method evalSet. This allows subclasses of Apply to provide an
optimised version of their evaluation.

If the result of the evaluation is another Apply, the process is repeated, in
this case by recursively invoking eval.?

The default implementation of evalSet extracts the left child of the of an
Apply node in the reduction graph. This left child result in a function, which is
subsequently applied to its arguments:

public abstract class Apply extends Eval

{
protected Object funcOrVal ;
protected int nrNeededParams = 0 ;
protected void evalSet()
{
funcOrVal = ((Eval)eval(funcOrVal)).evalOrApplyN
(getBoundParams()) ;
}
}

3 The library contains evaluator variants which avoid the usage of the Java stack by
reversing pointers between Apply nodes.

34

data Expr = Var String
| Val Int
| Nil
| Cons Expr Expr
| ApplyN Expr [Expr]
| FunctionN [String] Expr

substN :: Env -> Expr -> Expr

substN env e@(Var s)
= case lookup s env of {Nothing -> e; Just v -> v}
substN env (ApplyN func args)

= ApplyN (substN env func) (map (substN env) args)
substN env 1@(FunctionN formals body)
= FunctionN formals
(substN (filter (mot.(‘elem‘ formals).fst) env) body)
substN _ e
=e

eval appn@(ApplyN func args)
= let (val, restargs)
= case eval func of
(FunctionN formals body)
-> (eval (substN (zip formals args) body)
, (drop (length formals) args)
)
in if null restargs
then val
else eval (ApplyN val restargs)
eval whnf
= whnf

Fig. 10. Lambda expression evaluator.

35

If the left child does not evaluate to a function it is an error. The application
of the function to its arguments (retrieved via getBoundParams) either performs
the actual function evaluation, if enough arguments are available, or returns a
new application node:

public abstract class Function extends Eval

{
protected int nrParams ;
protected abstract Object evalN(Object[] vn) ;
protected Object evalOrApplyN(Object[] vn)
{
Object res = null ;
if (nrParams > vn.length)
res = applyN(vn) ;
else
{
res = ((FunctionN)this).evalN
(Utils.arrayTake(nrParams, vn)) ;
if (nrParams != vn.length)
res = ((Eval)res).applyN
(Utils.arrayDrop(nrParams, vn)) ;
}
return res ;
}
}

If there are leftover arguments, these are applied to the result of the function
application. Further evaluation is performed by the method eval.

The actual function invocation is done by method evalN. A subclass of
Function is expected to implement this method. In practice, the Java lazy func-
tional library offers convenience classes and methods for functions with 1, 2, 3,
4, 5, or more (N) arguments. The corresponding names of the function classes
consist of “Function” suffixed with the number of arguments taken. The names
of the evaluation methods defined by the ‘Functional’ programmer use “eval”
as a prefix, as already shown in prevous examples.

public abstract class Eval
{
public Apply applyN(Object[] vn)
{
return new ApplyN(this, vn) ;
}

public static Object eval(Apply av)
{
if (av.nrNeededParams == 0)

{

36

av.evalSet() ;

Object vv = av.funcOrVal ;

av.nrNeededParams = -1 ;

if (vv instanceof Apply)

return av.funcOrVal = eval((Apply)vv) ;

¥
else if (av.nrNeededParams > 0)

return av ;
else

return av.funcOrVal ;

}
public static Object eval(Object v)
{
if (v instanceof Apply)
return eval((Apply)v) ;
return v ;
}
public abstract Object[] getBoundParams() ;
}
public abstract class Function extends Eval
{
protected int nrParams ;
protected abstract Object evalN(Object[] vn) ;
protected Object evalOrApplyN(Object[] vn)
{
Object res = null ;
if (nrParams > vn.length)
res = applyN(vn) ;
else
{
res = ((FunctionN)this).evallN
(Utils.arrayTake(nrParams, vn)) ;
if (nrParams != vn.length)
res = ((Eval)res).applyN
(Utils.arrayDrop(nrParams, vn)) ;
}
return res ;
}
}

37

public abstract class Apply extends Eval
{
protected Object funcOrVal ;
protected int nrNeededParams = O ;

protected void evalSet()
{

funcOrVal=((Eval)eval (funcOrVal)) .evalOrApplyN(getBoundParams()) ;
}

class ApplyN extends Apply

{
protected Object[] pN ;

public ApplyN(Object f, Object[] p)
{

super(£) ;

PN =p ;
}

public Object[] getBoundParams()
{
return pN ;

}

Fig. 11. Lambda expression evaluator in Java (a skectch of).

5.2 Optimisations

The basic implementation as shown in figure 11 can be significantly improved
in terms of efficiency by exploiting knowledge about the number of required
and given parameters for a Function. For example, the addition of two Int’s,

assuming the existence of attribute value holding the integer value, can be
defined as:

new Function2()

{
protected Object eval2(Object vl, Object v2)
{
return
new Int

(((Int)eval(vl)).value
+ ((Int)eval(v2)).value
)

38

}
}

It now is statically known that this function takes exactly two arguments.
If an application ApplyN only contains one argument for the function, the eval-
uator does not need to evaluate the application. The call to evalSet can then
be avoided. If exactly two arguments are passed, an even greater positive ef-
fect on performance can be achieved by redefining the method evalSet to
call the method eval2 of the Function?2 directly. In this way the overhead of
evalOrApplyN can be avoided.

Both cases (not enough and exact number of arguments) are optimised by
the definition of appropriate subclasses, shown in figure 12 for Function2. The
first case -not enough arguments- is dealt with by administering that still one
argument more is needed; nrNeededParams is set to 1:

public abstract class Function2 extends Function

{
public Apply applyi(Object vl)
{
return new ApplylF2(this, v1) ;
}
}
class ApplylF2 extends Applyl
{
public ApplylF2(Object £, Object pl)
{
super(£, pl) ;
nrNeededParams = 1 ;
}
}

The second case -exact number of arguments- is delt with by redefining
evalSet:

public abstract class Function2 extends Function

{
public Apply apply2(Object v1, Object v2)
{
return new Apply2F2(this, vi1, v2) ;
}
}

class Apply2 extends Apply

protected Object pl, p2 ;

class Apply2F2 extends Apply2

39

protected void evalSet()
{
funcOrVal = ((Function2)funcOrVal).eval2(pil, p2) ;
¥
}

The method evalSet is now defined more efficiently.

5.3 Performance

Due to the interpretative nature of the implementation, a parser using parser
combinators in Java is no speed deamon. No extensive testing has been done, so
only an indication of performance is given. For testing, a small parser copying
input characters to output was used, giving the following measurement on a 4940
byte file:

3198 ms., 275832 evaluations, 0.011594013 ms. per eval

Each character took approximately 56 evaluations (calls to evalSet). The
test was performed on an Apple Powerbook G3 with a 500Mhz PowerPC run-
ning Java 1.1.8. The error correcting limited lookahead variant of the parser
combinators was used. The obtained speed is roughly equivalent to (some 25%
slower than) the speed of running the interpreted Haskell variant using Hugs on
the same platform.

6 Conclusions

Parser combinators with error correction and on-the-fly grammar analysis allow
the grammar writer an easy, flexible way of writing an executable grammar.
Though performance in Haskell using a Haskell compiler has an acceptable per-
formance this cannot be said for a straightforward Java implementation based
on the literal translation in this paper.

Another aspect is that all information about the type of a parser is lost
because of the limitations of the Java typing system. All values as manipulated
by parser combinators are of type Object, or at best of those displayed in figure 8.
This makes use of parser combinators typeless, generally leading to difficult to
detect bugs. It is advisable to first make a working Haskell version and then
compile this by hand to Java, or, preferably, let a compiler do this work.

With these observations in mind, the authors feel that there may well be a
place for parser combinators in Java, as described here. Especially when perfor-
mance is a lesser issue, but flexibility is more important, for example in interac-
tive systems where compilation is done for small pieces at a time. Furthermore,
a better efficiency can be achieved by performing as much as possible in Java. A
first candidate would be tokenisation, not necessarily a task requiring laziness.

40

public abstract class Function2 extends Function
{
public Apply applyl(Object vl)

{
return new ApplylF2(this, v1) ;
}
public Apply apply2(Object v1, Object v2)
{
return new Apply2F2(this, vi, v2) ;
}
}
class Apply2 extends Apply
{
protected Object pl, p2 ;
}
class ApplylF2 extends Applyl
{
public ApplylF2(Object f, Object pl)
{
super(f, pl) ;
nrNeededParams = 1 ;
}
}
class Apply2F2 extends Apply2
{
public Apply2F2(Object f, Object pl, Object p2)
{
super(£, pl, p2) ;
}
protected void evalSet()
{
funcOrVal = ((Function2)funcOrVal).eval2(pl, p2) ;
}
}

Fig. 12. Expression evaluator optimisations for Function2.

41

References

(1]
2]

3]
[4]

[5]

[13]
[14]
[15]

[16]

[17]

JavaCC. http://www.metamata.com/, 2001.

Software Technology. http://www.cs.uu.nl/groups/ST/Software/index.html,
2001.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

Ken Arnold and James Gosling. The Java Programming Language. Addison-
Wesley, 1996.

Richard Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 1998.

Jeroen Fokker. Functional Parsers. Utrecht University, Institute of Information
and Computing Sciences, 1995.

Graham Hutton. Higher-order functions for parsing. Journal of Functional Pro-
gramming, 2:323-343, July 1992.

Graham Hutton and Erik Meijer. Monadic Parsing in Haskell. Journal of Func-
tional Programming, 8, 1998.

Mark P. Jones and John C. Peterson. Hugs 98. A functional programming system
based on Haskell 98. User Manual. Oregon Graduate Institute, 1999.

Daan Leijen. Parsec, a fast combinator parser. Utrecht University, Institute of
Information and Computing Sciences, 1999.

Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

Simon L. Peyton-Jones. Implementing lazy functional languages on stock hard-
ware: the Spineless Tagless G-machine. Department of Computer Science, Uni-
versity of Glasgow, 1992.

Simon Peyton Jones (editor) and John Hughes (editor). Report on the Program-
ming Language Haskell 98. A Non-strict, Purely Functional Language, 1999.
Rinus Plasmeijer and Marko v. Eekelen. Concurrent Clean. Language Report.
Version 1.3. HILT B.V. and University of Nijmegen, 1998.

S.D. Swierstra. Parser Combinators: from Toys to Tools. In Haskell Workshop,
2000.

S.D. Swierstra and P.R. Azero Alcocer. Fast, error correcting parser combinators:
A short tutorial. In SOFSEM’99, 26th Seminar on Current Trends in Theory and
Practice of Informatics, pages 111-129, November 1999.

D. Wakeling. Compiling Lazy Functional Programs for the Java Virtual Machine.
Journal of Functional Programming, 9:579-603, Nov 1999.

42

Side effects and partial function application in

C++

Jaakko Jarvi! and Gary Powell?

! Turku Centre for Computer Science, University of Turku, Finland
jaakko.jarvi@cs.utu.fi
2 Sierra On-Line Ltd., Seattle WA, USA
gary.powell@sierra.com

Abstract. Function calls that cause side effects to actual arguments are
common and well accepted in OO languages. When a function is applied
only partially, such side effects, or preventing them, may lead to surprises.
The paper gives examples of this, and describes different approaches to
deal with side effects. The main focus is on C++ and a partial function
application implementation as a template library. The paper explains
what are the relevant points for controlling side effects to the arguments
of a partially applied function in such a library. As a practical result,
the paper presents a mechanism that can be used with function calls to
control side effects to each function argument individually.

1 Introduction

Lambda functions and partial function application are common features in func-
tional programming languages. Now these features are gradually finding their
way to object oriented (OO) languages as well. Eiffel has an extension called
agents [1, 2], which allows any argument of any function call to be replaced
with a question mark. Such a function call creates an agent, which is basically
a partially applied function. In the Sather language [3], a corresponding feature
is known as closures. For C++, a couple of template based extension libraries
have been developed during the recent years, among them FC++ [4], FACT [5]
and Lambda Library (LL) [6], which all provide forms of lambda functions for
C++.

OO languages as platforms for these features are quite different from func-
tional languages. Particularly, OO languages typically allow functions to have
side effects on their arguments while functional languages do not. Furthermore,
not all function arguments are treated equally in OO languages. When a member
function of an object is called, that object has a special status compared to the
other function arguments. Regarding these considerations, we are asking what
should the form of manifestation of lambda functions and partial application be
in OO languages.

We show that the question is centered around argument passing mechanisms,
whether to pass arguments by value or by reference, and by what kind of ref-
erence. Passing an argument into a function by reference allows the function to

43

change the value of the argument as a side effect of evaluating the function. Such
side effects are more or less inherent in languages like C++ or Eiffel; member
functions typically alter the state of the object, the side effect to the left-hand
argument of an assignment operator is usually the reason why to call an assign-
ment operator etc. Consequently, side effects on arguments make sense. But what
about side effects on the arguments when the function is only applied partially?
The paper shows that the issue is more complicated than it may look at the first
glimpse. Partly this is common for OO languages, but partly the complications
stem from C++ and its peculiarities.

Eiffel agents are implemented as a true language extension, which gives a total
freedom over the syntax and semantics of the features, whereas the experimental
C++ libraries stay inside the language. This obviously places some restrictions
on the implementation of the features and makes the syntax a bit crippled, but
whether we stay inside the language or provide a true extension, we believe that
the same questions are still relevant. Nevertheless, the paper mainly discusses a
C++ implementation of partial application.

Finally, as practical results we show that it is possible to implement partial
function application in C++ either to allow or disallow side effects, and even do
this selectively depending on the properties of the underlying function. Further,
we show a mechanism that gives the programmer the control of allowing or
disallowing side effects for each argument separately.

1.1 Partial application syntax in C++

The syntax of partial application in C++ can be defined in many ways. In this
paper we use the syntax of the Lambda Library [6]: To apply a function partially,
the function and its arguments are enclosed in a generic bind function. In such
a function call, special placeholder variables _1, _2, ... can be used as actual
arguments to state that an argument is left open. A partially applied function
results in a new function, and _1 refers to the first argument of this function, _2
to the second, etc. For example:

bind(f, a, b, _1, _2, e)

takes a b-argument function f, binds the first, second and fifth argument to
a, b and e, respectively, and results in a two-argument function. Further, the
expression

bind(f, a, b, _1, _2, e)(c, d)
calls this two-argument function and invokes the original function f as
f(a, b, c, d, e).

For operators there is no special function or keyword; a placeholder variable
as an operand implicitly delays the evaluation of the expression it resides in: For
example, with this syntax the expression

44

2 % (L1 + _2)
is interpreted as

Az y . 2x+y)

1.2 About implementing partial application in C++4

Lambda functions and partial application are more or less the same thing when
implemented as a C+-+ template library. The syntax is different due to the
syntactic sugar in calls to operator functions, but the internal implementation is
the same: a lambda function, or a partial application, creates a kind of a closure
object that encloses the underlying function or operator and the arguments that
were provided. The function call operator of this object can then be called with
the remaining arguments. Considerably simplified, the above example of partially
applying the function f creates an object of type:

struct lambda_functor {
function f;
arguments a, b, e;

template<class T1, class T2>
result_type operator(D(T1 _1, T2 _2) { f(a, b, _1, _2, ¢); }

b

In C++ the question of allowing or disallowing side effects boils down to what
information about the arguments should be stored in the closure of the function
call: the references to, or the values of the actuals at the site of constructing
the closure. At the most concrete level, the question is about the types of the
arguments a, b and c in the above lambda_functor class.

2 Argument binding in C++ standard library

C++ defines two function templates for partial function application: bindist
and bind2nd. Both take a binary function, bind one of the arguments to a fixed
value, and return a unary function object. The C++ standard [7] defines this
function object to store the bound argument as a copy. The argument that is
left open is passed as a const reference to the function call operator. Hence the
intention is that there should be no side effects to the bound argument, nor to the
unbound argument supplied later. For example, figure 1 shows a straightforward
implementation of bind1st as defined by the standard.

As an example of the usage of standard binders, sum is a standard func-
tion template that creates a binary function object to compute the sum of its
arguments (suppose T is some type for which the operator+ is defined):

sum<T>() (a, b); // calls a + b;
bindist(sum<T>(), a)(b); // calls T(a) + b;

45

template <class Oper> class binderilst
: public unary_function<typename Oper::second_argument_type,
typename Oper::result_type> {
protected:
Oper op;
typename Oper::first_argument_type value;

public:
binderist(const Oper& x,
const typename Oper::first_argument_type& y)

: op(x), value(y) {}
typename Oper::result_type
operator () (const typename Oper::second_argument_type& x) const {

return op(value, x);

}

+s

template <class Oper, class T>
inline binderilst<Oper>
bindist(const Oper& oper, const T& x) {
return
binderist<Oper>(oper, typename Oper::first_argument_type(x));

Fig. 1. Standard binderlst implementation

While comparing these calls, the only difference is that in the latter call a copy
of the bound argument is taken, and the addition operator is called with the
copy. Thus, it seems that there is no difference between the outcome of the two
expressions above and this is probably what the programmer would expect. Note
that it is possible to find cases, albeit somewhat artificial ones, where the outcome
is not what was expected. For example, operator+ might do something peculiar
to its arguments, like change a mutable member of a. Mostly the standard binders
are limited enough to keep the programmer out of trouble.

However, partial application is an appealing technique, particularly conve-
nient with STL algorithms. And when we try to extend the mechanism to cover a
larger set of functions, we are faced with the questions posed in the introduction.
For example, inspired by the previous example, the next thing a programmer
might want to write, could be (note that this example doesn’t work with the
current standard binders):

sum_assign<int>(a, b); // calls a += b
bindlst(sum_assign<int>(), a)(b); // calls int(a) += Db

Now we can see that it makes a difference how binders bind the arguments.

46

2.1 Binding and member functions

The final definition of binders is an open issue in the standardization process.
A proposed change to the standard library, raised by Stroustrup [8], suggests
that the binderlst and binder2nd templates should define another function
call operator that takes a non-const reference argument:

typename Oper::result_type
operator () (typename Oper::second_argument_type& x) const {
return op(value, x);

}

This would mean that side effects via the unbound argument would be allowed.
The rationale behind the suggestion is to make something like this to work:

class turtle {
public:
void move (step s);
}s

void move_all(list<turtle>& ls, const step& s) {
for_each(ls.begin(), ls.end(),
bind2nd (mem_fun_ref (&turtle: :move), s));
}

The intention is to call t.move (s) for each element t in the list 1s (mem_fun_ref
encloses a pointer to a member function into a bindable function object). Without
the suggested change, however, the code is erroneous. The call to bind2nd creates
a function object with a function call operator prototype defined as:

void operator() (const turtle& t);

But then move is a non-const function and it cannot be called with a reference
to a const turtle object. The effect of the proposed change would be to add the
function call operator operator () (turtle& t) into the binder object, which
would make the code work.

The previous example showed a function to move several turtles in a collection
one step forward. How about a function to move one turtle several steps:

void move_many_steps(turtle& t, list<step>& 1ls) {
for_each(ls.begin(), ls.end(),
bindist (mem_fun_ref (&turtle::move), t));
}

Against what one might expect, this piece of code has no effect on the turtle t
at all. Binding t means taking a copy of it, hence the target of the move calls
is a copy of t, which is constructed when the binder function object is created,
and gets destructed after the for_each invocation.

47

There’s a myriad of additional details. For example, if we use mem_fun and a
pointer argument instead of mem_fun_ref and a reference, the member function
of the original turtle object is invoked:

void move_many_steps(turtle* t, list<step>& 1ls) {
for_each(ls.begin(), ls.end(),
bindlst (mem_fun_ref (&turtle::move), t));
}

On the other hand, the compilation fails altogether if the list of steps is taken as
a const reference (which would be a natural parameter type for this function):

void move_many_steps(turtle& t, const list<step>& 1s);

Furthermore, if the argument to the turtle: :move function was const step&
instead of step, compilation would fail as well. See [9] for a discussion about the
shortcomings of standard binders.

The standard tools for partial function application disallow most of the cases
where the interpretation of the partially applied function may not be clear. Still,
an unwary programmer may be taken by surprise, as the preceding discussion
demonstrates.

2.2 Partial application taken further

We're not stuck with the limited partial function application support of the C++
Standard Library. A template library that allows partial application of function
pointers, function objects and pointers to member functions up to a predefined
arity limit, say for 10-ary functions, was described in [10]. Furthermore, apart
from a few exceptions, any overloadable C++ operator can be overloaded to
accept partial application. Taking argument binding still further, even control
structures and exception handling constructs can be ’applied partially’. [6] Tools
like this enable partial application in expressions where side effects occur natu-
rally in ordinary function application. Consequently, the possibility of side effects
must be taken into consideration. Instead of ignoring the issue, we must deter-
mine how to cope with it.

3 Different approaches to side effects

There are three alternatives to deal with side effects to bound arguments in
partial function applications:

1. Ignore side effects. Take a copy of each bound argument and store the copy
in the function object. If there are side effects, the code compiles but the
side effects affect the copies. This is the approach used in the C++ Standard
Library.

48

2. Deny side effects. Flag any expressions that might have side effects to bound
arguments as errors. The Standard Library follows this approach to some
extent as well.

3. Allow side effects. Store a reference to each bound argument in the function
object.

A combination of these three alternatives where the semantics is dependent on
the properties of the partially applied function, is also possible. Additionally,
each approach can be complemented with a mechanism that gives the user the
control to bypass the default behavior.

We take three example function calls which, in full application, cause side
effects to their arguments, and discuss applying them partially in the light of
the above three alternatives. First an operator call where the side effect to the
variable i is the only reason to make the call:

int i; int j; ... 1 += j;

Leaving the left-hand operand unbound creates a unary function that increments
its argument by the value of the bound argument. If the right-hand operand is
left unbound, we end up with a unary function incrementing the bound variable
by the argument of this unary function. For example:

vector<int> v; int j;

for_each(v.begin(), v.end(), _1 += j);
for_each(v.begin(), v.end(), j += _1);

The first case is straightforward, and the natural interpretation is that each
element of vector v is incremented by the value of j. The second case is trickier.
The programmers intent is most likely, that the sum of the elements of v is
computed in j. This is also the effect in the ’allow side effects’ approach. In the
‘ignore side effects’ alternative, however, a copy of j gets incremented leaving
j intact, which is undoubtedly confusing. A safe, but more restrictive solution
would be to flag the expression as an error and ban it altogether.

The second example moves turtles again. In the example of section 2, we
used standard binders, here we use the binders from LL:

vector<turtle> tv; turtle t; vector<step> sv; step s;

for_each(tv.begin(), tv.end(), bind(&turtle::move, _1, s));
for_each(sv.begin(), sv.end(), bind(&turtle::move, t, _1));

Bear in mind that move is a non-const member function of turtle and most
likely modifies its state. Again, the first for_each invocation is quite clear,
calling x.move (s) for each turtle x in the vector tv. The intention of the second
one is to call t.move(y) for each step y in the vector sv. ’Allow side effects’
case performs just this, whereas against the programmers intent, the ’ignore
side effects’ case keeps moving a copy of the original turtle t. In this example as
well, a safe approach would be to make the second call fail at compile time.

49

The third example considers calls to freestanding functions, or function point-
ers.

void add_to(int& i, const int& j) { i += j };

Note that the second argument to the add_to function is a reference. In the
function body, i and j can thus be aliased.

vector<int> v;

for_each(v.begin(), v.end(), bind(add_to, _1, 5));
for_each(v.begin(), v.end(), bind(add_to, _1, v[0]));

The first for_each call is again a clear case. The bind call creates a unary
function object that increments its argument by 5. In the second case it makes a
difference whether we store the bound argument v[0] as a copy or as a reference.
If a copy is taken, each element in v is incremented by the value of the first
element. If the binding is by reference, the effect is different. The first iteration
increments the first element by itself, which doubles the value of the bound
argument. Consequently, each successive element is incremented by twice the
original value of the first element, which is probably not what the programmer
wanted. Note that the same problem is apparent in our first example as well:

for_each(v.begin(), v.end(), _1 += v[0]);

The above examples demonstrate that neither the ’ignore side effects’ nor
"allow side effects’ approach leads to the most natural outcome in all cases. In
fact, both approaches allow expressions that are somewhat counterintuitive and
thus may lead to errors that are hard to find.

In the preceding examples, the partially applied functions are created as
temporary objects. The types of partially applied functions tend to be rather
complex, and as C++ has no typeof operator or alike, it is difficult to directly
declare a variable that would hold such a type. It is however possible, and with
a set of helper templates it can be made relatively convenient, as demonstrated
by the FC++ library [4]. This means that the function object created as a result
of a partial application can be stored into a variable, and evaluated later, in an
other expression. This brings up another point into the discussion. If a bound
argument is stored as a reference, the argument may not exist any more at the
evaluation site, leading to a dangling reference.

Eiffel approach The parameter passing mechanism in Eiffel is always call-by-
value. But variables in Eiffel hold references to objects making the parameter
passing mechanism in effect call-by-reference (this is not true with exzpanded
types, such as INTEGER, REAL etc.). Eiffel agents, that is partially applied
functions, obey the normal parameter passing rules, and thus Eiffel takes the
‘allow side effects’ approach. Further, variables that refer to agent objects are
allowed. Hence, the agent construction and agent evaluation sites can be very
different. However, dangling references cannot occur due to garbage collection.

50

4 Implementing the different approaches in C++4

Partial application in C++ can be implemented using expression templates [11].
A partially applied function is an expression object that stores the bound ar-
guments and the underlying function. Further, in its template arguments, the
expression object encodes information about the positions, types and number of
bound and unbound arguments. The LL calls these expression objects lambda
functors.

The operator syntax for partial application is achieved by overloading op-
erators for placeholder types that represent the open argument slots, and for
lambda functor types. Partial application of function pointers, function objects
and pointers to member functions is achieved by overloading the bind functions.
As an example, figure 2 shows one overloaded bind function template and one of
the specializations of the lambda_functor template. The return types of bind
functions are instances of lambda functors. Note, that this is only an outline of
the real library code, many details have been omitted.

The task of the bind function is simply to group the arguments into a tuple,
and construct the lambda functor. Tuple is a template class that can hold an
arbitrary number of elements of arbitrary types. Tuple types, and their imple-
mentation as a template library is discussed in [12].

The lambda_functor template has two arguments. The first is the argument
tuple type, the elements of which are the types of the arguments to the bind
function. The second is the arity of the functor, which is a property computed
with a traits class from the first template argument, basically by counting the
unbound arguments. The lambda_functor template has a specialization for each
supported arity, providing a function call operator with that arity. This function
call operator substitutes the actual arguments for the placeholders and evalu-
ates the underlying function with this combined argument list. How this works
exactly, is explained in [6], as well as the mechanisms for deducing the return
type of the operator. The important points to consider here are:

1. The argument types of the bind function.
2. The types of the arguments in the argument tuple.
3. The argument types of the lambda functor’s operator().

These are the points that control how side effects are handled.

4.1 Bind function argument types

Partial function application implemented as a C++ template library can only
support functions up to some predefined arity limit. The bind functions must
be defined for each supported arity. These functions are obviously templated,
and their calls rely on the compiler deducing the template argument types. The
basic choices for defining the argument types are either as const references:

template<class F, class Al, class A2>
ret_type bind(const F& f, const Al& al, const A2%& a2);

51

template<class Function, class Argl, class Arg2>
lambda_functor<
tuple<
type_mapping<Function>::type,
type_mapping<Argl>::type,
type_mapping<Arg2>::type
>)
compute_arity<tuple<Function, Argl, Arg2> >::value
>
bind(Function f, Argl al, Arg2 a2) {
return
lambda_functor<
tuple<
type_mapping<Function>: :type,
type_mapping<Argil>::type,
type_mapping<Arg2>::type
>’
compute_arity<tuple<Function, Argl, Arg2> >::value
> (make_tuple(f, al, a2));

s

template<class Args>
class lambda_functor<Args, 2> {

Args args;
public:
template<class A, class B>
typename return_type_traits<Args, A, B>::type
operator(A a, B b) {
return substitute_arguments_and_evaluate(args, a, b);

}

Fig. 2. Three argument bind function template and the binary lambda functor tem-
plate.

or as non-const references:

template<class F, class Al, class A2>
ret_type bind(F& f, A1& al, A2& a2);

The third option would be to not use references at all, but rather take the
arguments as copies. That is an obvious way to prevent any side effects, but
it would also prevent passing non-copyable arguments and possibly introduce
unnecessary copying of objects. Hence, we focus on the above two alternatives.

Overloading based on the type of the function (the first argument) is possible,
and can in some cases be used to guide which mechanism to use for certain

52

arguments (see Overloading bind functions at the end of this section), but in

general we cannot make any kind of distinction between the arguments. It is

not known beforehand what are the prototypes of the functions that are applied

partially, and thus either one of the options must be chosen for all arguments.
As an example, consider the function:

void foo(int& i, const double& n);

The following code shows a valid call to this function:

int a;

fc.x.)(a, 3.14);

We then examine a partial application of foo, now binding all arguments:
bind(foo, a, 3.14);

Suppose first, that we use the first bind function definition, the one with the
const parameters. Consider the second argument a, which corresponds to the
first argument of foo. The type of this argument in foo is int&, but in bind
the deduced type becomes const int&. This means, that a is now regarded as
const in the body of the bind function, as well as in the lambda functor that
is created. This means that we cannot call foo with a from within the lambda
functor unless we make a non-const copy of it. Or cast away constness, which
could break const correctness as there is no guarantee that the actual argument
wasn’t const to begin with.

Next, consider what would happen if we used the second version of bind.
Now the type of the second argument would correctly be deduced to int&. What
about the third argument then? The type of 3.14 is double (not const double),
which means that the deduced argument type becomes double&. But 3.14 is a
temporary object, and as according to the C++ standard, a reference cannot be
bound to a non-const temporary, this is a compile time error.!

So basically, it is not possible to create a completely transparent interface
for bind functions. Either we have to somehow trick the compiler to accept non-
const references through a const interface, or turn temporaries into constant
types. Both can be accomplished, but it requires arguments to be wrapped with
helper functions at the call site (see section 5).

The latter is almost possible even without modifications to the calls. Tempo-
raries are created as a result of function and operator calls. Hence, by rigorously
defining all functions returning temporary objects to return const types, all tem-
poraries would be const. For example:

! Note that a non-const member function of a temporary class object can be called [7,
Section 3.10.], which is very similar to binding a reference to a non-const temporary.
The purpose of this exception is presumably to allow a chain of calls to member
functions (e.g. a.plus(b) .multiply(c);), but we find the rule still rather inconsis-
tent.

53

class A;
const A createA() { return AQ; }

template<class T> void g(T& t);
g(A());
g(createA());

The type of the expression A() is A and thus the prototype of g in the first call
becomes void g(A&). As A() creates a temporary, the call fails. In the second
case, the prototype becomes void g(const A&), and the call is valid.

There is still one more glitch here. We deliberately used a temporary of
a class type in the example above. The reason for this is, that non-class type
temporaries cannot be const qualified [7, Section 3.10.]. The rationale behind this
rule is probably that there is no visible difference between a const temporary,
and a non-const temporary for non-class types. But there is a difference in the
deduction of template arguments, as was shown above.

Overloading bind functions We only discussed the most general form of the
bind function above and stated that we have to choose either form of parameter
passing for all arguments. However, we can have a bit more control by over-
loading bind for different function forms. For instance, if the target function of
the partially applied function is a pointer to a non-const member function, an
overloaded function of bind can take the object argument as a non-const ref-
erence, whereas for a const member function pointer, the object argument can
be a reference to a const type. By object argument we refer to the argument,
which is the target of the member function call. For example, t in the expression
bind (&turtle: :move, t, _1).

Overloading operators for partial application is more flexible. Since each oper-
ator has a fixed number of arguments, and established default semantics, the op-
erators can be overloaded to follow these default rules. For example, operator+=
should be able to modify the first argument, while not the second one. Hence,
the operator can be defined to take the first argument as a non-const reference,
and the second as a const reference.

4.2 Types of argument tuple elements

Once the arguments have survived the first barrier, the bind function call, we
need to consider the next point. How do we store them in the argument tuple
in the lambda functor. Storing the actual arguments as references means that
side effects can occur, while storing the arguments as non-reference types means
copying the actual arguments, and hence side effects can occur, but to the copies
of the actual arguments. Tuple types are not a limitation here, they can hold
references to objects, just as well as the actual objects.

Rather than declaring the types directly as references or as plain types, they
are wrapped inside a traits template. The type_mapping template serves this
purpose in our example lambda functor implementation. This gives us control

54

whether the arguments are stored as copies or as references, and we can even
make the decision dependable on the type of the argument. For instance, as ar-
rays cannot be copied, the type_mapping template can always map array types
to references. Furthermore, as explained in section 4.1. we need to use wrap-
pers to pass non-const references through the bind interface. The type_mapping
traits can be used to retrieve the underlying reference from the wrapped argu-
ment (see section 5). For a discussion about type traits in general, see [13].

4.3 Argument types of function call operator

The next thing to consider is the function call operator of the expression object.
This is the function typically called from an STL algorithm, and the actuals to
the function are the arguments that were left open in the partial application.
These argument types control whether side effects are allowed via the unbound
arguments. Unlike in the standard binders where these argument types are fixed
at time of constructing the expression object, the function call operator is a
template and the argument types are deduced when the function call operator is
invoked. Hence, we again have two main alternatives for defining the argument
types: as references or as references to const.

The section 4.1 discussed the advantages and disadvantages of both alter-
natives, and most of the same concerns apply here as well. However, allowing
side effects for the unbound arguments is maybe slightly less problematic. After
all, providing the remaining actual arguments for a partially applied function is
just an ordinary function call. Hence, it seems to be more natural to define the
function call operators of lambda functors to take their arguments as non-const
references, particularly if side effects are allowed for the bound arguments. A
problem arises with this approach, if the actual arguments are non-const tempo-
raries (see section 4.1). This can happen if dereferencing an iterator inside the
STL algorithm results in a temporary. The problem can be solved, but it requires
the whole partial application to be wrapped inside a function that makes the
arguments const, and the number of specializations increases exponentially with
respect to the number of arguments. STL algorithms, however, supports only
nullary, unary and binary function objects, so this is tolerable.

The function call operator in the example lambda functor delegates the task
of actually substituting the arguments and evaluating the function forward by
calling the function substitute_arguments_and_evaluate. This function hides
a complex chain of templated function calls where the arguments are passed
forward to several functions. We again refer to [6] for the details, but what can
be noted is, that all these functions are templates where the argument types are
deduced, and they can safely take their arguments as non-const references. Once
the arguments are past the first barrier, either the bind function or the lambda
functor’s function call operator, they are not temporaries anymore.?

2 Nested partial applications, that is function composition, create temporaries, but
these can be handled internally.

55

5 Giving control to the client

It is apparent that partial function application implemented as a template li-
brary cannot be made entirely transparent. By transparent we mean that the
parameter passing mechanism reflects precisely the prototype of the underlying
partially applied function. Furthermore, even if this was possible, it is not obvi-
ous whether this should be the case; partial application is different enough from
a full application to bring up surprises, as discussed in section 3.

Whatever default semantics is chosen, it is possible to provide the program-
mer with tools to override it. Let us return to one of our previous examples:

void add_to(int& i, const int& j) { i += j };

Suppose we have bind functions that prevent side effects by taking arguments as
const references. Depending on the implementation, binding the first argument
of add_to either fails, or the the potential side effect affects a copy of the actual
argument. The programmer may enable the side effect by wrapping the variable
with a helper function:

vector<int> v; int x;

for_each(v.begin(), v.end(), bind(add_to, x, _1)); //fails
for_each(v.begin(), v.end(), bind(add_to, ref(x), _1)); //ok

Further, we showed the example where the intent was to increment all ele-
ments in a vector with the value of the first element:

for_each(v.begin(), v.end(), bind(add_to, _1, v[0]));

If bind functions store the arguments as copies, this is exactly what the code
does. We also showed that if arguments are stored as references, the outcome
is something less intuitive. However, if the side effect is what the programmer
wants, even in the case where arguments are stored as copies, this can be achieved
by explicitly wrapping the argument with ref:

for_each(v.begin(), v.end(), bind(add_to, _1, ref(v[0]1)));

Analogously, we can provide means to state that the argument should be
stored as a copy, instead of a reference. Consider the ’turtle moving’ example in
section 3 and suppose that the object argument is stored as a reference:

turtle t; vector<step> sv;

for_each(sv.begin(), sv.end(), bind(&turtle::move, t, _1));
for_each(sv.begin(), sv.end(), bind(&turtle::move, plain(t), _1));

The first for_each invocation calls t.move(s) for each element of sv, while the
second operates on a copy of t and has no effect on t.

56

5.1 Implementing argument wrappers

The argument wrappers can be implemented by creating a disguise for the true
type of the argument. The wrapper object holds a reference member to the actual
argument, and has an appropriately defined conversion operator for getting back
to the original type. Such an object can pass a non-const reference through a
const qualified parameter, or a reference through a call-by-value barrier. The
following code shows the definitions of the wrapper class and the ref function
template:

template<class T>

class reference_wrapper {
T& x;

public:
explicit reference_wrapper(T& t) : x(t) {}
operator T&() const { return x; }

s

template<class T>
inline const reference_wrapper<T> ref(T& t) {
return reference_wrapper<T>(t);

}

Wrapping a variable with ref creates a reference_wrapper object containing a
reference to the variable. This object can be passed to the bind function where
the wrapping is undone with traits templates. The type_mapping template (see
section 4.2) has specializations for this purpose:

template<class T> type_mapping<reference_wrapper<T> > {
typedef T& type;

}s

This specialization converts the argument type back to the original reference
type, and the reference gets stored in the lambda functor’s argument tuple. For
example:

vector<int> v; int x = 3;
for_each(v.begin(), v.end(),
bind(add_to, ref(x), _1)); //ok

First the call to ref(x) returns a reference_wrapper<int> object which is
passed to the bind function (as const reference_wrapper<int>&). The traits
template (type_mapping) maps the reference wrapper back to int& which is
the type of the bound value to be stored. To initialize this value, the conversion
operator to int& of the reference_wrapper<int> class returns the reference
to the original variable x. Hence, all traces of tweaking the reference into the
expression object are gone by the time the for_each algorithm calls the partially
applied function, and add_to gets called with a reference to the variable x.

o7

Additionally, we've defined a cref function for wrapping references to con-
stants:

template<class T>
inline const reference_wrapper<const T> cref(const T& t) {
return reference_wrapper<const T>(t);

}

We do not show the implementation of the plain wrapper function mentioned
in the turtle example in section 3. It works much the same way except that
instead of returning a reference to the variable, the wrapper makes a copy of
it when the conversion operator is called. Note that we do not need the plain
wrapper to circumvent an unsuitable parameter passing mechanism, but only to
instruct the tuple that a copy of the bound argument should be stored where a
reference would be stored by default.

6 Conclusions

Side effects to the arguments of a function are common in a typical object
oriented program. Particularly, the state of the object argument in a method
invocation often changes. This is a feature taken for granted and is well accepted
and natural. Adding partial function invocation to an object oriented language
blurs the picture, and it is not instantly clear whether side effects are that natural
anymore.

This paper identified three alternatives to deal with side effects to the bound
arguments in partially applied functions: to allow, to silently ignore or to deny
expressions with side effects entirely. We discussed the problems with C++ in
detail showing both examples where side effects may take the programmer by
surprise and examples where they are intuitive and natural. None of the ap-
proaches is a perfect solution and it is also possible to treat different types of
functions differently, e.g. side effects can be allowed for the object argument in
a method invocation, while not for the remaining arguments.

Regarding C++, there are further details that prevent a clean solution with-
out modifications to the core language. We described what these details are and
where the problems in C++ implementation of partial application stem from.
Particularly, not being able to const qualify temporaries that are not of class
types is a nuisance. At least for C++, we have to settle for what is a less than
optimal solution, recognizing that beginning programmers may still have some
trouble writing expressions involving complex partial function applications. Ad-
ditionally, we showed how to implement a mechanism that allows the program-
mer to selectively state whether side effects to a certain argument are wanted or
not.

7 Acknowledgments

We are grateful to Harri Hakonen for his expertise and help with Eiffel.

58

Gary’s: Jaakko has wrestled with this problem well before I became interested
in lambda expressions and hence this paper is mostly his work. I am privileged
to work with him and appreciate the opportunities to learn more about the dark
corners of C++.

References

[1]

[13]

Agents, iterators and introspection, 2000. http://www.eiffel.com (information,
papers).

P. Dubois, M. Howard, B. Meyer, B. Rosenberg, M. Schweitzer, and E. Stapf.
From calls to agents. JOOP, October 1999.

Sather web-site. http://www.icsi.berkeley.edu/ sather/, 2001.

B. McNamara and Y. Smaragdakis. Functional Programming in C++. In Proceed-
ings of The 2000 International Conference on Functional Programming (ICFP).
ACM, 2000. http://www.cc.gatech.edu/ yannis/fc++.

J. Striegnitz and S. A. Smith. An expression template aware lambda function.
In First Workshop on C++ Template Programming, Erfurt, Germany, October
2000. http://oonumerics.org/tmpw00/.

J. Jarvi and G. Powell. The Lambda Library : Lambda abstraction in C++.
Technical Report 378, Turku Centre for Computer Science, November 2000.
International Standard, Programming Languages — C++,

ISO/IEC:1488, 1998.

ISO/TEC JTC1/SC22/WG21 : international standardization working group for
the programming language C++. The C++ Standard Library Issues List, revision
17. http://anubis.dkuug.dk/JTC1/SC22/WG21/, 2001.

V. Simonis. Adapters and binders - overcoming problems in the design and im-
plementation of the C++-STL. ACM SIGPLAN Notices, January 2000.

J. Jarvi. C4++ function object binders made easy. In Proceedings of the Generative
and Component-Based Software Engineering’99, volume 1799 of Lecture Notes in
Computer Science, 2000.

T. L. Veldhuizen. Expression templates. C++ Report, 7(5):26-31, June 1995.

J. Jarvi. Tuple types and multiple return values. C/C++ Users Journal, 2001.
To appear (August).

J. Maddock and S. Cleary. C++ Type traits. Dr. Dobb’s Journal, October 2000.

59

Implementing Extensible Compilers

Matthias Zenger and Martin Odersky

Swiss Federal Institute of Technology
INR Ecublens
1015 Lausanne, Switzerland

Abstract. New extensions to programming languages are constantly
being proposed. But implementing these extensions usually turns out
to be a very difficult and expensive task, since conventional compil-
ers often lack extensibility and reusability. In this paper we present
some fundamental techniques to implement extensible compilers in an
object-oriented language. For being able to implement extensible com-
piler passes, we introduce an extensible form of algebraic datatypes. Our
extensible algebraic datatypes with defaults yield a simple programming
protocol for implementing extensible and reusable compiler passes in a
functional style. We propose an architectural design pattern Context-
Component which is specifically targeted towards building extensible,
hierarchically composed systems. Our software architecture for extensi-
ble compilers combines the use of algebraic types, known from functional
languages, with this object-oriented design pattern. We show that this
approach enables us to extend existing compilers flexibly without modi-
fying any source code. Our techniques have been successfully applied in
the implementation of the extensible Java compiler JaCo.

1 Introduction

Traditionally, compilers are developed for a fixed programming language. As a
consequence, extensibility and reusability are often considered to be unimpor-
tant properties. In practice this assumption does not hold. People constantly
experiment with new language features. They extend programming languages
and build compilers for them. Writing a compiler for such an extended language
is usually done in an ad-hoc fashion: the new language features are hacked into a
copy of an existing compiler. By doing this, the implementation of the new fea-
tures and the original implementation get mixed. The extended compiler evolves
into an independent system that has to be maintained separately.

To avoid this destructive reuse of source code, we propose a technique where
extended compilers reuse components of their predecessors, and define new or
extended components without touching any predecessor code. All extended com-
pilers derived from an existing base compiler share the components of this base
compiler. With this approach we have a basis for maintaining all systems to-
gether.

Before discussing details of our extensible compiler architecture, we look at
the traditional organization of compilers. The abstract syntax tree is a recursive

61

data structure on which the different compilation passes operate. Extending a
source language normally involves extensions of the abstract syntax tree rep-
resentation and the compilation passes; i.e. operations on the abstract syntax
tree. Section 2 discusses the shortcomings of existing approaches to this issue.
Extensible algebraic types with defaults are proposed in section 3 to solve the
problem of extending the representation of the abstract syntax tree simultane-
ously to extending operations on this tree. Extensible algebraic datatypes with
defaults enable us to reuse existing compiler passes in extended compilers “as
is”. Section 4 discusses extensible algebraic datatypes in more detail. A general
architectural design pattern Context-Component is presented in section 5. This
pattern can be used to build extensible component systems in a very flexible way.
It is used in section 6 to define an extensible batch-sequential compiler architec-
ture. We implemented an extensible Java compiler according to this architecture.
This compiler was used in several projects as a basis for implementing language
extensions for Java. We conclude this paper with a summary of the experience
we gained by using this compiler.

2 Extensibility Problem

Traditionally, the compilation process is decomposed into a number of subse-
quent passes, where each pass is transforming the program from one internal
representation to another one. These internal representations are implemented
as abstract syntax trees. Compiler passes are operations that traverse the trees.
An extension or modification of the compilers source language often requires
both, extensibility of the datatype modelling the abstract syntax and the set of
passes operating on this type. Furthermore it is often necessary to adapt existing
passes. Flatt [12] calls this well-known problem of extending data and operations
simultaneously the extensibility problem [6, 7, 11, 12, 15, 17, 28].

Unfortunately, neither a functional nor an object-oriented approach solves
this problem in a satisfactory way. With an object-oriented language such a
datatype would be implemented as a set of classes sharing a common interface.
We call these classes variants of the datatype. Whereas extending the datatype
is simply done by creating new variant classes supporting the common inter-
face, adding new operations is tedious. New operations require extensions or
modifications of all existing variants.

In a functional language, the variants of a datatype are typically implemented
with an algebraic type. Ordinary algebraic datatypes cannot be extended, so it is
not possible to add new variants. But on the other hand, writing new operations
is simple, since operations are simply functions over this type. In object-oriented
languages, the functional approach can be modelled using the Visitor design
pattern [13].

2.1 Related Work

Several attempts to solve this problem are published. Open Classes tackle the
shortcomings of the object-oriented approach in a pragmatic way [6]. They allow

62

the user to add new methods to existing classes without modifying existing code
and without breaking encapsulation properties. Open classes provide a clean so-
lution to the extensibility problem, but in practice they still suffer from some
drawbacks. Whereas a new operation is typically defined in a single compilation
unit, modifying an operation can only be done by subclassing the affected vari-
ants and overriding the corresponding methods. This leads to an inconsistent
distribution of code, making it almost impossible to group related operations
and to separate unrelated ones. Furthermore, extending or modifying an oper-
ation always entails extensions of the datatype. This restricts and complicates
reuse. For instance, accessing an extended operation in one context and using the
original operation in another one cannot be implemented in a straightforward
way.

For functional programming languages, various proposals were made to sup-
port extensibility of algebraic datatypes. Among them, the most prominent ones
are Garrigue’s polymorphic variants [14] and the extensible types of the ML2000
proposal [1]. [31] compares both approaches with our work. Several papers dis-
cuss the extensibility of algebraic types in the context of building extensible
interpreters in functional languages [19, 10, 8]. Due to lack of space we refer
to [17] for a short discussion.

The literature also provides several modifications of the Visitor design pattern
targeted towards extensibility. Krishnamurthi, Felleisen and Friedman introduce
the composite design pattern Extensible Visitor [17]. Their programming pro-
tocol keeps visitors open for later extensions. One drawback of their solution
is that whenever a new variant is added, all existing visitors have to be sub-
classed in order to support this new variant. Otherwise a runtime error will
appear as soon as an old visitor is applied to a new variant. Palsberg and Jay’s
Generic Visitors are more flexible to use and to extend with respect to this
problem [21]. But generic visitors rely on reflective capabilities of the underly-
ing system [21], causing severe runtime penalties. Kithne’s Translator pattern
relies on generic functions performing a double-dispatch on the given operation
and datatype variant [18]. As with the solution of Krishnamurthi, Felleisen and
Friedman, datatype extensions always entail adaptions of existing operations ac-
cordingly. Therefore Kithne proposes not to use the translator pattern in cases
where datatypes are extended frequently.

2.2 Extensibility with Defaults

The fact that extra code is necessary to adapt an operation to new variants can
be very annoying in practice. We made the observation that an operation often
defines a specific behaviour only for some variants, whereas all other variants are
subsumed by a default treatment. Such an operation could be reused without
modifications for an extended type, if all new variants are properly treated by
the existing default behaviour. The experience with our extensible Java compiler
showed that for extended compilers, the majority of the existing operations can
be reused “as is” for extended types, without the need for adapting them to new
variants [31].

63

If it would be possible to specify a default case for every function operating on
an extensible type, a function would have to be adapted only in those situations,
where new variants require a specific treatment. This technique would improve
“as is” code reuse significantly.

We present a solution to the extensibility problem based on the new notion
of extensible algebraic types with defaults. We describe these extensible alge-
braic datatypes in the context of an object-oriented language, similar to Pizza’s
algebraic datatypes [20]. From an extensible algebraic type one can derive ex-
tended types by defining additional variants. Thus, we can solve the extensibility
problem in a functional fashion; i.e. the definition of the datatype and opera-
tions on that type are strictly separated. Extensions on the operation side are
completely orthogonal to extensions of the datatype. It is possible to apply ex-
isting operations to new variants, since operations for extensible algebraic types
define a default case. In addition to adding new variants and operations, we also
support extending existing variants of a datatype and modifying existing oper-
ations by subclassing. Extensibility is achieved without the need for modifying
or recompiling the original program code or existing clients.

3 Extensible Compiler Passes with Algebraic Datatypes

In this section we explain how to implement extensible compiler passes with
algebraic datatypes in an object-oriented language, by looking at a small example
language. This language simply consists of variables, lambda abstractions and
lambda applications. We use the syntax introduced by Pizza [20] and implement
abstract syntax trees based on the following algebraic type definition:

class Tree {
case Variable(String name);
case Lambda(Variable x, Tree body);
case Apply(Tree fn, Tree arg);

We now define a type checking pass for our small language. Pattern matching
is used to distinguish the different variants of the Tree type in the process method.

class TypeChecker {
Type process(Tree tree, Env env) {
switch (tree) {
case Variable(String n):
return env.lookup(n).type;
case Lambda(Variable x, Tree body):

case Apply(Tree fn, Tree arg):
Type funtype = process(fn, env);

default:
throw new Error();

64

By using this approach, it is straightforward to add new operations (passes)
to the compiler simply by defining new methods. But it is also easy to modify
an existing operation by overriding the corresponding method in a subclass.

class NewTypeChecker extends TypeChecker {
Type process(Tree tree, Env env) {
switch (tree) {
case Lambda(Variable x, Tree body):

default:
return super.process(tree, env);

}
}
}

This class modifies the treatment of the Lambda variant and reuses the former
definition for the other variants of the Tree type by delegating the call to the
super method.

As we saw, extending the set of operations and modifying existing operations
does not cause any problems. But what about extending the datatype? Since
Pizza translates every variant V of an algebraic datatype A to a nested class
A.V, extending variants is simply done by subclassing the variant class:

class NewLambda extends Tree.Lambda {
Tree argtype;
NewLambda(Variable x, Tree argtype, Tree body) {
super(x, body);
this.argtype = argtype;
}
}

The only missing piece for solving the extensibility problem now consists in
the extension of the Tree datatype with new variants. Pizza’s algebraic types
cannot be extended in that way. To overcome this problem, we propose exten-
sible algebraic datatypes with defaults. They allow us to define a new algebraic
datatype by adding additional variants to an existing type. Here is the definition
of an extended Tree datatype, which adds two new variants Zero and Succ:

class ExtendedTree extends Tree {
case Zero;
case Succ(Tree expr);

}

One can think of an extensible algebraic datatype as an algebraic type with
an implicit default case. Extending an extensible algebraic type means refining
this default case with new variants. In the example above, the new type Extend-
edTree inherits all variants from Tree and defines two additional cases. With our
refinement notion, these two new variants are subsumed by the implicit default
case of Tree. The next section shows that exactly this notion turns ExtendedTree

65

into a subtype of Tree. For being able to reuse existing operations on Tree, it
is essential that ExtendedTree is a subtype of Tree. This allows us to apply the
original type checking pass to an extended tree. Since the original type checker
performs a pattern matching only over the original variants, an extended variant
would be handled by the default-clause of the switch statement (which throws
an Error exception in our example above). To handle the new variants correctly,
we have to adapt our type checking pass accordingly by overriding the process
method:

class ExtendedTypeChecker extends TypeChecker {
Type process(Tree tree, Env env) {
switch (tree) {
case Zero:
return IntType();
case Succ(Tree expr):
checkInt(process(expr, env));
return IntType();
default:
return super.process(tree, env);
}

}
}

These code fragments demonstrate the expressiveness of extensible algebraic
datatypes in the context of an object-oriented language like Java. Opposed to
almost all approaches of section 2, we can extend datatypes and operations in
a completely independent way. An extension in one dimension does not enforce
any adaptations of the other one. Since in a pattern matching statement, new
variants are simply subsumed by the default clause, existing operations can be
reused for extended datatypes. Our approach supports a modular organization of
datatypes and operations with an orthogonal extensibility mechanism. Extended
compiler passes are derived out of existing ones simply by subclassing. Only the
differences have to be implemented in subclasses. The rest is reused from the
original system, which itself is not touched at all. Roudier and Ichisugi refer to
this form of software development as programming by difference [24]. Another
advantage is that an operation for an algebraic datatype is defined locally in
a single place. The conventional object-oriented approach would distribute a
function definition over several classes, making it very difficult to understand
the operation as a whole.

4 Principles of Extensible Algebraic Datatypes

In this section, we briefly review the type theoretic intuitions behind extensible
algebraic datatypes with defaults. A more detailed discussion about extensible
algebraic datatypes with defaults can be found in [31].

We model algebraic datatypes as sums of variants. Each variant constitutes a
new type, which is given by a tag and a tuple of component types. For instance,
consider the declaration:

66

class A {

case A1(T1,1 X115+ Tl»fl Xl»fl);
case A2(T271 X215y Tgﬁrz X2,r2);
}
This defines a sum type A consisting of two variant types A; and As, which
have fields 711 21,1,...,T1,7, 17, and To1X%21,..., T2, X2,r,, Tespectively. The

algebraic type A is characterized by the set of all its variants. Since we want
our types to be extensible, we have to keep A’s set of variants open. We achieve
this by assuming a default variant, which subsumes all variants defined in future
extensions of A. We will formalize this notion later.

Here is the definition of an algebraic type B which extends type A by defining
a new variant Bj:

class B extends A {
case B(...);
}

The new algebraic type B inherits all variants from A and defines an addi-
tional variant B;. Since B itself is extensible, we also have to assume a default
variant here to keep B’s variant set open. Thus, an extensible algebraic datatype
with defaults can be described by three variant sets: the set of inherited vari-
ants, the set of own variants and the default variants (capturing future variant
extensions). To formalize this notion, we introduce a partial order < between
algebraic types. B < A holds if B equals A or B extends A by defining additional
variants. In our setting, < is defined explicitly by type declarations.

An algebraic type Y can now formally be described by the union of three
disjoint variant sets owncases(Y'), inherited(Y) and default(Y).

allcases(Y) = inherited(Y") U owncases(Y) U default(Y")
where owncases(Y) = J{Y;}

i

inherited(Y) = |J owncases(X)
Y=X,Y#X

default(Y) = | owncases(Z)
Z=Y,Z#Y

inherited(Y) includes all variants that get inherited from the type Y is extend-
ing, owncases(Y') denotes Y’s new cases, and default(Y) subsumes variants of
future extensions.

With this definition, our variant sets for types A and B look like this:
allcases(A) = {Ai1,As} U default(A), and allcases(B) = {Ai1, A2, B1} U
default(B). The standard typing rules for sum types turn A into a subtype
of B if all variants of A are also variants of B [4]. In our example, we have
allcases(B) C allcases(A), so our original type A is a supertype of the extended
type B.

One might be tempted to believe now that one has even allcases(A) =
allcases(B). This would identify types A and B. But a closer look at the defini-
tion of default reveals that default(B) only subsumes variants of extensions of B.

67

Variants of any other extension of A are contained in default(A), but not covered
by default(B). This is illustrated by the following algebraic class declaration:

class C extends A {
case Cyi(...);

C' is another extension of algebraic type A, which is completely orthogonal to B.
Its case Cy is not included in default(B), but is an element of default(A). As a
consequence, { B} U default(B) is a real subset of default(A), and therefore the
extended type B is a real subtype of A. C is a real subtype of A for the same
reasons.

The subtype relationships of our example are illustrated in Figure 1. In this
figure, algebraic datatypes are depicted as boxes, variants are displayed as round
boxes. Arrows highlight subtype relationships. More specifically, outlined arrows
represent algebraic type extensions, whereas all other arrows connect variants
with the algebraic types to which they belong. Dashed arrows connect inherited
variants with the algebraic types to which they get inherited.

[Ci1) [Aijv[Az) [B1)

Fig. 1. Subtyping for extensions of algebraic types

With this approach, extended algebraic types are subtypes of the types they
extend. Therefore, existing functions can be applied to values of extended types.
New variants are simply subsumed by the default clause of a pattern matching
construct. Another interesting observation can be made when looking at two
different extensions of a single algebraic type (like B and C in the example
above). They are incompatible; none of them is a supertype of the other one. This
separation of different extensions is a direct consequence of single-inheritance:
an extensible algebraic type can only extend a single other algebraic datatype.

5 Architectural Pattern: Context-Component
The technique described in section 3 enables us to implement extensible

datatypes and extensible components offering functions operating on the
datatypes. We have still no general mechanism to glue a certain combination

68

of components and datatypes together to build extensible subsystems which are
finally combined to a concrete compiler. Configuring a program by linking the
corresponding components together should normally be done with a module sys-
tem. Unfortunately many object-oriented languages do not provide a separate
module system. They require the user to use the class system for this purpose.
Even though a class is considered to be a bad substitute for a module in gen-
eral [27], design patterns help to model the missing module system functionality
at least for some specific applications.

Several design patterns for structuring a system are described in literature.
The pattern Whole-Part [3] builds complex systems by combining subsystems
with simpler functionality. A Whole-Object aggregates a number of simpler ob-
jects called Parts and uses their functionality to provide its own service. Com-
posite [13] is a variant of Whole-Part with emphasis on uniform interfaces of
simple and compound objects. A Facade [13] helps to provide a unified interface
for a subsystem consisting of several interfaces, so that this subsystem can be
used more easily. All these design patterns only target the structural decompo-
sition of a system. They do not consider the fact that designs often require that
the implementation of a component or a subsystem is not known to the clients at
compile-time. For this reason, design patterns like AbstractFactory and Builder
[13] have to be used in addition. They allow to configure instantiations at run-
time. Therefore they are suitable for configuring a system dynamically, thus
supporting extensibility in a flexible way.

In this section we describe the architectural design pattern Context-
Component which helps to implement extensible hierarchically composed sys-
tems. It separates the composition of a system and its subsystems from the im-
plementation of the components. This principle allows us to freely extend or reuse
subsystems. Among all design patterns mentioned before, Context-Component
is the only pattern that offers a uniform way to compose, to extend, to modify,
and to reuse components and subsystems while still being easy to implement.

5.1 Idea

We suppose to implement a hierarchically structured component system. The
following figure shows a system consisting of two components A and B. ! Com-
ponent B represents a more complex subsystem, referring to two local subcom-
ponents C and D.

System

Component A Component B

Component C Component D

! Whenever we use the expression system, we implicitly assume that systems can be
seen as components themselves.

69

The main idea of the Context-Component pattern is to separate the con-
figuration of a system from the implementation of its components. We call the
configuration of systems Conterts. Formally, a context aggregates the compo-
nents of a system. Every component is embedded in exactly one context. It
refers to this context in order to access the other components of the system.
For this purpose, the context object offers a Factory Method [13] for every of its
components. These methods specify the instantiation protocol of the different
components. Typically, either a new instance of a component is created for every
factory method call, or the component is a Singleton [13] with respect to the
context. In this case, the component is instantiated only once during the first
call of the factory method.

Components that represent more complex subsystems, like component B from
our example above, have an own local configuration. In other words, they are em-
bedded in their own context, specifying all their local subcomponents. This shows
that contexts have a nested structure. Every context might have subcontexts for
more complex subsystems. The context in which an embedded subcontext is
nested, is called the enclosing context. Components defined in a nested context
can access the components of their own context and all the components defined
in enclosing contexts. On the other hand it is not possible for a component to
access components defined in subcontexts directly.

We introduce a graphical notation to illustrate the structure. For the scenario
mentioned in the beginning of this section, we get the following picture:

System

Y

Component B

| Component C | | Component D |

System Context

Component A

Context B

Contexts are represented by lines. Singleton components embedded in a con-
text correspond to boxes located directly beneath the line. A contexts non-
singleton components are depicted as lifted boxes with an arrow pointing to
them. More complex components refer to subcomponents defined in local con-
texts, which are drawn as lines directly beneath the components box.

5.2 Structure

The structure of the architectural pattern is shown in figure 2. Our pattern has
four different participants:

Context Context is the superclass of all contexts. It simply defines a generic
reference to the enclosing context.

Component The abstract superclass of all components defines a method init
which is called immediately after component creation to initialize the com-
ponent. The context in which the component is embedded is passed as an
argument to init. init typically gathers references to other components that
are accessed within the component.

70

ConcreteContext A concrete context defines a particular context of a system.
It provides factory methods for all embedded components. These methods
specify

— whether a component is a singleton relative to the context, and
— whether a component is initialized in an own nested context, defining
local subcomponents.

Furthermore, a ConcreteContext provides factory methods for creating local
subcontexts.

ConcreteComponent A ConcreteComponent implements a specific compo-
nent of a system. It defines a customized init method which is called from
the corresponding context immediately after object creation. The context is
passed as an argument, enabling the init method to import references to all
components which are accessed within the component. It is only possible to
import components from the own or an enclosing context.

Overloading the init method allows a flexible embedding of components in
different ConcreteContext classes. The init methods act as adaptors to the
different contexts in which a component can be embedded.

Context Component
Context parent; Context context;
void init(Context c);
A
ConcreteContextl
ConcreteCompA compA; ConcreteCompA
—T ConcreteCompA ConcreteCompA(); N —>|void init(ConcreteContextl c);
t ConcreteCompB ConcreteCompB(); ~ void init(ConcreteContext2 c);
ConcreteContext2 ConcreteContext2(); ~ 7
N - 7/
N\ 7~ — ConcreteCompB
ConcreteContext2 / void init(ConcreteContext2 c);
ConcreteCompA compA; V2
ConcreteCompC compC;
T — ConcreteCompC
ConcreteCompA ConcreteCompA(); fF— — — — — — —>
ConcreteCompC ConcreteCompC(); void init(ConcreteContext2 c);
if (compA == null) {
conpA = new Concr et eConpA() ;

L conpA.init(this);
}
return conpA;

Concr et eConpB conpB = new Concr et eConpB() ;
L1 c.init(ConcreteContext2());
return conpB;

_Eurn new Concr et eCont ext 2(thi s);

Fig. 2. Structure of the architectural pattern Context-Component

An important design decision in the pattern above is the separation of com-
ponent creation and component initialization. This separation is important to

break cycles in the dependency-graph of the components. Let’s look at the sce-
nario of figure 2. By using our symbolic notation we get the following diagram:

71

ConcreteContext 1
ConcreteComp A

A4

ConcreteComp B

| ConcreteComp A | | ConcreteComp C |

ConcreteContext 2

Figure 2 shows the implementations of the factory methods of context Con-
creteContextl. For singletons like ConcreteCompA it is important that the object
is first created and then initialized in a second step. Otherwise instantiation of
mutually dependent components would cause an endless loop in which alter-
nately new components are created permanently.

5.3 Consequences

The Context-Component pattern is a composite architectural design pattern.
Contexts are a combination of an AbstractFactory [13] and an ObjectServer.
They support hierarchical organizations of complex systems. Contexts offer a
uniform and extensible way to configure systems. Since the components of a
system are defined explicitly and centrally within a context class, the context
hierarchy can also be seen as a formal specification of a system architecture.

The Context-Component pattern decouples system composition and imple-
mentation of components. This enables a much more flexible reuse of components
in different contexts. Only an adaptor in form of a new init method is necessary
to embed a component in a different context.?

Furthermore, with the Context-Component pattern it is possible to exchange
and add new components to a system without the need for any source code mod-
ifications of existing components or contexts. Extended systems evolve out of ex-
isting ones simply by subclassing. Figure 3 shows the principle by extending the
system of Figure 2. The system gets extended by a new top-level component Con-
creteCompD. This is done by extending the top-level context ConcreteContextl.
In addition, the component ConcreteCompC gets replaced by the new component
ConcreteCompC' in the local context ConcreteContext2 of component Concrete-
CompB. Figure 3 highlights new classes with a gray background. In our symbolic
notation the scenario looks like this:

ConcreteContextl

\M‘ ConcreteCompA ConcreteContextl'
A 4

ConcreteCompB
ConcreteContext2

—I ConcreteCompA I-I ConcreteCompC I_ConcreteCmIeth'

Again, new components or contexts are displayed in gray. Components with
a gray shadow have been extended (subclassed). This example shows that ex-
tending or modifying a system does not entail any source code modifications
of existing classes. Therefore extending a system does not destroy the original
version. Both systems can still be used separately.

2 See component ConcreteCompA from Figure 2; this component is used in two different
contexts.

72

Context Component

Context parent; Context context;
void init(Context c);
A
ConcreteContextl
ConcreteCompA compA; ConcreteCompA
ConcreteCompA ConcreteCompA(); N |- T — -=>| void init(ConcreteContextl c);
~ void init(ConcreteContext2 c);
ConcreteCompB ConcreteCompB(); —
ConcreteContext2 ConcreteContext2(); ~ 7
\ ~ — /s
L L el ConcreteCompB
ConcreteContext2 / void init(ConcreteContext2 c);

ConcreteCompA compA;

ConcreteCompC compC; /

] ConcreteCompC

ConcreteCompA ConcreteCompA(); — — — — — — —>> p

ConcreteCompC ConcreteCompC(); void init(ConcreteContext2 c);

A A
ConcreteContextl' ConcreteCompD
ConcreteCompD compD; N > void init(ConcreteContextl c);
ConcreteCompD ConcreteCompD();
ConcreteContext2 ConcreteContext2(); ConcreteCompC'
\ - 7 [\od init(ConcreteContext2'c);
ConcreteContext2' -
-
ConcreteCompC ConcreteCompC();

Fig. 3. Extending a system by subclassing

6 Extensible Compilers

With the techniques developed in section 3 and 5 we are now able to build ex-
tensible compilers. We base our software architecture for extensible compilers
on the classical design of a multi-pass compiler [22]. A multi-pass compiler de-
composes compilation into a number of subsequent phases. Conceptually, each
of them is transforming the program representation until target code is emitted.
Today, most compilers use a central data structure, the abstract syntax tree, for
the internal program representation. This syntax tree is initially generated by
the Parser and modified continuously in the following passes. From the software
architecture’s point of view, this design can be classified as a Repository [26].

We now apply the Context-Component design pattern. Figure 4 shows the
structure of a simple compiler. The compiler is modelled as a component of the
top-level Tools context. The compiler is a composite component, consisting of
several subcomponents that are defined in the local CompilerContext. Except for
the component ErrorHandler, these subcomponents model the different compila-
tion passes. By defining ErrorHandler as a singleton component with respect to
its context, every compiler pass accesses the same ErrorHandler object.

The implementation of this structure with the Context-Component pattern
is straightforward. We only show some interesting code fragments, starting with
the Tools class:

73

Tools

A 4

Compiler

CompilerContext

ErrorHandler

SyntacticAnalyzer ” SemanticAnalyzer || CodeGenerator |

Fig. 4. A simple compiler architecture

class Tools extends Context {

Compiler Compiler() {
Compiler ¢ = new Compiler();
c.init(CompilerContext());
return c;

}

CompilerContext CompilerContext() {
return new CompilerContext(this);

}

}

The Tools class defines the factory method for the Compiler component and
the nested CompilerContext. 3 The CompilerContext class contains the actual
configuration of the compiler. It defines the different compiler passes and a global
ErrorHandler component.

class CompilerContext extends Context {
CompilerContext(Tools encl) { super(encl); }
SyntacticAnalyzer SyntacticAnalyzer() {
SyntacticAnalyzer ¢ = new SyntacticAnalyzer();
c.init(this);
return c;
}
SemanticAnalyzer SemanticAnalyzer() { ... }
CodeGenerator CodeGenerator() { ...}
ErrorHandler ehandler = null;
ErrorHandler ErrorHandler() {
if (ehandler == null) {
ehandler = new ErrorHandler();
ehandler.init(this);
}
return ehandler;
}
}

In our compiler, we represent data like abstract syntax trees with extensible
algebraic types. Therefore, most compiler pass implementations are similar to

3 We follow the naming convention of giving factory methods the name of the type
they return.

74

the one of SemanticAnalyzer. They define a method operating on the abstract
syntax tree for performing the actual compiler pass. Pattern matching is used
to distinguish the different Tree nodes.

class SemanticAnalyzer extends Component {
ErrorHandler ehandler;
void init(CompilerContext cc) {
ehandler = cc.ErrorHandler();
}

void analyze(Tree tree) {
switch (tree) {
case Variable(String name): ...

}
}
}

Finally, we present the implementation of the main compiler component. It
accesses all its compiler passes and executes them sequentially.

class Compiler extends Component {

SyntacticAnalyzer syntactic;

SemanticAnalyzer semantic;

CodeGenerator codegen;

void init(CompilerContext cc) {
syntactic = cc.SyntacticAnalyzer();
semantic = cc.SemanticAnalyzer();
codegen = cc.CodeGenerator();

}

void compile(String file) {
Tree tree = syntactic.parse(file);
semantic.analyze(tree);
codegen.generate(tree);

}
}

Figure 5 depicts a possible extension of our compiler. We assume, the source
language was extended. Therefore we need a new syntactical and semantical
analysis. Furthermore we introduce a new compilation pass Translate that trans-
forms syntax trees of our extended language into trees of the original source
language. Since we are still able to use the original semantical analysis, we can
check our translated program again before applying the code generator we adopt
from the old compiler. This second semantical analysis might be imposed by the
translator, which does not preserve attributes like typings, determined by the
first semantical analysis. The code generator typically relies on a proper attri-
bution of the structure tree and therefore requires a second semantical analysis
after the syntax tree transformation. Extensions of the Java programming lan-
guage are usually implemented this way. Here is an implementation of the new
compiler context hierarchy:

75

Tools
NewTools

A
V
Compiler
_’mmpner P CompilerContext
ErrorHandler I'NevvCompi\erComext

¥ y /

Y
Translator I SyntacticAnalyzer |I SemanticAnalyzer || CodeGenerator |

Fig. 5. An extended compiler architecture

class NewTools extends Tools {

NewCompiler NewCompiler() {
NewCompiler ¢ = new NewCompiler();
c.init(NewCompilerContext());
return c;

}

NewCompilerContext NewCompilerContext() {
return new NewCompilerContext(this);

}
}

In the NewTools context we do not override the existing Compiler factory
method. So we are able to call both, the new and the old compiler from that
context. The NewCompilerContext class provides an extended syntactical analysis
and includes two new compiler passes.

class NewCompilerContext extends CompilerContext {
NewCompilerContext(NewTools encl) { super(encl); }
SyntacticAnalyzer SyntacticAnalyzer() {
NewSyntacticAnalyzer ¢ = new NewSyntacticAnalyzer();
c.init(this);
return c;

}

NewSemanticAnalyzer NewSemanticAnalyzer() {
NewSemanticAnalyzer ¢ = new NewSemanticAnalyzer();
c.init(this);
return c;

}

Translator Translator() {

}
}

One of the new passes is NewSemanticAnalyzer, which extends an already
existing component. Thus, our extended compiler uses both, the former semantic
analyzer which gets inherited to NewCompilerContext and the new extended pass.
Here is a possible implementation of the new semantic analyzer. It refines the
analyze function by overriding the existing analyze method.

76

class NewSemanticAnalyzer extends SemanticAnalyzer {
void analyze(Tree tree) {
switch (tree) {
case Zero: ...
case Succ(Tree tree): ...
default: super.analyze(tree);

}
}
}

Finally, we can implement our new main Compiler component accordingly.

class NewCompiler extends Compiler {
NewSemanticAnalyzer newsemantic;
Translator trans;
void init(NewCompilerContext cc) {
super.init(cc);
newsemantic = cc.NewSemanticAnalyzer();
trans = cc.Translator();

}

void compile(String file) {
Tree tree = syntactic.parse(file);
newsemantic.analyze(tree);
tree = trans.translate(tree);
semantic.analyze(tree);
codegen.generate(tree);

}
}

This example shows how flexible components and configurations (contexts)
can be extended and reused in our framework. This is due to a strict separation of
datatype definitions, component implementations and the configuration of sys-
tems. Extensible algebraic datatypes with defaults provide a mechanism for sep-
arating datatype definitions and components, whereas the Context-Component
pattern yields a separation of components from system configurations.

7 Experience

We implemented a full Java 2 compiler with the techniques introduced in this
paper [29]. Throughout the last two years, several non-trivial compiler extensions
were built by various people as part of different projects [5, 9, 25, 30, 32]. Among
the implementations is a compiler for Java with synchronous active objects,
proposed by Petitpierre [23]. Another extension introduces Biichi and Weck’s
compound types together with type aliases [2]. We added operator overloading to
the Java programming language in the style Gosling proposes [16]. Furthermore,
a domain specific extension of Java providing publish/subscribe primitives was
implemented [9].

Our extensible Java compiler JaCo [29] turned out to be a very valuable tool
to rapidly implement prototype compilers for language extensions of Java. Often,

77

people proposing extended Java dialects refrain from implementing their ideas,
since crafting a full compiler from scratch is a very time consuming task. Even
if an existing compiler is used as a basis for the implementation, maintenance
poses additional challenges. A language like Java is subject to constant changes,
requiring regular modifications of the compiler. Keeping an extended compiler
synchronized to its base compiler is usually done by comparing source code by
hand, which is error-prone and again time consuming.

Our extensible compiler does not only help to quickly implement language
extensions for Java. It also provides an infrastructure for maintaining all compiler
extensions together. During the implementation of the extensions mentioned
before, we did not have to modify the base compiler a single time. Its architecture
was open enough to support all extensions needed so far. Changes of the base
compiler were all related to minor modifications in the specification of the Java
programming language or to bugs found in the compiler. These changes can
usually be elaborated in a way that binary compatibility of Java classfiles is not
broken. As a consequence, even compilers derived from the base compiler benefit
immediately from the changes, since they inherit them. No recompilation of any
compiler extension is necessary thanks to Java’s late binding.

8 Conclusion

For experimenting with programming language extensions, extensible compil-
ers are essential to rapidly implement extended languages. We presented some
fundamental techniques to develop extensible compilers. We showed how to use
extensible algebraic datatypes with defaults in an object-oriented language to im-
plement extensible abstract syntax trees and compiler passes. These types enable
us to freely extend datatypes and operations simultaneously and independently
of each other. Even though extensible algebraic types allow to write extensible
syntax trees and compiler passes, it is the overall compiler architecture which
determines how flexible a system can be extended or reused. We proposed a
general architectural design pattern Context-Component to build extensible, hi-
erarchically structured component systems. This pattern strictly separates the
composition of systems from the definition of its components. We showed how to
use this object-oriented pattern in conjunction with extensible algebraic types
to build compilers that can be extended, modified and reused in a very flexible
manner. Extending a compiler does not require any source code modifications
of the base system. Extended compilers evolve out of existing ones simply by
subclassing. Since they share most components and system configurations with
their predecessors, our technique provides a basis for maintaining the systems to-
gether. We implemented a full Java compiler based on this technique. In the last
two years, this compiler was used in various other projects to quickly implement
new language extensions of Java.

78

Acknowledgments

Special thanks to Christoph Zenger, Michel Schinz and Oliver Reiff for numer-
ous helpful discussions. Furthermore we thank Stewart Itzstein, David Cavin,
Stephane Zermatten, Yacine Saidji and Christian Damm. They implemented
extensions of our extensible Java compiler and provided helpful feedback on the
implementation.

References

(1]

8]

[9]
[10]

[11]

A. Appel, L. Cardelli, K. Crary, K. Fisher, C. Gunter, R. Harper, X. Leroy, M. Lil-
libridge, D. B. MacQueen, J. Mitchell, G. Morrisett, J. H. Reppy, J. G. Riecke,
Z. Shao, and C. A. Stone. Principles and preliminary design for ML2000, March
1999.

M. Biichi and W. Weck. Compound types for Java. In Proceedings of OOPSLA’98,
pages 362—373, October 1998.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern—
Oriented Software Architecture : A System of Patterns. John Wiley & Sons, 1996.
L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471-522, December 1985.

D. Cavin. Synchronous Java compiler. Projet de semestre. Ecole Polytechnique
Fédérale de Lausanne, Switzerland, February 2000.

C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular
open classes and symmetric multiple dispatch for Java. Technical Report 00-06a,
Towa State University, Department of Computer Science, July 2000. To appear in
OOPSLA 2000.

W. R. Cook. Object-oriented programming versus abstract data types. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands,
May/June 1990, volume 489, pages 151-178. Springer-Verlag, New York, NY,
1991.

D. Duggan and C. Sourelis. Mixin modules. In Proceedings of the 1996 ACM
SIGPLAN International Conference on Functional Programming, pages 262-273,
Philadelphia, Pennsylvania, 24-26 May 1996.

P. Eugster, R. Guerraoui, and C. Damm. On objects and events. In Proceedings
for OOPSLA 2001, Tampa Bay, Florida, October 2001.

R. B. Findler. Modular abstract interpreters. Unpublished manuscript, Carnegie
Mellon University, June 1995.

R. B. Findler and M. Flatt. Modular object-oriented programming with units
and mixins. In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), volume 34(1), pages 94-104, 1999.

M. Flatt. Programming Languages for Reusable Software Components. PhD thesis,
Rice University, Department of Computer Science, June 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

J. Garrigue. Programming with polymorphic variants. In ML Workshop, Septem-
ber 1998.

J. Garrigue. Code reuse through polymorphic variants. In Workshop on Founda-
tions of Software Engineering, Sasaguri, Japan, November 2000.

79

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]

[27]

[28]
[29]
[30]

31]

32]

J. Gosling. The evolution of numerical computing in Java. Sun Microsystems
Laboratories. http://java.sun.com/people/jag/FP.html.

S. Krishnamurthi, M. Felleisen, and D. Friedman. Synthesizing object-oriented
and functional design to promote re-use. In Furopean Conference on Object-
Oriented Programming, pages 91-113, 1998.

T. Kiithne. The translator pattern — external functionality with homomorphic
mappings. In R. Ege, M. Singh, and B. Meyer, editors, The 23™¢ TOOLS confer-
ence USA 1997, pages 48-62. IEEE Computer Society, July 1998. 28.7-1.8, 1997,
Santa Barbara, California.

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In Symposium on Principles of Programming Languages, pages 333-343, January
1992.

M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice.
In Proc. 24th ACM Symposium on Principles of Programming Languages, pages
146-159, January 1997.

J. Palsberg and C. B. Jay. The essence of the visitor pattern. Technical Report 5,
University of Technology, Sydney, 1997.

D. Perry and A. Wolf. Foundations for the study of software architecture, 1992.
C. Petitpierre. A case for synchronous objects in compound-bound architectures.
Unpublished. Ecole Polytechnique Fédérale de Lausanne, 2000.

Y. Roudier and Y. Ichisugi. Mixin composition strategies for the modular imple-
mentation of aspect weaving — the EPP preprocessor and it’s module description
language. In Aspect Oriented Programming Workshop at ICSE’98, April 1998.
Y. Saidji. Operator overloading in java. Projet de semestre. Ecole Polytechnique
Fédérale de Lausanne, Switzerland, June 2000.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

C. Szyperski. Import is not inheritance. why we need both: Modules and classes. In
B. Krieg-Briickner, editor, ESOP ’92: jth European Symposium on Programming,
Rennes, France, Proceedings, Lecture Notes in Computer Science 582. Springer-
Verlag, February 1992.

P. Wadler et al. The expression problem. Discussion on the Java-Genericity mail-
ing list, December 1998.

M. Zenger. JaCo distribution. http://lampwww.epfl.ch/jaco/. University of
South Australia, Adelaide, November 1998.

M. Zenger. Erweiterbare Ubersetzer. Master’s thesis, University of Karlsruhe,
August 1998.

M. Zenger and M. Odersky. Extensible algebraic datatypes with defaults. In Proc.
International Conference on Functional Programming (ICFP 2001), Firenze, Italy,
September 2001.

S. Zermatten. Compound Types in Java. Projet de semestre. Ecole Polytechnique
Fédérale de Lausanne, Switzerland. http://lampwww.epfl.ch/jaco/cjava.html,
June 2000.

80

Symbiotic Reflection between an
Object-Oriented
and a Logic Programming Language

Roel Wuyts, Stéphane Ducasse

Software Composition Group
Institut fiir Informatik
Universitat Bern, Switzerland
{roel.wuyts | ducasse}@iam.unibe.ch

Abstract. Meta-programming is the act of using one system or lan-
guage to reason about another one. Reflection describes systems that
have access to and change a causally connected representation of them-
selves, hence leading to self-extensible systems. Up to now, most of the
reflective languages have been implemented in the same paradigm. In this
paper, we propose symbiotic reflection as a way to integrate a meta-pro-
gramming language with the object-oriented language it reasons about
and is implemented in. New to this approach is that any element of the
implementation language can be reasoned about and acted upon (not
only the self representation), and that both languages are of different
paradigms. Moreover, every language implementer that is faced with the
problem of allowing the base language to access the underlying meta-
language has to solve the problem of enabling entity transfer between
both worlds. We propose a uniform schema, called upping/downing, to
this problem that avoid explicit wrapping or typechecking. We illustrate
this with SOUL (the Smalltalk Open Unification Language), a logic pro-
gramming language in symbiotic reflection with the object-oriented pro-
gramming language Smalltalk. We show how SOUL does logic reasoning
directly on Smalltalk objects, and how to use this to implement type
Snooping.

The contributions of this paper are: (1) the definition of symbiotic re-
flection, (2) a schema for enabling entities transfer between multiple
paradigms, (3) examples of symbiotic reflection.

1 Introduction

In todays rapidly evolving world, development environments need to provide
sophisticated tools to inspect, navigate and manipulate software systems. More-
over, developers want design tools that are integrated in their development en-
vironment, and expect functionality to keep the design documentation and the
implementation consistent. Therefore we integrate a logic programming language
called SOUL, in the Smalltalk development environment, and use it as a meta-

programming language capable of:

81

— aiding in program understanding: as logic queries are used to interrogate and
match abstract syntax trees (AST) of the software system [22];

— help with forward and reverse engineering: we use the logic programming
language to express and extract design information (software architectures,
design patterns, UML class diagrams and programming conventions) [9, 23].

Using a declarative programming language to reason about other programs
is not new. The well known Lint and its derivatives, for example, use regular
expressions as the reasoning engine over source code [6], abstract syntax trees [17]
or derived source code information [14, 13, 15]. Other approaches use logic pro-
gramming languages to do the reasoning [10, 3, 11, 12]. However, new in our
approach is that the logic programming language is fully integrated with the
language we are reasoning about. This integration is based on a new approach
to reflective systems, we call symbiotic reflection. Symbiotic reflection not only
allows one to do pure logic reasoning, but also to:

1. inspect any kind of objects from its implementation language (Smalltalk);
2. write terms that reason about other terms;
3. alter elements of the implementation language.

Hence symbiotic reflection differs from ‘regular’ reflection because it is used
in the context of integrating a meta-programming language with the language it
is reasoning over, and because these two languages can be of different paradigms.
This contrasts with other reflective approaches, that typically use the same lan-
guages (for example, Lisp [18], CLOS [7, 1], Smalltalk [5, 16]).

1.1 Introductory Example: Scaffolding Support

In this section we give a concrete example to show the advantages of symbiotic
reflection between a logic and an object-oriented programming language. There-
fore we use SOUL (Smalltalk Open Unification Language), a logic programming
language that is implemented and integrated with the object-oriented program-
ming language Smalltalk. The example shows how to investigate all messages
send to a certain variable, and then how to generate methods for all these mes-
sages on another class. Hence it implements support for a prototype development
approach (as described by scaffolding patterns) where one starts by implement-
ing a first class, and can then use this implementation to generate the skeleton
implementation of the class cooperating with this class.

Sends. First of all we write a simple logic rule sends that relates three argu-
ments: ?c, ?rec and ?sends. It enumerates in a logic list ?sends all the messages
sent to some receiver ?rec in the context of a class ?c. It uses other rules class
and method to state that the variable ?c should be a class and that ?m should
be a method of that class. Then it uses the sendsTo rule (not shown in the im-
plementation here, as this is only a quick example) to enumerate all the sends
to the receiver ?rec in ?sends!:

! Some notes on SOUL syntax:

82

Rule sends(?c, 7rec, 7sends) if
class(7c¢),
method(?c, ?m),
sendsTo(?m, 7rec, ?sends).

We then use this rule to query the Smalltalk system. For example, we can
use this rule to find all the messages sent to a variable x in the Smalltalk class
Point:

Query sends([Point], variable(x), 7s

However, besides this use of the sends rule that gives a list of all the messages
sent to z, we can also use it to find in the class SOULVariable (the Smalltalk
class implementing variables in SOUL) all the expressions (variables, message
composition, returns. ..) that invoke the methods unify With:, and interprete::

Query sends([SOULVariable], ?r, <unifyWith:, interprete:>)

GenerateEmptyMethod. The second rule is called generateEmptyMethod,
and generates a Smalltalk method in class ?c with a given name #name (and with
an empty implementation). The rule uses an auxiliary predicate methodSource
that relates the name of a method and a string describing a method with that
name (and default arguments, if necessary), that has an empty method body.
Then we use a symbiosis term represented by [] to compile the method ?source
into the class ?c. The result of the symbiosis term is true or false, depending
whether the compilation succeeds or not:

Rule generateEmptyMethod(?c, ?name) if
emptyMethodSource(?name, ?source),
[(?class compile: ?source) = nil]

The following query creates the method abs to the class TestNumber:
Query generateEmptyMethod([TestNumber], abs)

Generating the interface.

We can then combine our two rules to generate methods for the Smalltalk
class TestNumber for all the methods that are send to the variable z in class
Point:

Query sends([Point], variable(x), ?xSends),
forall(member(?xSend, ?Sends),
generateEmptyMethod([TestNumber], ?xSend))

1. the keywords Rule , Fact and Query denotes logical rules facts and queries

2. variables start with a question mark

3. terms between square brackets contain Smalltalk code, which can be constants,
such as strings or symbols, but also complete Smalltalk expressions that reference
logic variables from the outer scope.

4. <> is the list notation

83

1.2 Example Analysis

This example first of all shows the benefits of using a logic programming language
as a meta-programming language to reason about a base language:

— logic programming languages have implicit pattern matching capabilities

that make them useful when walking an AST to find certain nodes;

— multi-way: clauses in logic programming languages describe relations be-

tween their arguments. These relations can be used in different ways, de-
pending on the arguments passed.

— powerful: it is Turing computable. We used it to express and extract design

information such as design patterns or UML class diagrams from the source
code [22, 23].

More importantly, it also demonstrates the different kinds of reasoning and

reflection available:

1.

Introspection. SOUL terms can reason about other SOUL terms (as is shown
in the query where we use SOULVariable).

. not shown in this example, but later on in the paper, is the implementation

of second-order logic predicates like findall, forall, one, calls, ... in SOUL
itself. This shows how logic predicates can change the data of the SOUL
interpreter from within SOUL itself;

. Symbiotic Introspection: we also do logic reasoning directly over Smalltalk

objects, i.e., on the meta-language itself. In the example we use Smalltalk
classes, that are then inspected to get the methods they implement. It is
important to note here that these are the Smalltalk objects themselves that
are used, and not decoupled representations;

. Symbiotic Intercession: we use the logic programming language to mod-

ify code in the implementation language. Thus, not only can we inspect
Smalltalk objects, we can also change them. For example, the generate Emp-
tyMethod rule adds methods to a class. Because the class that is passed is
the actual Smalltalk class, adding this method immediately updates the base
language.

In symbiotic reflection, as the meta-language implements the base language

and the base language can reason about and act on the meta-language, both the
base language and the meta-language can then act and reason on each other.

In the rest of this paper we describe how to obtain symbiotic reflection be-

tween two languages from different paradigms, and how it is implemented in our
logic programming language SOUL. We end the paper with some examples: a
type snooper and the definition of some second-order logic predicates.

2

Reflective Interpreters

In this section we give an overview of non-reflective interpreters, classic reflective
interpreters and symbiotic reflective interpreters, and their differences. In the

84

following sections we then discuss the implementation of a symbiotic interpreter
in general, and the particular case of our example language, SOUL.

First of all we want to establish some classic terminology. When implementing
an interpreter, the language implementing the interpreter is the meta-program-
ming language (hereafter called M), and the interpreted language is the base
language (hereafter called B). The meta-programming language interprets the
program that implements the base language. Both the meta-programming lan-
guage and the base language manipulate certain data. The difference between a
non-reflective, a reflective and a symbiotic reflective interpreter lies in the data
they manipulate.

base-language data

meta language

base language no explicit representation

data

Fig. 1. A non-reflective interpreter. The base language can only manipulate base level
information and not meta-level information.

Non reflective interpreter. A non-reflective interpreter is a program writ-
ten in the meta-programming language, that uses its own data and does not
interact with its meta-programming languageas shown in Figure 1. Thus, inter-
preting an expression in a non-reflective interpreter only requires to manipulate
base language entities at the meta-level. As the interpreter is built in the meta-
language, we have argl,...,argn € Bininterpret(argl,arg2...argn).

Reflective interpreter. Before we look at a reflective interpreter, we define
what is meant by causally connected, and by a reflective system:
Definition: causally connected A computational system is causally connected
to its domain if the computational system is linked with its domain in such way
that, if one of the two changes, this leads to an effect on the other [8].
Definition: reflective system A reflective system is a causally connected meta
system that has as base system itself [8].

85

base-language data.

meta language

base language

causally
data connected

self representation

Fig. 2. A Reflective Interpreter. The base language can access and act on its self-
representation

Definition: Reflection. Reflection is the ability of a program to manipulate as
data something representing the state of the program during its own execution.
There are two aspects of such manipulation: introspection and intercession. In-
trospection is the ability for a program to observe and therefore reason about its
own state. Intercession is the ability for a program to modify its own execution
state or alter its own interpretation or meaning. Both aspects require a mecha-
nism for encoding execution state as data; providing such an encoding is called
reification. [1]

As shown in Figure 2, a reflective interpreter can access and manipulate two
kinds of data: (1) the base level data and (2) a causally connected representation
of itself, called the self representation [19].

During the interpretation the arguments can be from both levels (but the
meta-entities have to be part of the data implementing the base-language). So
when interpreting an expression:

interpret(argy,args ...argy,)

the arguments args,...,arg, are

— base language entities treated at the meta-level,
— self-representing meta-entities.

Symbiotic reflective interpreter. A symbiotic reflective interpreter as
shown in figure 3 is a reflective interpreter that, in addition to being able to
manipulate its self-representation can also manipulate the meta-language. As the
meta-language implements the base language and the base language can reason
about and act on the meta-language, both base language and meta-language can
then act and reason on each other.

For example, in the SOUL expression:

method([Array], ?m)

86

base-language data

meta language

base language

causally
data connected

meta-data representation—-

self representation

Fig. 8. A Symbiotic Reflective Interpreter. From the base language it is now possible
to access and manipulate the base language self representation and also the meta-level
representation

the interpreter manipulates Array (a Smalltalk entity that has nothing to do
with SOUL’s implementation).
For example, in the SOUL expression:

method([SOULVariable], 7m)

the interpreter manipulates ?m, a variable term (a base language entity) and
SOULVariable (a meta-entity from SOUL’s Smalltalk implementation, part of
the self-representation).

Different meta and base languages. We stress that reflective systems
that are written in the same language are in symbiotic reflection because of
their uniformity. However, distinguishing symbiotic reflection from reflection is
mandatory when different languages are involved where the meta-language can
be modified from the base language. The next section shows how to solve the
problems that arise during the interpretation of the manipulated entities.

3 Symbiotic Reflection between Two Languages

In this section we start presenting the problems that occur when the base lan-
guage has to be able to manipulate its meta-language. Then we show how the
upping/downing schema proposes a uniform solution.

3.1 Problems with Handling Objects from Two Different Worlds

Enabling the reflection between two languages requires that entities of both
languages can be manipulated in each language. When the two languages are

87

the same, this is not a problem because all the entities share a common data
structure or, in the case of an object-oriented reflective language, a polymorphic
representation. For example, in Smalltalk, instVarAt: reflective method allows
one to access the instance variable of any object because it is defined on the
class Object.

In our case the logic programming language is implemented in the object-
oriented programming language, and represents and acts on the object-oriented
one. The logic engine is able to manipulate objects as terms and the terms
are manipulated as objects. Suppose SOUL would not use the upping/downing
schema we present further on, then lots of (implicit or explicit) type checks would
be needed to check every time whether we are using a logic term or an object.
A concrete example. In the logic programming language we might have a
unify predicate to unify two arguments. This predicate can be called in different
ways, both with objects as with terms:

Query unify(?c, foo(bar)).

Query unify(?c, [Array]).

This predicate has to be implemented somewhere in the object-oriented pro-
gramming language. So, there is some method that implements this logic uni-
fication of two arguments. However, as we see in the logic code, the arguments
can be instances of the classes implementing logic terms (like ?c or foo(bar)) as
well as objects (like Array), that have nothing to do with the implementation of
the logic interpreter.

The problem is that the interfaces of these classes differ. The classes imple-
menting logic interpretation will typically know how to be unified and interpreted
logically, whereas regular objects do not. Possible solutions are:

— All methods in the logic interpretation that come in contact with logic terms
need to do an explicit typechecking and conversion in the case of a dy-
namically typed object-oriented programming language or provide several
methods with different types in the case of a statically typed object-oriented
programming language, or

— implement everything on the root class, so that objects can be used as terms
and vice versa.

Neither solutions are satisfactory. In the first one lots of different type-checks
have to be done throughout the implementation of the logic interpreter. For the
second solution we effectively have to change the implementation language and
implement the complete behaviour for the logic interpretation on the root class.

We would like to stress that such a transfer of entities between languages has
to be addressed in any language where data structures from the meta-program-
ming language can be manipulated from the base language. At the worse the
programmer has to be aware that he is manipulating implementation entities
and has to interpret or wrap them himself.

88

3.2 The Upping/Downing Schema

A unified and integrated solution is possible. In our case, it enables objects to
be manipulated as logic terms and terms as objects. To explain such a schema
we have to introduce two levels: the up level and the down level.

Up | (e\lile3|) logic term
uppi ng 4 ,
Down | evel ¢d0wn| ng
(OoP) obj ect

Fig. 4. The up-down schema allows the uniform manipulation of entities. In our con-
text, it lets Smalltalk objects be directly accessed in SOUL.

Symbiotic reflection implies that both languages play the base and the meta-
language role. The role depends on the view we have on the overall system.
From a user point of view, the logic programming language representing and
manipulating the object-oriented language acts as a meta language while the
object language acts as a base language. From the interpreter point of view, as
the logic programming language is implemented in the object-oriented one, the
object-oriented one is the meta-language and the logic programming the base.
Hence, it is not clear what we mean by ‘meta level’ or ‘base level’ in this context,
so from now on we consider two conceptual levels as shown in figure 4.

1. the down level is the level of the implementation language of the logic pro-
gramming language (the object-oriented programming language);

2. the up level is the logic programming language level being evaluated by the
down (object-oriented programming language) level.

Enabling the access and manipulation of down level structure (the object-
oriented programming language) from the up level (the logic programming lan-
guage) in a unified way is possible by following the simple transfer rule: upping a
down entity should return an upped entity and downing an upped entity should
return a down entity. Applied to SOUL, this rule reads: upping an object should
return a term and downing a term should return an object.

This is expressed by the following rules where T represents the set of terms
and O the sets of objects, wrappedAsTerm is a function that wraps its argu-
ment into a term and implementationOf is a function that returns the data
representing its argument.

up: 0 — T

— (1) z € T, up(down(x)) = x
For example in SOUL, up(implementation(?c)) =7¢

— (2) ¢ T,up(z) = wrappedAsTerm(x)
For example in SOUL, up(1) = [1] = wrappedAsTerm(1), where [1] is the
logic representation of a term wrapping the integer 1.

89

down : 0O — T

— (3) z € T,down(z) = implementationO f(x)
For example in SOUL, down(?c) = aVariableTerm, the smalltalk object of
the logic variable ?c.

— (4) z ¢ T,down(up(x)) = x
For example in SOUL, down([1]) = 1, where [1] is the logic representation
of a term wrapping the integer 1.

The transfer rules (1) and (4) are limiting the meta-level to one level. The
transfer rule (2) expresses that upping a plain object results in a wrapper that
encapsulates the object and acts a term (and so can be logically unified and
interpreted). The transfer rule (3) expresses that downing an ex-nihilo logic
term to return the object implementing that term.

The upping/downing schema presented above is analogous to that described
in the PhD dissertation of Steyaert as the core implementation mechanism for
a framework for open designed object-oriented programming languages [21].
The implementation of the object-based object-oriented programming language
Agora uses the up/down mechanism to get reflection with its object-oriented
implementation language (Smalltalk, C++ or Java) [4]. However, in the context
of this paper we use it as the cornerstone to get reflection between two languages
from different paradigms.

3.3 Using the Upping/Downing Schema

We now use the upping/downing schema to implement the interpretation in a
straightforward way without having to typechecking entities.

When we evaluate a logic expression to unify terms, we are clearly reasoning
at the logic level (the up level). Hence we conceptually think in terms of terms
and interpretation, and expect the result to be a logic result (a logic failure or
success, with an updated logic environment containing updated logic bindings).
However, the interpreter is a program in the object-oriented programming lan-
guage (the down level), so somehow this has to be mapped, taking care that
everything is interpreted at the down level.

Generally speaking, to interpret an up-level expression:

— we down all elements taking part in that expression;

— we interpret the expression at the down level, and obtain a certain down-level
result;

— we up this result.

This can be expressed the following way:
Given t a logic term and 6 a logic environment,

<t>,0={v— w,...} =up(down(t).interpreteln(down(6)))

Example 1. Let us look at the interpretation of the following SOUL expression
(See section 1.1):

90

sends([SOULVariable], variable(name), ?xSends)

This expression consists of a compound term, with three arguments. The
Smalltalk object representing this logic expression is a parse tree that consists
of an instance of class SOULCompoundTerm, that holds on to its arguments.

Interpreting the logic expression in a logic context comes down to sending
interprete: to the parse tree at the Smalltalk level (taking the logic context as
an argument). Therefore we down the parse tree and the logic context before
sending it interprete:. The result of sending interprete: is a Smalltalk object, and
an updated logic context (containing bindings for the variable ?zSends). This is
then upped to get the logic result.

Example 2. Because of the explicit upping and downing, the evaluation works
as well for objects as for terms, contrary to non-reflective systems. Let’s evaluate
the following expression:

[(?class compile: ?source) = nil]

in a logic environment 6 where variable ?class is bound to [TestNumber/, and
variable ?source is bound to ‘abs “empty method source”‘. This is depicted in

figure 5.
<[(?class compile: ?source) ~= nil]>, @

Up level 9 ={ ?class->[TestNumber], @
?source->[abs empty method source]} — — — — — > [true]

| 4

v I
Down level | [:env | ((env at: 1) compile: (env at: 2)) ~=nil] ——» true
value: (Array with: TestNumber @

@ with: abs empty method source

Fig. 5. Interpreting a symbiosis term in a logic environment 6

To interpret this expression (step 1 in the figure) we send interprete: to
the downed parse tree representing this logic expression, with as argument the
downed environment(step 2 in the figure). This results in the following Smalltalk
expression being evaluated:

TestNumber compile: ‘abs “empty method source”) = nil

This piece of Smalltalk code compiles a method in the class TestNumber.
The source describes a method called abs, that contains no statements, but just
some comment. The result of sending compile: is nil if something went wrong, or
the compiled method if everything went ok. So, the final result of the complete
expression is the Smalltalk object true if the method was successfully compiled,
and false otherwise (step 3 in the figure). This result is upped to get a result in
SOUL: a success or a failure (step 4).

91

3.4 The Symbiosis Term

Symbiotic reflection requires one base symbiotic operator that makes the bridge
between the base level and the meta-level. The SOUL language construct en-
abling symbiosis is the symbiosis term that allows one to use Smalltalk code
(parametrized by logic variables) during logic interpretation. The symbiosis term
is a logic term that wraps Smalltalk objects and message sends in the logic pro-
gramming language?. From the users point of view the symbiosis term takes the
form of writing a regular Smalltalk expression that can contain logic variables as
receivers of messages, enclosed within square brackets as shown by the examples
in section 1.1.

4 Symbiotic Reflection Examples

Throughout this paper we described concrete examples written in our symbiotic
reflective language SOUL (Smalltalk Open Unification Language). SOUL is a
logic programming language (analogous to Prolog [2, 20]) that is implemented in,
and lives in symbiosis with, the object-oriented programming language Smalltalk.
Using SOUL tools were built that use logic reasoning directly in the development
environment, while ensuring that they always work on the current version of the
source code [23].

In this section we give examples of the symbiotic reflection. We first look at
the implementation of a type snooper, and then we show some implementations
of second-order predicate.

4.1 The Type-Snooper

In SOUL we implemented a lightweight type-inferencer for instance variables,
that uses the messages send to an instance variable in the context of a class to
determine an interface that possible types must comply to. Then we find all the
classes that understand all these messages to deduce the possible types. This
basic scheme was extended taking programming conventions into account [23].

Using symbiotic reflection we now show how to integrate type snooping with
this lightweight type-inference. Type snooping uses the fact that in the Small-
talk development environment objects exist from the class we want to find types
of instance variables for. Hence, by looking at these instance variables we find
collections of existing types. The following rules use symbiotic reflection to in-
terrogate our Smalltalk development environment for such instances, and to get
their types. Then we extract the types for the instance variables we are inter-
ested in. This is yet another set of possible types, that we can integrate with the
rest of our typing rules.

2 For Prolog users: despite its name, a symbiosis term can be used both as term and
as predication.

92

Rule objectsForVar(?class, ?var, Tobjects) if
class(7class),
instVar(?class, ?var),
instVarIndex(7class, ?var, ?index),
generate(7objects,
[(?class alllnstances collect: [:c |
¢ instVarAt: ?index]) asStream]).

Rule snoopTypelnstVar(?class, ?var, ?types) if
findall(?cl,
and(objectsForVar(?class, ?var, 7o),
objectClass(?cl, ?0)),
?allTypes),
noDups(?allTypes, 7types).

Without symbiotic reflection integrating such support is not possible, be-
cause we can not reason about the elements of our base language. In symbiotic
reflection we have the objects, and can use them as such, so that we can directly
reuse them in the logic interpretation.

4.2 Second-order logic

This example shows how to write second-order logic predicates using the symbio-
sis term. Therefore we reify two concepts that are important during the evalua-
tion of a logic term: the logic repository and the logic environment that holds on
to the bindings. We chose to make these two concepts available in the symbiosis
term, under the form of two hardcoded variables: ?repository and ?bindings. The
?repository variable references the logic repository used when interpreting the
symbiosis term. The ?bindings variable holds the current set of bindings. This
simple addition makes it possible for a symbiosis term to inspect and influence
its interpretation. As an example we give the implementation of three widely
used logic predicates: assert, one and call. The assert predicate adds a new logic
clause to the current repository. The one predicate finds only the first solution
of the term passed as argument. If this first solution is found, the bindings are
updated and the predicate succeeds, otherwise the predicate fails. The call pred-
icate is analogous to the one predicate, but does not keep the results. Hence it
just needs to succeed when the argument term has at least one solution:

Rule assert(?clause) if
[?repository addClause: ?clause].

Rule one(?term) if
[| solution |
solution := (7term resultStream: ?repository) next.
solution isNil
ifTrue: [false]
ifFalse: [?bindings addAll: solution. true |

93

].

Rule call(?term) if
[(?term resultStream: ?repository) next isNil not]

Speaking in reflection terminology, the two hardcoded variables #repository
and bindings are a causally connected self-representation. Therefore the sym-
biosis term (and hence SOUL) can reason about and even alter a part of its
implementation.

5 Conclusions

In this paper we presented symbiotic reflection symbiotic reflection as a way
to integrate one language (the up-level language) with another language (the
down-level language) it reasons about and is implemented in. The benefit is
that the up-level language can not only reason about its self-representation (as
is the case with classic reflection), but on the complete down-level language.
Symbiotic reflection was illustrated concretely with the object-oriented program-
ming language SOUL, a logic programming language in symbiotic reflection with
Smalltalk:

— Introspection SOUL terms can do logic reasoning about other SOUL terms;
— Reflection SOUL predicates can change data of the SOUL interpreter from
within SOUL;

Symbiotic Introspection: SOUL can do logic reasoning about any Smalltalk
object;

Symbiotic Intercession: SOUL can do logic reasoning to modify code in the
implementation language, and this immediately impacts the implementation
language.

To show the benefits of symbiotic reflection we expressed three non-trivial
concrete examples in SOUL. We wrote logic predicates implementing second-
order logic operations in SOUL, provided prototype development support and
integrated lightweight type-inference with type snooping.

6 Acknowledgments

Thanks to everybody who contributed to this paper: the ex-colleagues from the
Programming Technology Lab (where Roel Wuyts did his phd of which this paper
is a part) and the people of the Software Composition Group. All these people
are thanked for their positive feedback while doing the research and writing this

paper.

94

References

1]

2]
3]

[4]

[5]
[6]

D.G. Bobrow, R.P. Gabriel, and J.L.. White. Clos in context — the shape of the
design. In Object-Oriented Programming : the CLOS perspective, pages 29-61.
MIT Press, 1993.

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, Berlin,
1981.

Roger F. Crew. Astlog: A language for examining abstract syntax trees. In
Proceedings of the USENIX Conference on Domain-Specific Languages, 1997.
Wolfgang De Meuter. Agora: The story of the simplest mop in the world - or - the
scheme of object-orientation. In Prototype-based Programming. Springer Verlag,
1998.

Brian Foote and Ralph E. Johnson. Reflective facilities in smalltalk-80. In OOP-
SLA 89 Proceedings, pages 327-335, 1989.

S. C. Johnson. Lint, a C program checker. Computing Science TR, 65, December
1977.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, 1991.

Patty Maes. Computational Reflection. PhD thesis, Dept. of Computer Science,
Al-Lab, Vrije Universiteit Brussel, Belgium, 1987.

K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying software architec-
tures using virtual software classifications. In Proceedings of TOOLS-Europe 99,
pages 3345, June 1999.

Scott Meyers, Carolyn K. Duby, and Steven P. Reiss. Constraining the structure
and style of object-oriented programs. Technical Report CS-93-12, Department
of Computer Science, Brown University, Box 1910, Providence, RI 02912, April
1993.

Naftaly H. Minsky. Law-governed regularities in object systems, part 1: An ab-
stract model. Theory and Practice of Object Systems, 2(4):283-301, 1996.
Naftaly H. Minsky and Partha Pratim Pal. Law-governed regularities in object
systems, part 2: A concrete implementation. Theory and Practice of Object Sys-
tems, 3(2):87-101, 1997.

G. Murphy and D. Notkin. Lightweight source model extraction. In Proceedings of
SIGSOFT’95, Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 116-127. ACM Press, 1995.

G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the
gap between source and high-level models. In Proceedings of SIGSOFT’95, Third
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
18-28. ACM Press, 1995.

G. C. Murphy. Lightweight Structural Summarization as an Aid to Software Evo-
lution. PhD thesis, University of Washington, 1996.

Fred Rivard. Reflective Facilities in Smalltalk. Revue Informatik/Informatique,
revue des organisations suisses d’informatique. Numéro 1 Février 1996, February
1996.

D. Roberts, J. Brant, R. Johnson, and B. Opdyke. An automated refactoring
tool. In Proceedings of ICAST ’96, Chicago, IL, April 1996.

B. Smith. Reflection and semantics in lisp. In Proceedings of POPL’84, pages
23-3, 1984.

Brian C. Smith. Reflection and Semantics in a Procedural Language. PhD thesis,
MIT, 1982.

95

[20] L. Sterling and E. Shapiro. The art of Prolog. The MIT Press, Cambridge, 1988.

[21] Patrick Steyaert. Open Design of Object-Oriented Languages, A Foundation for
Specialisable Reflective Language Frameworks. PhD thesis, Vrije Universiteit Brus-
sel, 1994.

[22] R. Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings TOOLS USA’98, IEEE Computer Society Press, pages 112-124,
1998.

[23] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

96

An Environment-based Multiparadigm Language

Mario Blazevié and Zoran Budimac

Institute of Mathematics, Faculty of Science, University of Novi Sad,
Trg D. Obradoviéa 4, 21000 Novi Sad, Yugoslavia

blamario@yahoo.com, zjbQunsim.ns.ac.yu

Abstract. Object-oriented programming paradigm uses object state
and effects on the state as the primary means of computation. Func-
tional programming paradigm, on the other hand, uses evaluation of im-
mutable values and considers side-effects harmful. This paper presents
GENS, a multiparadigm language that tries to bridge this gap by har-
nessing expressive power of an abstract data type called environment.
Environments are values in the functional sense, but they are also ca-
pable of representing a state or effect. Built on this simple foundation,
GENS programs can be written in imperative or OO style and yet retain
the safety of effect-free functional programming paradigm.

1 Introduction and Related Work

GENS is a new programming language based on the Ag-calculus, an extension
of the A-calculus. It is a relatively simple language containing few constructs.
Yet, it can easily represent semantics of programming languages belonging to
different programming paradigms and their combinations.

The current implementation is in programming language Oberon-2 under the
Oberon operating system. It has been used as platform for implementation of
interpreters for the functional language ISWIM, for a declarative subset of Prolog
(a logic language), for Pascal- (a subset of the procedural language Pascal), and
for Sol, an object-oriented language.

GENS was originally conceived as a generalisation of the graph rewriting
systems. The original ”Graph reduction ENvironment System” is still a part
of the GENS project, but now it’s implemented on top of a simpler language.
GENS still retains the old name, but it doesn’t have much in common with
graph reduction any more. Some other languages based on graph rewriting are
Clean [9], LEAN (Clean’s predecessor [2]), and Dactl [11, 14].

The first version of GENS has been introduced in [3], where its compatibility
with the classical graph rewriting systems has been stressed. In [4] GENS was
extended with constructs similar to those presented in this paper. After that the
theoretical foundation has been formalized in [5].

A nice overview of the functional-logic multiparadigm languages and the mo-
tivations behind them can be found in [12]. Another, vider overview with catego-
rization of various approaches of paradigm integrations is [13], and [6] presents a

97

language called Leda that tries to integrate elements of three paradigms in one
(mostly imperative) language.

There have also been many attempts to use imperative input/output and
other constructs in a pure functional setting. One approach, applied in functional
language Haskell, can be found in [15]. On implementation of effects in the
functional language setting more has been said in [10].

The next section of the paper introduces GENS. The third section illus-
trates imperative programming in GENS. Section 4 contains examples of object-
oriented programming. The conclusion shortly discusses GENS as a program-
ming environment.

2 Definition of GENS

The constructs of GENS are name, state or environment, sequence, selection,
lambda-abstraction, and assignment. Apart from lambda-abstraction, they are
all similar to those used in imperative and OO languages.

2.1 Environment

Environment, or state, forms the basis of GENS. Its ability to represent both the
program state and the change of state makes it naturally suited for representing
imperative programming semantics. On the other hand, environment can also
be treated as a value. It can be passed as a function argument and returned as
a function result.

In this paper all environments will be denoted o. Mathematically speaking,
environment is a partial mapping from the set of all labels (names, variables) to
the set of all terms: o L — T.

Environment is a set of pairs (label, value), also called attributes, and rep-
resents a mapping from the set of labels to the set of their possible values (all
terms). This mapping can be partial. If the environment o contains the pair (I,)
we say that o defines label [, and that it assigns value ¢ to [. This kind of data
structure is often called associative array.

An example of environment is {(a, b), (b, a.b), (¢, {(a,c)})}. This environment
defines three labels: a, b and c. It assigns to label a another label b, to b the
selection a.b, and to ¢ another environment {(a,c)}.

The mathematical set notation is not very appropriate for environments, so
this notation is shortened in GENS. Pairs are written as [= ¢ instead of (I,t)
and the {} brackets are replaced with (). So this environment in GENS syntax
would be represented as (a=b,b= (a b),c= (a= ¢)).

If two environments o; and oo are given, we can define the operation of
asymmetric union upon them, written as o1 <oy. This operation is similar to set
union, but it preserves the uniqueness of the attribute labels making the result
a new partial mapping. The first environment o; has a lower priority, so all its
attributes that are in collision with the second environment oo get discarded
from the result:

0102 =09 U (0'1|D(z71)\D(U2))

98

D(o) denotes the domain set of environment o, which is the set of all names ¢
defines.

If we are given the environments o1 = (a= 1,b=2) and o3 = (b= 3,¢c= 4)
then their asymmetric union is o1 <09 = (a= 1,b= 3,¢= 4). In this case there
was no collision for the attributes a= 1 and c¢= 4, while the attribute b= 3 was
taken from o.

2.2 Selection

The simplest use for the selection operator is to extract a value that an environ-
ment assigns to a name. This is similar to the field selection operator that is a
part of every object-oriented language. Here are some examples of field selection:

(z=a,y=blx — (x=a,y="0).a
(r=a,y=b.y — (r=a,y=0)b
(z=(y=a))z — (y=a)
(z=(=a)zy—"(y=0a)a

However, selection in GENS has somewhat more general semantics. Any kind
of term can be “selected” out of environment. When the right-hand side term is
another environment, it is the selection result.

(r=a)(x=0b) - (x=0)
(x=a)(y=0) — (y=10)
(x=a).(y=b.(r=c)—=*(x=0c)

We adopt the convention that the multiple selection ¢;.ts.t3 means (¢1.t2).t3
which is the natural choice for field and method selection in object-oriented
languages too. The reduction rules for selection are:

ol —o.0(l) ifle D(o) (1)

g1.09 — 02 (2)

2.3 Abstraction

The abstraction construct is similar to the A-abstraction from A-calculus. Instead
of Mv.t in A-calculus, the GENS abstraction syntax is \{/v->t, where t is the
abstracted term and v is the placeholder variable. But the main difference is in
application of the abstraction construct. In A-calculus abstraction A\v.t is applied
to another term that replaces all free occurences of v in term ¢t. In GENS, ab-
straction \ I/v->t must be selected out of an environment o. If that environment
defines the name [, the selection is reduced to term ¢ with all free occurences of
v replaced by o(n):

99

o.(\lJuo—>1t) = o.lo)/v]t ifle D(o) (3)

Some examples follow:

(x=ay=b.\z/v—>v— (x=a,y=0b
(x=a,y=0b).\z/v—> (y=v,2=v) > (y=a,z =a)
(x=a,y=0).\z/u, y/v—> ((z=u)w) = (x =a,y =10
Multiple abstraction \ Iy /v1->\l3/ve->t can be shortened as \ Iy /vy, l3/ve-

>t in GENS. If the internal placeholder v looks the same as the external label [
it can be omitted. The examples above could also be rewritten as:

(x=a,y=0b).\z—>z— (x=a,y=0).a
(x:a,y:b).\x7> (y:x,z:x)ﬂ (y:a,z:
(z=a,y=0).\z, y=> ((z =2).y) = (z = a,y = b).((z = a).b)

2.4 Assignment

Assignment introduces eager semantics into GENS. Its syntactical representation
is [:= t, familiar from imperative languages. In order to reduce assignment,
its right-hand side term ¢ must be reduced to an environment. After that, the
resulting assignment [:= o reduces to environment (I = o).

l:==0—(l=0) (4)
o(l:=t)—l:=o0t (5)

2.5 Sequence

Sequence is another binary operator, just like selection. This construct must be
familiar to anyone who has used imperative or object-oriented languages. The
notation for the sequence of two terms t; and t in GENS is the same as in
Pascal, C or Java: t1;t3. The semantics of GENS sequence is also very similar
to imperative sequence of commands, but more general. When applied to two
environments, sequence treats them as two state changes and combines them
into one. For example:

(x=a)(@=0b) — (x=1)

(x=a);(y=0b) — (x=a,y=0)
(x=a)(y=b)i(x=c) =" (x=cy=0b)

(=W=a))z—-"(r=(y=a)y=a)

There is a similarity in operational semantics of selection and sequence, since
both evaluate from left to right. But in contrast to selection, sequence doesn’t
simply discard the left environment from its result. The reduction rules for se-
quence are:

01,09 — 01 <409 (6)
ot — o;(0.t) (7)

Selection and sequence can be combined, and in that case the following re-
duction rules are applied:

O'.(tl.tz) — (U;tl).tg
o.(t1;ta) — (0.t1); ((o3t1).12)

It’s easy to check that sequence operator is associative, so it doesn’t matter
if we read multiple sequence t1;ta;t3 as (t1;t2);t3 or t1; (t2;t3).

The sequence construct is very often applied as a function call in the form
0; l, where the environment o contains the arguments and [is the function
name. Therefore GENS syntax allows the shorthand form for it, [. For example,
the sequence (z = arg); fn can be written as fn(z = arg). There is another
notational convenience: if environment is written without the “name =" left
hand sides, the default labels 1st, 2nd, 3rd, ... are assumed. For example, the
function call fn(a, b, z = ¢) is syntactical sugar for the canonical form (1st =
a, 2nd = b, x = ¢); fn.

2.6 Primitive values

As any other programming language, GENS needs some kind of primitive, atomic
data types such as numbers and characters. Though any practical implementa-
tion must treat these primitive types specially, in theory the concept of envi-
ronment is general enough to represent these values too, extending the language
without complicating its underlying semantics. However, primitive values must
be very special environments. The domain of a primitive value is the complete
set of names L, and it maps all names to itself. In the mathematical notation,
for any primitive value « the following properties must hold:

acX
D(a)=1L
all)=a (Ve L)

The consequence is that, for any environment ¢ and atomic value «, 0 <a = «,
and therefore 0. — « and 0;a — «.

101

2.7 Failure and disjunction

Failure and disjunction fulfill a similar role in GENS as exception throws and
catches in object-oriented languages, but they are considerably simpler. Failure
is represented by the primitive value Fail. Disjunction of two terms t; and to
is represented as t1|ta. The following reduction rules describe the semantics of
disjunction:

Faillt — t (8)
olt = o if o # Fail (9)
0'.(t1|f,2) — (O'.tl)‘(O'.tQ) (10)

2.8 Initial environment

There would be no use for primitive values like numbers without their com-
parisons and operations on them. There are also other predefined operations in
GENS, and they are all part of one special built-in environment. We can denote
this environment as og. Here are some of the operations that o defines:

— Add, Sub, Mul, and Div are the functions for adding, substracting, mul-
tiplying and dividing integers. The expected arguments are the values of
names 1st and 2nd. These arguments are reduced to before the operation,
which means the functions are strict.

— FEqual, Less, Greater, LessEq, GrEq, and Different are predicates which
compare the value of name 1st with the value of name 2nd. In case the
relation is satisfied the result is name True, and otherwise the reduction
fails. These predicates can all be applied to character, numerical, and string
types, while predicates Equal and Different can be applied to all terms.

— Fit is used for pattern matching.

— FreshLabel creates a new, unused label and assigns it to label Reference.

— Env contains the user environment, which is a filesystem directory image.

— System is assigned the initial environment og: oo (System) = oyp.

Actually the domain set of o is the complete set L, which means that o(defines
all possible names. But apart from the predefined operations, every other label [
is simply assigned the environment (LastLabel =). This way LastLabel always
contains the last evaluated “undefined” label, which is necessary for constructor
expressions and pattern matching.

When a term ¢ is submitted to the GENS interpreter, it can use the built-
in operations. In order to achieve this, the term that the interpreter actually
evaluates is not ¢, but the selection (og; Env).t.

3 Multiparadigm programming in GENS

In this section several GENS programs and their equivalents in different pro-
gramming paradigms will be presented. Initial examples will illustrate factorial
function in GENS that expects its input value in the attribute labelled 1st.

102

3.1 Factorial in functional programming style

Factorial in a functional language|Factorial in GENS

Fac= \n->If(Fac= \1st/n->If(

n=0, Test= Equal(n, 0),

1, Yes= 1,

n*Fac(n-1)) No= Mul(n,Fac(Sub(n,1))))

The If operation used in this example is not a predefined one, but it can be
easily defined in the user environment as:

If= (Test.(Branch= Yes) | (Branch= No)).Branch

3.2 Factorial in imperative programming style

Factorial in Modula-2 Factorial in GENS
PROCEDURE Fac(VAR n,fn: INTEGER);|fn:= 1;
BEGIN While(
m:=1; Test= Greater(n, 0),
WHILE n>0 DO Body= (
fn:= n*fn; fn:= Mul(n,fn);
n:= n-1; n:= Sub(n,1)
END)
END Fac;)
While= If(
Yes= \ Test/t, Body/b-> (
Body;
While(
Test= t,
Body= b)
),
No= ())

3.3 Lazy imperative programming

If we drop the assignments and the eager evaluation with them, we are left with
a kind of a lazy imperative language:

Fac= (fn= 1);
While(
Test= Greater(n, 0),
Body= \ n/n, fn/fn-> (
fn= Mul(n, fn),
n= Sub(n, 1))
)

103

This method however does not make much sense in case of factorial function
which is strict anyway. But we could use it, for example, in case we have an
infinite list of primes (Erastothen’s sieve) and we want to extract the n-th prime.
First we need some lazy functions to prepare the infinite list of primes:

Primes= Sieve(Naturals(2))
Naturals= \1st/n->Cons(n, Naturals(Add(n, 1)))

Sieve= (x= Undefined,
xs= Undefined) ;
Fit(Value= Sieve(Cons(x, x8)));
\x,xs->Cons (
X,
Sieve(Filter(x, xs)))
Filter= (factor= Undefined,
x= Undefined,
xs= Undefined);
Fit(Value= Filter(factor, Cons(x, xs)));
\factor,x,xs->If(
Test= Equal (Mod(x, factor), 0),
Yes= Filter(factor, xs),
No= Cons(x, Filter(factor, xs))

)

Once we define this lazy list of primes, we can use it in any style we prefer.
We can define function NthPrime(n) that calculates the n-th prime number in
imperative style:

NthPrime= (
\1st->(
n= 1st,
list= Primes);
While(
Test= Greater(n, 1),
Body= (
list:= list.2nd;
n:= Sub(n, 1)
)
)
).list.1st

3.4 Isolation of side-effects

An interesting feature of GENS is that the imperative parts of the program,
though they do compute by side-effects, can be safely isolated from the functional

104

parts that call them. Therefore, functional parts remain pure. The procedure
NthPrime during the calculation of its result changes the value of labels n, 1list,
Test, Body, Property, and Value. But all these changes will be removed after
the calculation is done, and only its result will matter. Therefore the NthPrime
is a pure function, despite the fact it has been written in imperative style.

In fact, any computation in GENS can be used as a pure function. Here
is another example of this feature. One of the usual examples in the literature
illustrating the bad sides of the imperative languages and side effects is the
following:

Side-effects in Modula-2 Side-effects in GENS

VAR

global: INTEGER;

PROCEDURE Plus(x: INTEGER):INTEGER;|Plus= \ 1st/x-> (

BEGIN global:=Add(global,1);
global:= global+1; result:=Add(x,global)
RETURN x + global;)

END Plus; Main= (global= 0);

BEGIN Sub(

global:= 0; Plus(3).result,

WriteInt(Plus(3) - Plus(3)); Plus(3).result

END)

The two subsequent calls of the Modula-2 “function” Plus with the same
arguments return different values. This is due to the fact that the function leaves
a side-effect on the variable global.

But in GENS the final result is 0 as expected, and the final value of the label
global is not 2, but 0 as welll The explanation is that the function Main calls
procedure Plus as a function: it only selects its attribute result and discards
all its other attributes. The global effects of Plus are localized.

One example where side effects can be beneficial is graph processing. Depth-
first search becomes much easier if we are allowed to mark the nodes we have
already visited. Even a simple program counting all nodes connected to a given
graph node becomes convoluted and slow if we must keep a separate list of all
visited nodes. Here is a connected node counting program in GENS:

NodeCount= CountNodes(count= 0).count
CountNodes= \1st/node->
(visited= Fail) .node. (

visited

|

count:= Add(count, 1);

node:= (node; (visited= True));

CountListNodes (edges)

)
CountListNodes= (

105

(x= Undefined,
xs= Undefined);
Fit(Value= CountListNodes(Cons(x,xs));

\x,x8->(
CountNodes (x) ;
CountListNodes (xs)
)

|
Fit(Value= CountListNodes(Nil))
)

In this example the side-effect free function NodeCount relies on the imperative-
style procedures CountNodes and CountListNodes that increment the value of
count and mark all the visited nodes by adding the attribute visited= True to
them. After all the nodes are visited and counted, NodeCount extracts the final
value of count and discards all side-effecs.

The expected representation of directed graph is an environment that assigns
every graph node to a different label. Every node must have a property labeled
edges that contains the list of its neighbours. For example:

(
a= (edges= Cons(b, Cons(c, Nil))),
b= (edges= Cons(a, Nil)),
c= (edges= Cons(e, Nil)),
d= (edges= Comns(c, Nil)),
e= (edges= Cons(c, Cons(e, Nil)))
)

For this graph, the value of NodeCount (a) is 4, while NodeCount (c) reduces to
two.

4 Object-Based and Object-Oriented programming

Now that we have seen the imperative programming paradigm techniques applied
in GENS, we can continue on to the object-oriented programming. But first we
need records and operations on records.

4.1 Records

The easiest way to represent a record in GENS is environment. For each record
field there is one name/value pair in the corresponding environment. Record field
access can be easily simulated by selection, but the field assignment operation
is harder. The GENS assignment construct allows only a single label on its left-
hand side, something like record. field:= value is out of its reach. The solution
is to merge the new field /value pair into the record using the sequence construct:
(field:= value).(record:= (record; field)). But for the rest of this section we’ll
use the shorter form as syntactical sugar.

106

4.2 Object-based programming

The main difference between records and objects is that the objects can contain
“method slots” as well as “data slots” or fields. Since GENS can store any term
in a record using abstraction construct, even an unevaluated term, keeping a
piece of logic in an object slot is not a problem.

Calling a method is done by selecting obj.method, just the same as accessing a
field value. As long as the method only reads the object fields and returns a value,
this works perfectly. However, if the method tries to update the object it belongs
to, we encounter a problem: in order to do that we need the name the object
is assigned to. This name is called the object reference and it must be unique
for every single object in order to preserve the object identity. Therefore every
object must contain an implicit field, we’ll name it Reference, that contains
that object’s reference. For example, a two-dimensional point object could be
defined like this:

Point0123= (
Reference= Point0123,
x= 100,
y= -60,
Distance= Sqrt(Add(Sqr(x), Sqr(y))),
MoveTo= \ Reference/this, 1lst/newX, 2nd/newY->(

this.x:= newX;
this.y:= newY
)
)
4.3 Classes

The difference between the object-based and object-oriented languages is that
the latter separate objects and classes. Objects contain the state (the data slots),
and classes encapsulate the behavior (the method slots). This is what the exam-
ple above could look like if implemented that way:

Point0123= (
Reference= Point0123,
class= PointClass,
x= 100,
y= -60
)
PointClass= (
Distance= Sqrt(Add(Sqr(x), Sqr(y))),
MoveTo= \ Reference/this, 1lst/newX, 2nd/newY->(
this.x:= newX;
this.y:= newY
)

107

Now the method calls become slightly more complex, as they must be written
obj.class.method instead of obj.method. On the other hand, we may choose to
disregard the class field and write something like obj.PointClass.method ex-
plicitely applying method from the PointClass class. This would be somewhat
similar to calling non-virtual methods in C++.

4.4 Inheritance

There are two kinds of inheritance that are too often confused: type inheritance
and implementation (or code) inheritance. Since GENS is not typed, especially
not by a class-based type system, the type inheritance is not applicable. The
code inheritance, on the other hand, is very simple. Suppose we want to extend
the Point class from our example and create ColoredPoint and 3dPoint classes.
We can simply inherit all methods from the parent class, then modify them and
add the new ones:

ColoredPointClass= (
PointClass;

(
SetColor= \ Reference/this, 1st/newColor ->
this.color:= newColor

)
)
3dPointClass= (
PointClass;
(
Distance= Sqrt(Add(Sqr(x), Add(Sqr(y), Sqr(z))),
MoveTo= \ Reference/this,
1st/newX, 2nd/newY, 3rd/newZ->(
this.x:= newX;
this.y:= newY;
this.z:= newZ
)
)
)

There is no reason for single inheritance restriction, either. We could write some
mixin classes and sequence several of them to get a new class. Since inheritance is
actually method-based rather than class-based, nothing prevents us from writing
something like

SetColor= ColoredPointClass.SetColor

as part of some other class definition, hand-picking desired methods from various
classes.

108

5 Conclusion

The previous section has shown that for all its flexibility GENS needs some syn-
tactical sugar to ease the common operations like field assignment or method
call. For that purpose a specialized language G, similar in form to BNF, has been
developed. Apart from the low-level parsing operations, G is implemented com-
pletely in GENS. Its purpose is to define the syntax of a programming language
and the proper translation of programs written in that syntax to their syntax
tree. The resulting syntax tree is a GENS program semantically equivalent to
the original.

Using G, several programming languages have been implemented as inter-
preters: ISWIM, Prolog, Pascal-, and Sol. Beside them, the lambda calculus and
the “classical” graph rewriting system have been implemented as well. All im-
plemented languages can be used for specification of other languages’ semantics,
thus forming semantical hierarchy of languages rooted in GENS.

GENS doesn’t need any file input/output operations. The file system is just
the value of the label Enwv. This is achieved by treating a folder as an envi-
ronment, where the file entries are the environment attributes: The file name
translates to the attribute label, and the file contents to its value. The file ex-
tension determines the grammar that must be used to parse it.

The translation of a programming language (say P) is fully automated. When
a program written in P is demanded, it gets loaded into the system through the P
syntax definition written in G (and therefore defined in file P.G). Its translation
down the chain of languages is automatically invoked. Once created, parser for a
language P is then preserved so that every following translation is done directly.

In this way GENS has been extended to an integrated programming envi-
ronment for programming language development. Further research will be con-
centrated onto support for persistence, compiling, and other issues necessary for
development of practical programming languages.

References

[1] Ait-Kaci, H., Garrigue, J.: Label-selective lambda-calculus.
In Proceedings of the 13th International Conference on Foundations of Software
Technology and Theoretical
Computer Science, Bombay 1993.
[2] Barendregt, H., Eekelen, M. van, Glauert, J., Kennaway, J., Plasmeijer, M., Sleep,
M.:
LEAN - an Intermediate Language Based on Graph Rewriting,
Parallel Computing 9, 163-177, 1988.
[3] Blazevi¢, M., Budimac, Z.: Attributed Graph Rewriting System.
In Proc. of XII Conference on Applied Mathematics,
Subotica, Yugoslavia, 1997.
[4] Blazevi¢, M., Budimac, Z.: Reduction of Attributed Graphs.
In Proc. of ETRAN Conference (in Serbian),
Vrnjacka Banja, Yugoslavia, 1998.

109

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Blazevi¢, M., Budimac, Z., Ivanovié, M.:

Theoretical Foundations of an Environment-Based Multiparadigm Language
INFORMATICA, 2000, Vol. 11, No. 1, 3-14

Budd, T., A.: Multiparadigm programming in Leda,

Addison-Wesley 1995.

Dami, L.,: A lambda-calculus for dynamic binding,

Theoretical Computer science, Special Issue on Coordination,

Feb. 1998.

Dami, L.,;: A Comparison of Record- and Name-Calculi,

”Objects at large”, D. Tsichritzis (Ed.),

Centre Universitaire d’Informatique,

University of Geneva, July 1997.

Eekelen, M. van, Huitema, H., Nocker, E., Plasmeijer, M., Smetsers, J.:
Concurrent Clean - an Intermediate Language Based on Graph Rewriting,
Parallel Computing 9, 163-177, 1988.

Filinski, A.: Controlling Effects.

PhD thesis.

School of Computer Science, Carnegie Mellon University

Pittsburgh, 1996.

Glauert, J., Kennaway, J., Sleep, M.,

DACTL: a Computational Model and Compiler Target Language based on Graph
Reduction,

ICL Technical J 5, pp. 509-537, 1987.

Moreno Navarro, J., J.:

Expressivity of functional-logic languages and their implementation

Ng, K.W., Luk, C.K.:

A Survey of Languages Integrating Functional, Object-oriented and Logic Pro-
gramming

Department of Computer Science, The Chinese University of Hong Kong
Papadopoulos, G.:

Concurrent Object-Oriented Programming Using Term Graph Rewriting Tech-
niques,

Information and Software Technology, 1996.

Peyton Jones, S., Wadler, P.: Imperative functional programming.

In Proc. of 20th ACM Symposium on Principles of Programming Languages,
Charleston, South Carolina, January 1993.

110

Support for Functional Programming in Brew

Gerald Baumgartner, Martin Jansche, and Christopher D. Peisert

Dept. of Computer and Information Science
The Ohio State University
395 Dreese Lab., 2015 Neil Ave.
Columbus, OH 43210-1277, USA
{gb, jansche,peisert}@cis.ohio-state.edu

Abstract. Object-oriented and functional programming languages dif-
fer with respect to the types of problems that can be expressed naturally.
We argue that a programming language should provide support for both
programming styles so that the best style can be chosen for a given
problem. We present the language support for functional programming
in Brew, a successor language of Java we are currently developing. The
salient features are closure object and multimethod dispatch, together
with syntax for function types and function definitions. We demonstrate
that these features can be smoothly integrated with the object-oriented
features of the language and outline their implementation.

1 Introduction

Most mainstream object-oriented languages, including Java [9] and C++ [20],
feature classes, objects as class instances, visibility constraints, and subtyping
through a run-time dispatch on a designated receiver argument. These features
make it easy to encapsulate implementation details, to abstract over implemen-
tation types, and to refine existing data structures by adding new subclasses.

However, object-oriented languages do not provide good support for abstract-
ing over control, and single dispatch makes it difficult to define new operations
on an existing data structure. The object-oriented style of defining a method at
the root of the hierarchy and overriding it in subclasses requires classes to be
modified when adding a new method. The Visitor pattern [8] simplifies adding
new operations, but it must be anticipated when designing the class hierarchy
and it precludes further refinements of the data structure.

By contrast, statically typed functional languages, such as ML [19, 18] and
Haskell [10], make it easy to abstract over control through higher-order functions
and to define new operations on an existing data structure.

Functional languages, however, do not provide adequate support for encapsu-
lation and abstraction over implementation types and make it difficult to refine
existing data structures. Adding a new variant to an existing data type requires
all functions operating on this data type to be modified. As a consequence, ML
must treat the exception type exn specially to allow new exception constructors
to be added.

111

Many programming problems are more naturally solved in either a functional
or in an object-oriented language and may be awkward to solve in a language
from the other family. Also, the way in which data structures evolve over time,
by adding new variants or new operations, is dictated by the application. It
would be desirable if both sets of language mechanisms were provided in the
same programming language.

The need for functional language mechanisms in object-oriented languages is
demonstrated by the variety of design patterns and C++ frameworks for imple-
menting closures. The design patterns Strategy, State, and Command [8] work
around the lack of closures by encapsulating functional behavior in classes with
a single public method. Laufer designed a framework for implementing higher
order functions in C4++ [13]. The FC++ library [16, 15] builds on Laufer’s fra-
mework and implements a large part of the Haskell Standard Prelude by using
templates in C++. FACT! [23] and the Lambda Library [11] use the preprocessor
and templates to add lambda expression syntax to C++.

Because of the lack of templates, these approaches would not work for Java;
it is necessary to modify the language. On the other hand, language support is
desirable since it simplifies the syntax and provides better type-checking. The
Pizza language [21] extends Java with syntax for function types and anonymous
functions as well as templates. However their syntax for function types does not
fit well into the language and, like the C++ library approaches, they provide
no mechanism for defining functions by cases as in ML or Haskell. Also, like
functional languages, the functional subsets of these approaches do not allow
the data structure to be refined without modifications to existing code.

We are currently developing Brew as a successor language to Java. In previ-
ous research, we have analyzed object-oriented design patterns for gaining insight
into what language features would be needed in better object-oriented languages
[2]. Since the solutions of design patterns are influenced by the chosen implemen-
tation language, an analysis of the solutions indicates possible improvements to
the language. We are designing Brew based on Java syntax but with an object
model derived from this analysis of design patterns. In addition to the support
for functional programming, Brew will provide a separation of subtyping from
code reuse and a representation of classes as first-class objects.

In this paper, we present how object closures and multimethods allow sup-
port for functional programming to be included seamlessly in an object-oriented
language. The notion of multimethods presented here is from Half & Half [1],
an extension of Java (and predecessor of Brew) with retroactive abstraction and
multimethods. We do not yet provide support for parametric polymorphism,
but are planning to add it once the proposed extension of Java with generics [3]
stabilizes.

Section 2 discusses in more detail why support for functional programming
is desirable. The functional aspects of Brew’s design are discussed in Section 3.
Section 4 demonstrates the support for functional programming in Brew through
examples. Following is an outline of the implementation in Section 5, and Sec-
tion 6 provides conclusions.

112

2 DMotivation

2.1 Functions

The class construct is designed for creating multiple instances of a class that con-
tain state. Several design patterns employ classes for different purposes, though.
E.g., the Singleton pattern [8] ensures that only a single instance of a class gets
created by hiding the constructor and by letting the class maintain its own single
instance. The complexity of the Singleton pattern suggests that language sup-
port for defining a singleton object may be desirable [2]. We propose to use an
object construct of the form

object 0 implements I {
int x = 42;
int foo(int i) { ... %
}

Like instances of a class, singleton objects can be assigned to interface references
or passed to methods and can be defined by inheritance. Singleton objects can be
considered instances of class Object but do not have a class as implementation
type.

The design patterns Strategy, State, and Command [8] employ the classes for
encapsulating behavior, typically a single method without state. Again, since this
is not the intended use of the class construct, and since these design patterns are
fairly common and complex, this suggests that a language construct for defining
functions outside of classes may be desirable.

Function would also be desirable for abstracting over behavior. For example,
the higher-order function map applies a functional argument to every element of
a list and returns the list of results. Similarly, foldr applies a binary function
successively to all the elements of a list:

fun map f nil = nil
| map £ (h::t) = (£ h) :: (map f t)

fun foldr f b nil =D
| foldr £ b (h::t) = f (h, foldr £ b t)

While iterators in an object-oriented language can be used for traversing a col-
lection data structure such as a list and performing an operation on every list
element, they are not as flexible and as succinct as higher-order functions.

2.2 Closures

In addition to a function construct, it would be desirable to have static scop-
ing and a closure mechanism that allows functions to capture their statically
enclosing environment at the time the function is defined. For example, using
static scoping and the above function foldr, the cross product of two lists can
be computed as follows:

113

fun crossProduct (11, 12) =
foldr (fn (x, p) => foldr (fn (y, @) => (x, y) :: @) p 12)
(]
11

For a given x, the inner foldr starts with the list of pairs p and successively adds
the pairs (x, y) for all y in 12. The parameter q of the anonymous function is
used for accumulating the resulting list of pairs. The outer foldr starts with the
empty list and calls the inner foldr for each x in 12 to add all the pairs with
first element x to its accumulator p. It is difficult to express such algorithms as
succinctly without the use of closures and higher-order functions.

Closures also allow functions to be defined by currying functions with higher
arity. The function add below takes an integer x as argument and returns a
function that adds x to its argument. This way add3 can be defined as a unary
function that adds 3 to its argument.

fun add x =
fny=>x+y

val add3 = add 3

Finally, closures allow the definition of infinite and lazy data structures. For
example, a lazy list or stream can be defined as either the empty stream Nil
or as a stream Cons (h,f) consisting of a first element h and a function f that
computes the rest of the stream on demand:

datatype ’a Stream = Nil
| Cons of ’a * (unit -> ’a Stream)

The infinite list even of all even integers can then be defined using a helper
function evenFrom that constructs the stream:

fun evenFrom n = Cons (n, fn () => evenFrom (n + 2))

val even = evenFrom O

The elements of this stream only get constructed when trying to access them.
E.g., using the function take,

fun take (Nil, n) = nil
| take (Cons (h, t), n) =
if n = 0 then nil else h :: (take (t (), n-1))

the call take (even, 5) constructs the first five even integers and returns them
as the list [0,2,4,6,8].

A more elaborate example that uses streams to test whether two trees have
the same fringe, i.e., the same leaves in a pre-order traversal, is used as a moti-
vating example for Laufer’s C++ framework [13] and for FC++ [15].

Unlike Haskell, we do not advocate making lazy evaluation the default evalu-
ation mechanism, since it can result in unpredictable memory usage. If lazy data
structures are needed, they are straightforward to implement using closures.

114

2.3 Multimethods

Another useful feature of modern functional languages is that they allow func-
tions to be defined by an enumeration of cases. E.g., the ML definitions of map
and foldr above both contain one case for the empty list and one case for a
non-empty list. Instead of a parameter name, a parameter pattern can be speci-
fied that is matched at run time against the argument. This programming style
makes function definitions more readable and more succinct.

However, the semantics of pattern matching in ML would be undesirable for
inclusion in an object-oriented language. If multiple patterns are applicable for
matching against a given argument, ML chooses the case in textual order. E.g.,
in the factorial function

fun fac 0 = 1
| fac n = n * fac (n - 1)

both cases would be applicable if the argument 0 is passed, but the first one will
be selected. This sequential evaluation order has the disadvantage that functions
operating on a data structure must be modified when a new variant is added to
the data structure.

If the cases defining a function were disjoint and could be textually separated,
then adding a variant to a data structure would only require adding a new case
to the function definition without modifying existing code. This semantics can
be captured very well with multimethods, except that multimethods only allow
dispatching on an argument type instead of matching the argument against a
pattern.

Multimethods provide run-time dispatch on multiple arguments, which al-
lows for flexibility both in extending the type hierarchy and in extending the
operations on the type hierarchy. This simplifies designs for which the Visitor
pattern [8] was originally intended, as it allows operations on an existing type
hierarchy to be added as multimethods without changing the existing type hier-
archy.

For example, suppose we are given the following type hierarchy for arithmetic
expressions:

abstract class Exp { }
class IntLiteral extends Exp { ... }
class PlusExp extends Exp { ... }

we would like to define an evaluation function as a list of cases as follows:

int eval(IntLiteral x) { ... }
int eval(PlusExp x) {...}

When calling eval on an argument of type Exp, the appropriate case should
be selected at run time based on the dynamic type of the argument. This is in
contrast to overloading, which selects a method based on the static types of the
arguments.

115

It should be possible, to add functions, e.g., a print function, without modi-
fying the data structure. It should also be possible to add new variants to the data
structure, e.g., a class MinusExp, together with a method int eval (MinusExp)
without modifying the existing code of eval. Of course, it should be possible to
type-check multimethods statically.

This problem is known as the extensibility problem or as the expression prob-
lem [22, 6, 12, 24, 7] A more detailed description of how this problem can be
solved using multimethods can be found in [1].

The presence of both multiple dispatch and closures would allow us to add
generic traversals, such as map or fold functions, to existing type hierarchies in
a functional style.

3 Language Design

3.1 Singleton Objects

For declaring a singleton object that is not an instance of a class Brew uses an
object construct that is similar to a Java class declaration, except that the new
keyword object is used instead of class and that static constructs (including
constructors) are not permitted. If an initializer is provided (a single block in
the body of the object declaration), it is run exactly once immediately after
the object has been created. The following example is a declaration that binds
an object with members counter and count to the identifier 0. This binding
cannot be changed while the name 0 is in scope (i.e., it is implicitly final in
Java terminology):

object 0 implements Serializable {
private int counter = O;
int count() { return counter++; }

}

The object construct will be refined later in this section, but in its current form
it is already useful since it makes the implementation of the Singleton pattern
trivial.

3.2 Functions

We use syntax for function types that follows the C-family convention of putting
the result type in front of a parenthesized list of argument types. Here are two
example types:

int (float) // 1
int (float) (int, int) // 2

On the first line is the type of a function with a parameter of type float that
returns a result of type int. The second example is the type of a higher-order
function that takes two int arguments and returns a function from float to
int. This is the reverse of the notation used in the ML-family, where the types
in this example would be written as follows:

116

float -> int (x 1 %)
(int * int) -> float -> int (*x 2 %)

Function types are treated like interface types, where each interface defines a
method named with the keyword apply — analogous to operator () in C++—
of the appropriate type. The types shown above are equivalent to the following
explicit interface declarations:

interface int(float) { int apply(float); } // 1
interface int(float) (int) { int(float) apply(int, int); } // 2

The converse is true, too: an object implementing any interface containing a
method called apply can be assigned to a variable of the corresponding function
type. This allows programmers to declare type synonyms:

interface StringOp extends String(String) {}

A variable of a function type can be assigned either (i) a static method
qualified by the name of the class or singleton object that contains it; or (ii) the
partial application of a non-static method to an object (passed to the implicit
this argument of that method); or — the most general case — (iii) a singleton
object or class instance that implements the function type:

int (float) f = Math.round; // (1)
char (int) g = "Hello, world!".charAt; // (ii)
String () h = anObject.toString; // (i1)

object 0 implements int(float) {
int apply(float x) {
return Math.round(x);

}
}
f = 0.apply; // (1)
£ =20; // (iii)

We introduce syntactic sugar to make case (iii) more palatable. Brew provides
the programmer with the illusion that all functions are objects of an appropriate
interface type (though the compiler may choose to represent them differently as
we will discuss in Section 5). The declaration of object 0 in the last example
can be written equivalently as

int 0(float x) {
return Math.round(x);

}
An anonymous function (lambda abstraction) simply omits the function name:

int (float x) { return Math.round(x); }

117

Higher-order functions, especially operations on homogeneous collections, in
a statically typed functional language usually go together with a powerful type
system that at the very least allows for parametric polymorphism. So far, we did
not include genericity in our design, but we are planning to adopt the proposed
genericity model for Java [3] once it stabilizes and to extend it to our function
syntax.

3.3 Closures

For providing closures, we simply allow objects to be arbitrarily nested and let
them capture their lexically enclosing environment. For example, if an object is
defined inside a method and returned by the method, the object still has access
to the local variables and the parameters of the method after the method re-
turns. Unlike with inner classes in Java, we also allow objects to access non-local
variables of a built-in type. Because functions are treated as objects, function
closures are simply a special case of object closures.

As a simple example, consider currying of addition. The following code uses
syntactic sugar for functions, including an anonymous function:

int(int) add(int x) {
return
int (int y) { return x+y; 1}; // anonymous function
}
int answer = add(11)(31);

Recall that this is equivalent to the following piece of code, which uses object
syntax instead of function syntax and introduces a type synonym:

interface Adder {
int apply(int y);
}

object add {
Adder apply(int x) {
object addx implements Adder { // object closure
public int apply(int y) {
return x+y; // capture non-local x
}
}

return addx;

}
int answer = add.apply(11).apply(31);

3.4 Multiple dispatch

An abstract method in a base class provides a uniform interface to all concrete
implementations in derived classes. For run-time dispatch based on additional

118

arguments we need a similar notion in order to provide a single entry-point
that then dispatches through to the appropriate special case. This is commonly
referred to as the generic function, which is implemented by one or more mul-
timethods. A generic function is declared via a function header modified by the
keyword generic. Its multimethods must share its name and provide implemen-
tations for all possible combinations of arguments passed to the generic function.
At run time, dispatch proceeds in two steps: single-argument dispatch on the des-
ignated receiver argument is carried out first, followed by symmetric dispatch on
the remaining arguments, which selects the most specific multimethod for the
run-time types of the arguments.

As an example, consider the following class hierarchy for implementing lists.
Since we do not yet have support for templates, list elements pointed to by the
heads of Cons nodes are declared to be of type Object.

abstract class List {}

class Nil extends List {}

class Cons extends List {
private Object hd;
private List tl;
Cons(Object h, List t) { hd
Object getHd() { return hd;
List getTl() { return tl;

- Yl

}

Multimethods allow us to define functions operating on this data structure in a
similar style as in a functional language.

object ListOps {
generic List append(List, List); // generic function
List append(Nil 11, List 12) { // first multimethod
return 12;
}
List append(Cons 11, List 12) { // second multimethod
return new Cons(l1l.getHd(), append(1l1l.getT1(), 12));
}
}

For guaranteeing run-time type safety, the compiler must ensure that for
any combination of arguments of the generic function there is exactly one most-
specific applicable multimethod. For allowing this type-check to be performed
statically, previous approaches to multimethods restricted the parameter types
of generic functions to be class types [5, 17].

However, since function types are interface types, we need to allow interface
types as parameter types of generic functions and of multimethods so that higher-
order functions can be defined by cases. For avoiding a global type-check we need
to introduce constraints on the visibility of these types (for details see [1]). A
sufficient, but slightly too restrictive, condition is to demand that no interface

119

type that appears as parameter type of a generic function or a multimethod can
be public. A non-public interface type is visible only within its package, hence
the set of its subtypes can be determined by package-level program analysis,
which, depending on the compilation model, can happen at compile time or at
link-time.

What this effectively means is that non-public interface types are enumerated
types, much like ML datatypes. This has been used in the above example, which
does not contain a multimethod to deal with the case where the first argument
has run-time type List, but is neither a subtype of Nil nor of Cons, because List
is partitioned into Nil and Cons and cannot be extended outside its package.

4 Further Examples

4.1 Higher-Order Functions

Suppose we implemented lists as a class hierarchy with an abstract superclass
List and two subclasses Cons and Nil as above.

Using the proposed syntax for function types and function definitions it is
straightforward to define the higher-order functions map and foldr as multi-
methods on the List hierarchy.

generic List map(Object(Object), List);
List map(Object(Object) f, Nil 1) { return 1; }
List map(Object(Object) £, Cons 1) {

return new Cons(f(1l.getHd()), map(f, 1.getT1()));
}

generic Object foldr(Object(Object, Object), Object, List);

Object foldr(Object(Object, Object) f, Object b, Nil 1) {
return b;

}

Object foldr(Object(Object, Object) f, Object b, Cons 1) {
return f(1l.getHd(), foldr(f, b, 1.getT1()));

}

Using foldr, our syntax for anonymous functions, and static scoping, the
crossProduct function can be defined as follows:

List crossProduct(List 11, List 12) {

return
foldr(List (Object x, List p) {
return
foldr(List (Object y, List q) {
return
new Cons(new Pair(x,y), q);
}, p, 12);

¥, new Nil(), 11);

120

4.2 Internal Iterators

Since any object with an apply method can be used as a function, we can
write accumulator objects that maintain state across function calls. For exam-
ple, given an integer list class IntList with an internal iterator method void
foreach(void(int)), we can sum the elements of the list by passing the fol-
lowing object add as argument to foreach:

IntList il;
object add implements void(int) {
private int total = O;
public void apply(int x) { total += x; }
public int getTotal() { return total; }
}
il.foreach(add);
int sum = add.getTotal();

In the absence of templates and, therefore, parametric polymorphic higher-
order functions, such internal iterators can be used for type-safe iteration over
the elements of a collection class.

4.3 The Expression Problem
Suppose we are given the following class hierarchy for arithmetic expressions:

abstract class Exp { }
class IntLiteral extends Exp {
int value;

// etc.
}
class PlusExp extends Exp {
Exp left;
Exp right;
// etc.
}

It is straightforward to add operations on the data structure without mod-
ifications to existing code by defining these operations as multimethods. For
example, we might add a function for evaluating expression trees:

object Evaluator {
generic int eval(Exp x);
int eval(IntLiteral x) {
return x.value;
}
int eval(PlusExp x) {
return eval(x.left) + eval(x.right);

}

121

If later we extend the data structure by adding a new subclass

class MinusExp extends Exp {
Exp left;
Exp right;
// etc.

}

we do not need to modify the existing operations on the data structure. We can
simply extend these operations through inheritance:

object ExtendedEvaluator extends Evaluator {
int eval(MinusExp x) {
return eval(x.left) - eval(x.right);

3

5 Implementation

Work on the implementation of a Brew compiler is in progress. The compilation
process can best be conceptualized as a translation of Brew into Java. This
idea is borrowed from Pizza [21], and in fact Pizza’s approach for implementing
function closures will be extended to object closures.

For the object construct the compiler constructs a Java class with an ap-
propriately mangled name and ensures that exactly one instance of that class is
created. For closure objects that have access to the local variables of the lexically
surrounding method, the compiler creates an additional field in the object for
each method variable that the object accesses.

If the object does not access any variables in the enclosing method, it can
be allocated outside the method. Under the same conditions a nested function
is translated to a Java method, which is more efficient if the function is never
assigned to a variable of function type.

In case a method or a Brew function represented as a method is assigned to a
variable of function type (or if assignment conversion from a method to a function
type is required in function calls, returns, or casts), the method must first be
wrapped by an adapter object. This is similar to the generation of wrappers
for implementing structural subtyping [14]. For example, the following piece of
Brew code

int (float) f = Math.round;
is, conceptually, first transformed into

object _o42 implements int(float) {
public int apply(float x) { return Math.round(x); }

}
int (float) f = _o42;

122

and ends up in Java as

interface brew_funtype_17 {
int apply(float x);
}
class brew_obj_o42 implements brew_funtype_17 {
public static instance = new brew_obj_o42;
public int apply(float x) { return Math.round(x); }
}

brew_funtype_17 f = brew_obj_o42.instance;

For implementing multiple dispatch, multimethods are translated into pro-
tected methods with a mangled name. A generic function is then translated into
an if-then-else chain that tests the argument types using instanceof and dis-
patches to one of the appropriate multimethods. The optimal if-then-else chain
is generated using the algorithm by Chambers and Chen [4]. Further details on
our multimethod implementation can be found in [1].

6 Conclusions

We have described the language support for functional programming in the pro-
gramming language Brew. We are developing Brew as a successor language of
Java. The support for functional programming, consisting of syntax for func-
tion types and function definitions, closures, and multimethods, is seamlessly
integrated with the object-oriented features of the language.

Brew’s object model is being designed based on an analysis of design pat-
terns [2] and will feature support for retroactive abstraction over existing type
hierarchies [14], a separation of subtyping from code reuse through inheritance,
closure objects, multimethods [1], and an object representation of classes. In
this paper, we have highlighted closure objects and multimethod dispatch and
have demonstrated using examples that this combination provides good sup-
port for functional programming. By adopting the proposed extension of Java
with generics [3] once it stabilizes, we will also be able to support parametric
polymorphism for functions.

References

[1] Gerald Baumgartner, Martin Jansche, and Konstantin Laufer. Half & Half: Mul-
tiple dispatch and retroactive abstraction for Java. Technical Report OSU-CIRC-
5/01-TRO8, Department of Computer and Information Sciences, The Ohio State
University, May 2001.

[2] Gerald Baumgartner, Konstantin Laufer, and Vincent F. Russo. On the inter-
action of object-oriented design patterns and programming languages. Technical
Report CSD-TR-96-020, Department of Computer Sciences, Purdue University,
February 1996.

123

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Gilad Bracha, Norman Cohen, Christian Kemper, Steve Marx, Martin Odersky,
Sven-FEric Panitz, David Stoutamire, Kresten Thorup, and Philip Wadler. Adding
generics to the Java programming language: Participant draft specification. Draft
for Public Review JSR-000014, Sun Microsystems, Inc., May 2001.

Craig Chambers and Weimin Chen. Efficient multiple and predicate dispatching.
In Proceedings of the OOPSLA ’99 Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 238—255. Association for Computing
Machinery, October 1999. ACM SIGPLAN Notices, 34(10), October 1999.
Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch for Java. In Proceedings
of the OOPSLA 00 Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 130145, Minneapolis, Minnesota, 15-19 October
2000. Association for Computing Machinery.

William R. Cook. Object-oriented programming versus abstract data types.
In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Founda-
tions of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout,
The Netherlands, May/June 1990, volume 489, pages 151-178. Springer-Verlag,
New York, NY, 1991.

Robert Bruce Findler and Matthew Flatt. Modular object-oriented program-
ming with units and mixins. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP ’98), volume 34(1), pages 94-104,
1998.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley, Reading, Massachusetts, 1995.
James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. The Java Series. Addison-Wesley, Reading, Massachusetts, 2nd edition,
2000.

Paul Hudak (ed.), Simon Peyton Jones (ed.), Philip Wadler (ed.), Brian Boutel,
Jon Fairbairn, Joseph Fasel, Marfa M. Guzméan, Kevin Hammond, John Hughes,
Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peter-
son. Report on the programming language Haskell: A non-strict, purely functional
language, version 1.2. ACM SIGPLAN Notices, 27(5):Section R, May 1992.
Jaakko Jarvi and Gary Powell. The Lambda Library: Lambda abstraction in
C++. TUCS Technical Report No. 378, Turku Center for Computer Science,
University of Turku, Turku, Finnland, November 2000.

Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman. Synthesizing
object-oriented and functional design to promote re-use. In ECOOP, pages 91—
113, 1998.

Konstantin Laufer. A framework for higher-order functions in C++. In Pro-
ceedings of the USENIX Conference on Object-Oriented Technologies (COOTS),
pages 103-116, Monterey, California, 26-29 June 1995. USENIX Association.
Konstantin Laufer, Gerald Baumgartner, and Vincent F. Russo. Safe structural
conformance for Java. Computer Journal, 43, 2001. In press.

Brian McNamara and Yannis Smaragdakis. Functional programmming in C++.
In Proceedings of the International Conference on Functional Programming, pages
118-129, Montreal, Canada, 18-21 September 2000. Association for Computing
Machinery.

Brian McNamara and Yannis Smaragdakis. Functional programming in C++
using the FC++ library. ACM SIGPLAN Notices, 36(4):25-30, April 2001.

124

[17]

18]
[19]

[20]

23]

[24]

Todd D. Millstein and Craig Chambers. Modular statically typed multimethods.
In Proceedings of the 1999 European Conference for Object-Oriented Programming
(ECOOP ’99), volume 1628 of Lecture Notes in Computer Science, pages 279-303,
Lisbon, Portugal, 14-18 June 1999. Springer-Verlag.

Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press,
Cambridge, Massachusetts, 1991.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
The MIT Press, Cambridge, Massachusetts, 1990.

National Committee for Information Technology Standards. International Stan-
dard 14882 — Programming Language C++. American National Standards In-
stitute, 1998.

Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into prac-
tice. In Conference Record of POPL ’97: The 24th ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, pages 146-159, Paris,
France, 15-17 January 1997. Association for Computing Machinery.

J. Reynolds. User-defined types and procedural data structures as complementary
approaches to data abstraction. In Stephen A. Schuman, editor, New Directions
in Algorithmic Languages, pages 157—168. Institut de Recherche d’Informatique
et d’Automatique, Le Chesnay, France, 1975.

Jorg Striegnitz. FACT! — Multiparadigm programming with C++.
http://www.kfa-juelich.de/zam/FACT /start/.

Philip Wadler. The expression problem. Posted to the Java-Genericity Mailing
List, 12 November 1999.

125

Extended Object-Oriented Programming in Cxx

Bing Swen (Bin Sun)

Department of Computer Science & Technology
Peking University, Beijing 100871, China
bswen@icl.pku.edu.cn

Abstract. This paper discusses a new programming paradigm called
extended OOP (XOOP) in the context of Cxx, a programming language
that is designed to support the paradigm. The paper presents the XOOP
model of Cxx, as well as the explanation for Cxx’s XOOP fulfillment,
with the emphasis on how it complements the classical OOP model by
addressing some typical problems that may cause substantial difficulties
to existing OO technology. The paper consists of an overview of XOO’s
basic ideas, and the discussions of Cxx language design, the inductive de-
velopment approach, micro-kernel language structure, and a few typical
implementation issues.

1 Introduction

After several decades of development object-oriented technology of software con-
struction now becomes one of the most popular paradigms of the industry. Vari-
ous techniques based on the OO paradigm tend to be mature and self-sufficient,
and most application domains and platforms now have their standard OO anal-
ysis and design methods, as well as programming languages. For example, the
standardization process of C++4, one of the most important OOPLs in the in-
dustry, has been finished [C++ 98]. Besides the facilities of the classical OOP
(encapsulation, inheritance and dynamic binding), C++ further supports most
of the methods required by modern large-scale software construction (templates,
exceptions, namespaces and runtime types). With its consistent style of general-
purpose systems programming, its language stability and its powerful standard
libraries, the standardized C++ will continue to be one of the mainstream pro-
gramming languages in the 21st century.

On the other hand, the completion of standardization also means the con-
summation of C++ design. Language stability becomes the primary factor in the
standard popularization. Thus C++ should not be extended for any minor or
significant technology development in a considerably long period in the future.

It is well known that the OO model supported by C++ is not the purest one;
rather, it demonstrates the advantages of appropriate support for multiple ma-
jor programming paradigms. One may say that the success of C++ owes much
to that its designers considered more practical constraints besides theoretical
requirements, such as the emphasis on runtime efficiency, multi-paradigm pro-
gramming (C compatibility) and so on. In C++, traditional techniques can still

127

have their merits, especially when combined with or directed by the OO concept
and framework.

Cxx [S 96, 98, 99], designed in late 1990s, is yet another language along the
way of providing OOP support. The aim of Cxx design is to provide XOO [S
96, 98, 99, 00b] programming support while retain full compatibility with C++.
And like C++4, Cxx is a multi-paradigm programming language: besides the
four paradigms supported by C++ — C-style, data abstraction, object-orientated
and generic programming, Cxx further supports a new programming paradigm
- XOOP.

The purpose of this paper is to present an explanation for Cxx’s XOOP
fulfillment, with the emphasis on how it complements the classical OOP by
addressing a few typical problems that may cause difficulties to the present OO
model. The following section provides an overview of XOO’s basic ideas. Section
3 discusses Cxx language design. Section 4 presents the inductive development
paradigm and section 5 micro-kernel enhancement to C++. Section 6 briefly
discusses a few typical implementation issues. At last are conclusion and future
work.

2 XOO Overview

2.1 OO Model as a Development Paradigm

The model of OO software construction [Mey 97] has been well formed for years.
One popular specification of OOP [Str 97] states that the OOP paradigm means
to:

Decide which classes you want; provide a full set of operations for each
class; make commonality explicit by using inheritance. OOP is program-
ming using inheritance.

This point of view reflects the essence of the classical OO development model,
but only partially. The OO model can be understood well from a more general
perspective.

Actually the OO model can be regarded as a special development paradigm
or pattern. One of the most important issues in software development is how to
separate inconstant parts in the systems from stable ones and so extensible sys-
tems can be built based on the stable components as frameworks. Theoretically,
this problem is solvable, with its basis being a fundamental factor: under certain
conditions, there is a recognizable interface (a separation or abstraction layer) in
any system, which separates the changeable parts from the unchangeable ones
under the conditions. In practice, each separation or abstraction method serves
as a development pattern or paradigm. And the process of software develop-
ment is the process of discovering and using those separation methods. The key
idea of OO — separating interfaces from implementations, is a typical develop-
ment paradigm: it requires that stable system frameworks should be built with
base classes being the interfaces, and with inheritance + dynamic binding being

128

the support for system extensions and new functionality implementations. This
is, of course, the most important and successful development paradigm so far.
However, it is not always the best choice under every circumstance or for any
local part of a complex system. Various small, specialized or domain-dependent
paradigms can also be valuable. Actually, the theoretical basis required by devel-
opment paradigms — ” There is an interface for separation/abstraction”, is more
common and general than that of OO technology — ”There is a relationship of
inheritance and dynamic binding”. Moreover, new paradigms will continuously
appear and complement existing ones.

2.2 Evolution of Programming Paradigms

The well-known evolution process of programming paradigms from structured
method to OOP is illustrated as the first two steps in the following (for purposes
of the paper, the functional and generic programming [Mus 98] paradigms are
omitted):

Structured

,,,,,,,,,,,, > Programming T’ ADT T’ OOP T’ XOOP |>

A) (B) ©

(A) encapsulation (data structures + operations)
(B) inheritance + polymorphism (type compatibility)
(C) induction + bi-directional derivation + generalized polymorphism

The last step shows a possible development of OOP. In late 1990s, some new
schemes beyond the classical OO model were presented and discussed. These in-
clude induction, bi-directional derivation and generalized forms of polymorphism
(virtual induction and bi-directional type compatibility)[S 98, 99, 00a], with the
initial motivation and aim to have a systematic consideration and treatment of
the problems of reverse propagation of object features [S 96], and to combine
these mechanisms with inheritance. The result is an extended object-orientation
model, XOO (Extended Object-Orientation).

2.3 Introducing XOO

Current object model can suffer various difficulties when mapping real world ob-
ject relations, where new fundamental object relations beyond inheritance need
to be taken into account [S 00a, 00b]. Inheritance mechanism corresponds to
”one-way” derivation, and thus it is difficult, if not impossible, to deal with fea-
ture propagation in the reverse direction based on inheritance. A new approach
is necessary to take the reverse propagation of object features into a serious
consideration.

129

Briefly, a software technique (a programming language, an analysis or design
method) is of extended object-orientation if and only if it supports induction,
bi-directional derivation (BDD) and generalized polymorphism (dynamic bind-
ing based on induction and BDD), besides data abstraction, inheritance and
behavior polymorphism based on inheritance that required by OO technology.
This means that all major technologies that are referred to as object-oriented
are special cases of XOO. In other words, XOO can be compatible with present
0O systems.

2.4 Special and General XOO

According to the extent of support, XOO may further be divided into two specific
cases: the special and the general. The general form of XOO model includes
all the three new aspects above (the default case). Some systems such as Cxx
[S 99, 00b], constrained by static typing, support a limited form of XOO, or
special XOO, which includes only induction, backpatching (a complex variant
of induction) and inductive polymorphism (or virtual induction), besides the
features of traditional OO. Though constrained, this special XOO form can also
be very useful in practice.

2.5 Object model

The static object model [S 98] of XOO consists of several sets of components,
or called features. Fach object has three interfaces, and each interface gives two
component sets; therefore an object has 23 = 8 sets. This is illustrated as the
following:

Ext. Access
Interface light dual suspended
Bottom-up
: Coupling Interface
Accessible N
Top-down
Inaccessible 5 Coupling Interface

heavy dual suspended

The accessible and inaccessible component sets are called public and private
parts of the object; The upward, downward and bi-directional derivation com-
ponent sets are light, heavy and dual parts, which are accessible only to its par-
ents, children or both parents and children objects respectively; The one without
derivation characteristic suspended part, which cannot be accessed by any (up-

130

or downward) coupled objects. This object model can be formally represented
with a 2x4 matrix, with each matrix element corresponding to a component set:

iy [Cur Cyp Cyp Coo
v =) = (Cn Ciy Cy Ci0>

This representation makes it possible to establish an object transformation
and evaluation theory based on matrix operations and set theory, providing a
uniform framework for the discussion of the coupling operators of induction and
bi-directional derivation (such as their linear transformations, eigenvalues and
other properties) [S 98, 00b]. For example, the BDD coupling < - > proves to be

)\<-><p=()\::)\+Gdn<p,w::<p+éup)\),

where the matrix representations of Gdn and Gup are

0000 1000
R 0100 . 0000
Gan={0010| “»=]0010
0000 0000

2.6 Generalized Type Compatibility Rule and General Dynamic
Binding

Behavior polymorphism (or dynamic binding of object methods) is one of the
most charming parts of OO technology. XOO extends this mechanism to more
general situations, i.e., it allows us to establish runtime polymorphic relations
by induction and bi-directional derivation. As we know, the basis of OO behav-
ior polymorphism is the ”object compatibility rule”, or sometimes called "type
compatibility rule” (or ”IS-A rule”): if ¢ derives from ¢ then anything that is
true for ¢ must be true for . In the sense, we say 1 is compatible with ¢

Taking advantage of compatibility, we can manipulate a series of derived
objects through a general (abstract) base object as the common interface. This
is achieved by making the base object refer to all derived objects, and by making
the behavior that are to be manipulated be dynamically bound. This scheme
makes the construction of generic application frameworks possible, which is the
basis of OO paradigm as discussed above.

The OO ”one-way” compatibility rule needs to be extended to include more
couplings: induction and BDD. Here is the XOO type compatibility rule:

1 is compatible with ¢ if < - , or - > ¥, or pV (Y1 ...);
1 and ¢ are mutually compatible if ¥< - >¢

Where < -, - >, V, and < - > stand for ”is derived from”, ”is reversely

o

derived from”, ”induces” and ”is bi-directionally derived from” respectively. This

131

is the combination of two ”one-way” compatibility rules in the two directions
corresponding to the top-down and bottom-up propagation. The compatibility
in each direction holds only for the features propagated in the same direction,
that is, upward compatibility holds only for top-down propagated (heavy and
dual) features, and downward compatibility only for bottom-up (light and dual)
ones.

XOO supports a generalized version of polymorphism directly based on the
general compatibility rule, which is the dynamic binding in two directions, acting
on features propagated in the two directions. A feature can have polymorphism
only if it is accessed via dynamic binding. Let T ¢ :=T7 1 denote making ¢ refer
to . Assume f is a dynamically bound method (data components never need to
be accessed via dynamic binding), which is propagated in accordance with the
object compatibility, then in any expression with access to component f via ¢,

E(p~f,...),

the access ¢—f will actually be ¥—f . Here E would be a more general and
stable framework than its OO version. This illustrates the design and use of
XOO polymorphism in general.

The polymorphism programming based on induction implements a powerful
programming mechanism of retroactive abstraction, which is discussed in detail
in section 4.

2.7 Description of Object Induction

Formally, induction is the (automatic) process of finding common components
among the objects that are induced. The basic model can be expressed as

Object ¢ induces objects o, B, 7y . ..

All the induced objects are related to each other —very component of any object
is compared with that of others to test if it is a common component. When there
is no common component, the result of the induction is an empty object, that
is, an object whose component sets are all empty sets.

Based on XOO object representation, there are actually three possible modes
of induction:

1. ?”Upward” induction V T : picking out all common "light” and ”dual” com-
ponents;

2. "Downward” induction V | : picking out all common "heavy” and ”dual”
components;

3. "Bi-directional” induction Vy (or V: picking out all common components
except for the "suspended” ones. The effect of V; is equivalent to the sum
of V; and V.

132

The three induction operators can be described uniformly as the following:
Let V be any case of induction given above, and «, 3, 7, ... be any objects
induced by object v, the induction operation ¥V («, 3,7, . . .) assigns component
sets 1;; to ¢ where for any component ¢, ¢ € ¥;; iff ¢ € (ai; N BGi; Nvi; N ..,
with each V searching different component sets of the induced objects. This is
defined by

Ve,a.cNB.cNy.ch...
UV (@B,) = e

where the predicate . means that a.c is true iff @ has-a component c. For a set
of objects, induction relation can be used to construct a (partial) order.

Strong and Weak Induction
There are two specific forms of induction according to the rule of extracting
common features.

- Strong/restrictive induction: The condition for being a common com-
ponent is that: it is included by each object and has the same external and
derivation accessibility in each object. No automatic conversion of accessibility
will be performed.

- Weak/general induction: Some predefined automatic conversions of ex-
ternal or derivation accessibility are carried out when extracting common fea-
tures, which will convert the accessibility of a feature in a object to a more
restrictive case to mach a feature from other objects, so that induction can be
performed on objects with features of the same names but of different acces-
sibilities. For example, the following conversion rules may be introduced: pub-
lic Vprivate —public, heavy/light Vuspended — heavy/light, heavy/light V dual
—dual.

2.8 Backpatching

Some induction systems can further support a more complex variant of induction
— backpatching, which to some extent combines the capability of inheritance and
induction.

When the target object of an induction operation is not empty (or in Cxx’s
idiom, when new members are added to the induction class), component back-
patching arises. In this case, the target object 1 has some new components
besides those extracted from its sub-objects, and the induction operation of
1 makes all ’s components — except for those suspended — inherited by all
its sub-objects. For example, if 3¢ € ;; and ¥V (o, 5,7,...), then ¢ will be
"backpatched” into (actually, inherited by) objects «, 3,7 , besides the nor-
mal commonality summing-up. Therefore, backpatching may be regarded as a
mechanism for directly combining induction and deduction to express complex
relations that are hard to present OO model.

133

While backpatching is reasonable, unlimited backpatching is a severe problem
for mainly static-typed system (though it can be adoptable to highly polymor-
phic systems). For example, an object can be backpatched several times in a
place, and worse, be backpatched in several places. Thus, we have no way to
make sure how many components it actually has unless we know all the pos-
sible backpatching operations on it, and this is generally impossible if we need
to resolve all object components at compile time (or design phase). Therefore,
unlimited backpatching has limited use for most static binding systems.

To be efficient and predicable, the effect of backpatching needs to be lim-
ited to eliminate all the uncertainty. A practical backpatching implementation
necessarily imposes some scope rules of backpatching. The basic idea is that
backpatching is only effective within its scope, thus the different backpatching
operations on the same object can be independent and isolated. This allows us
to have a full knowledge of the backpatched objects and care nothing about any
other possible backpatching operations that they are involved.

Cxx has an even more restricted backpatching scope rule: only static members
can be backpatched. See section 5 for detail.

In summary, XOO extends the classical OO model by adding the expression
mechanisms for retroactive feature propagation. The possible benefit is being
able to directly express and constantly use such kinds of relations among ob-
jects, which extends the applicable scope of object technology. The possible cost
of XOO is predictable. With careful design, the XOO model can be integrated
into most current OO systems and processes without major changes. Especially,
virtual induction (as discussed below) can be fully compatible with most current
OO systems, avoiding recompilation of existing classes code to achieve retroac-
tive abstraction. On the other hand, BDD is suitable for dynamic systems. Unre-
stricted forms of BDD may break the integrity of static typing in some systems.
Such systems (e.g., Cxx) can support only the special form of XOO.

3 Language Design

The aim of Cxx design is to provide language facilities to directly support most
of the XOO development approaches, and at the same time retain the C++ com-
patibility. In the idiom of OO, Cxx is a sub-object of C++, which means that
the design aims and rules of C and C++ [Rit 93, Str 94] must be inherited by
Cxx, i.e., providing only the fundamental facilities of a general-purpose systems
programming language — neither too few nor too many. Any feature that is not
related to general-purpose (such as I/O routines, complex data types, file sys-
tems, persistent storage, concurrence, etc.) must be precluded from the language
and should be put into appropriate libraries® .

! This follows an understanding of the spirit of C (and its predecessor B) design: every
C operator should correspond to a single fundamental machine instruction (e.g.,
memory address operations) on a typical machine (more operators, less keywords);

134

The substantial extensions Cxx adds to C++ are the support for program-
ming using method of induction and inductive polymorphism as required by
XOO0, as well as the overall principle of encouraging the combination of induc-
tion and inheritance (i.e., deduction).

Concretely, Cxx’s new features for XOOP support include: a new object
model, heavy and suspended members, induction and backpatching, virtual
classes, virtual couplings, generalized type compatibility and polymorphism
rules, micro-kernel logic structure, user-defined controls and operators, control
overloading, user control and operator templates, balanced prefix-postfix declara-
tor syntax, pre- and post-expressions, new loop structures, new linkage speci-
fication, etc. Though radical extensions are made, simplicity and efficiency are
retained as much as possible. For example, Cxx adds only 3 new keywords to
C++ (heavy, suspended, and control).

Since C++ is already considerably complex, the complexity is always a prac-
tical issue. Most of C++’s complexity is there to deal with the even greater
complexity of the programming tasks attempted. In Cxx design, particular no-
tice is paid on this point. All the complex and powerful features (from both C++
and Cxx) are organized with a consistent style of general-purpose programming
to form a compact logic system. Actually, Cxx is designed and enhanced accord-
ing to a micro-kernel logic structure so that it would be reasonable for a single
person to master all its language constructs in a gradual way.

Roughly, all extensions of Cxx can be categorized into two parts: XOOP
support and micro-kernel enhancement. The following section provides a detailed
discussion on the first part, and section 5 a brief one on the second.

4 Development with Induction

As known from above, induction is a key concept of XOO. To know what prob-
lems are supposed to solve using induction, we here present a few typical prob-
lems that may cause substantial difficulties to most of the present OO models.
The related Cxx syntax is presented when corresponding solutions are expressed.

4.1 Interface Problems

- Common interfaces
Suppose A, B, C are three classes with at least a common method f():

class A { public: void f (); /*...*/};
class B { public: void f (); /*...*/};
class C { public: void f (); /*...*/};

and every high-level machine instruction (e.g., an OS API) to a library routine (more
libraries, less language constructs) — and only in such a manner can C be used as
”an advanced assembly language”. This may be why C was and still is so prominent
in systems programming.

135

Now the problem is: is it possible to construct a common interface I of A, B
and C without causing any changes to the existing code ofA, B and C/(including
all code using them)? Of course, I should be a dynamic binding interface for
the common methods of A, B and C'. For example, A, B and C would be three
different implementations of a classic data structure (say, a stack), and I the ”ab-
stract class” of this data structure which hides which particular implementation
would be used? .

In C++ (or Eiffel, Java, Sather, etc.), the answer is ”impossible”. The diffi-
culty originates from a fixed requirement of the traditional OO model — we need
to accomplish the design of abstract classes (such as I') in advance of developing
any implementations. This requires that the topmost abstract classes need to be
inherited by all classes in the inheritance hierarchy. In this example, we have to
redesign the classes A, B and C' as:

class I { public: void f () = 0; /*...*/}; //interface
class A : public I{ public: void f (); /*...*/};
class B : public I{ public: void f (); /*...*/};
class C : public I{ public: void f (); /*...*/};

In this way all code related to these classes are affected and need to be
recompiled. And this is the case of most OO systems.

- Congregation of heterogeneous objects

Suppose we have two class libraries in binary code (with necessary header
files, of course), with the root classes X and Y on tops of the hierarchies respec-
tively, having some common methods (e.g., X and Y would be two class libraries
of graphical objects). The problem is: can we construct a container (such as a
list or an array), which can contain objects from both hierarchies?

The answer of C++ etc. is still ”impossible”. Again we have to change the
root classes Xand Y as above and recompile the whole code of the two class
libraries, which is impossible in our example. (Or we might define a union type
of X and Y, but that would not be a polymorphic interface as desired.)

The above two problems are actually related and belong to a broad set of
problems called interface induction, which is a special form of bottom-up feature
propagation between objects. The general form of the problems is how to get
the more abstract object classes (interfaces) from existing ones. It may also be
called retroactive abstraction or late abstraction.

It follows that what we need is such a new mechanism: it automatically ex-
tracts commonality among existing object classes and generates a new (abstract)
class; it can provide dynamic binding of methods of existing classes.

2 If source code reuse is possible and preferred, this problem can be effectively solved
using the C++ template mechanism (in the spirit of Generic Programming [Mus
98]), that is, constructing the interface as the type parameter of some a generic
algorithm, which corresponds to a ”concept” behind the concrete types A, B and C.

136

In XOO idiom, this process belongs to induction. XOO provides a special
form of induction — polymorphic (or virtual) induction to construct ideal so-
lutions to this set of problems. Virtual induction is also a method of flexible
software reuse when combined with inheritance. Before presenting the induc-
tive programming mechanism, we briefly review Cxx’s object model and related
constructs.

4.2 Cxx Object Model

As a Special XOO system, Cxx does not have BDD. In most cases, the up-
ward derivation of BDD is emulated with retroactive abstraction (induction)
and backpatching. The induction of Cxx is the downward case V | and the
strong form, i.e., it does not allow any implicit conversion of feature attributes.
So the object model of Cxx is a reduced form of XOO’s, with only 4 feature sets,
i.e., (public,private) @ (heavy, suspended)T :

bli \I/
public —> (A) (D) __________
private ™ ®) ©
1 L
heavy suspended

(A) C++ public (B) C++ protected (C) C++ private (D) No C++
counterpart

A Cxx class declaration takes the form:

class X {

public heavy: //...

public suspended://. ..

private heavy:// C++ protected
private suspended:// C++ private
// for C++ compatibility:

public: //public and heavy members
private: //private suspended

b

With such explicit distinction between the accessibility inside and outside
derivation chains, we have a clear object model. The C+4 object model does

137

not make such distinction. For example, the private access control is used for
both external access and derivation, which often introduces conceptual ambigui-
ties. C++ private members correspond to Cxx private suspended members, with
private indicating no external accessibility, and suspended no derivational acces-
sibility. Furthermore, the obscure keyword protected of C++ is now redundant
and can be replaced by private heavy.

Note that the accessibility modifiers public and private are orthogonal to
heavy and suspended. This also applies to derivation: public and private at-
tributes are not affected by heavy or suspended derivation. Consistently with
C++, the default derivation is private suspended. So the following definitions
are equivalent:

class I : A, B{};
class I : private suspended A, private suspended B{};

4.3 Virtual Classes and Virtual Couplings

A virtual class is a pure type (interface). It dose not have any instance object
but, similarly to C++ abstract classes, can be used as a base class. For example,
the following two definitions are equivalent:

class Shape {public: virtual void display() = 0; };
class virtual Shape {public: void display(); };

The real usage of virtual classes is to express wirtual couplings, including vir-
tual inheritance and virtual induction. The former is a mechanism to construct
interface classes in the middle of a class hierarchy, e.g., to merge several (non-
polymorphic) classes to a polymorphic class:

class virtual Polym : public heavy NP1, public heavy NP2 {/* all = 0 */};

The later has more important use in Cxx. It extracts commonality from existing
classes and constructs polymorphic classes, and is the basis of XOOP in Cxx.
4.4 Syntax of Induction

The syntax of (non- polymorphic) induction is:

class Newl .. public heavy Subl, public heavy Sub2
{/*all common go here & need re-implementing*/};

The punctuation .. here represents an inductive relation.

Induction on only one object is possible, but usually trivial, for no common-
ality comparison will be carried out. In this case, all components (except for
suspended ones) of the sub-object are copied into the target. Single induction

138

is useful in the following tow cases: to establish a polymorphic relation between
two objects, or to ”backpatch” some features.

Generally, static induction has limited use in Cxx. In most cases, induction
should be virtual. The syntax is

class virtual VI .. public heavy Subl, public heavy Sub2
{/* all common go here and = 0 */};

The modifier virtual specifies that a polymorphic base class is defined. Run-
time polymorphism can be established based on such base classes, corresponding
to the XOO generalized type compatibility rule in Cxx. As in C++, only pointers
(including references) can have run-time polymorphic types (ordinary objects
cannot). Therefore Cxx inductive polymorphism is also restricted to pointers of
induction types.

The virtual induction syntax can be extended to some more general cases,
where the programmer can designate what member functions consist of the de-
sired commonality (as long as they have the same prototype). For example,

class virtual Z .. public heavy X, public heavy Y {
void f() .. { Xug, Yiuf }

/] or . {Xug, ...}

b

The compiler can easily redirect the call of f() to proper member functions (void
X::g() or void Y::f()).

Virtual induction is used to implement the retroactive abstraction mechanism
in the following section.

4.5 Abstraction by Induction

The interface problems in section 4.1 can now be solved with the Cxx constructs
just introduced. It is clear that the desired interface Ishould be defined as a
virtual class induced from class A, B and C :

class virtual I .. public A, public B, public C {};

Note that A, B and C may even be three nodes of any class hierarchies. And
even f() is not dynamically bound in the hierarchies, virtual induction I can be
used as a dynamic binding interface of f().

In any case, the virtual class I would be a full-function polymorphic interface
and be used the way as the following:

I*vp; AoA; BoB; C oC,
vp =& 0A; vp — > f(); //call A::f()
vp =& oB; up — > f(); //call B::f()

139

void g (I& wor) { or.f(); /*..%/ }
9(0A); //call A::f()
?5 0B); //call B::f()

The pointer vp is called virtual pointer. Virtual references, such as vr, are also
allowed. When calling a member function through a virtual pointer of reference,
the appropriate class member function will be dynamically invoked. Note that
there is no change to any existing code related to A, B and C. This provides a
desired solution to the problem.

4.6 System Extensions

Further note that I is also an ordinary abstract class. For example, we may use
it as a base class to derive new classes:

class D : public I

A/ X

class E : public 1
AR/ N
Y/

Then D, E ...can be used by any frameworks with I being one of its inter-
faces without any modification (just like the way using A, B and C'), which is,
of course, the usual OO paradigm. This shows how extensible systems can be
built based on the combination of virtual induction and (interface) inheritance.

4.7 Merging Existing Class Hierarchies

The second problem in section 4.1 can also be solved with virtual induction.
When we retroactively introduce an abstract base class to one or several existing
inheritance hierarchies, all we need to do is to define a virtual induction on the
top classes of the hierarchies. The resulting virtual class is the abstraction that
covers each hierarchy. The method is as follows:

class X { public heavy:
virtual void f (); // can even be non-virtual

class Y { public heavy:
virtual void f ();

/XK

class virtual I .. public heavy X, public

140

heavy Y { } ;
Now the list can be easily constructed and used:

I* ObjList [Size] ;

ObjList [0] = new Class-of-X; //X subclass
ObjList [0] = new Class_of-Y; //Y subclass
X [0] = > f(); // call Class_of-X::f()

X [1] = > f(O) ; // call Class_of-Y::f()

A similar example can be found in [Bau 97], where class signatures are used
to address the common interface problem. See section 4.12 for the differences
between the virtual induction and signature methods.

4.8 Access to Methods of More Specific Classes

The runtime type mechanism can be extended to virtual induction, with which
we can further call methods of more specific classes in each induced hierarchy
(e.g., output all Xrectangle objects in the array), through appropriate down
casting based on runtime type information of virtual classes:

if (X*p=dynamic_cast<XRectangle*>(ObjList[i]))
ObjList [i] — > XRectangle_specific_f ();

4.9 Other Uses of Induction

Let us further consider another example: we want to add alternative implemen-
tations of an abstract type to some existing classes implementing that type. The
technique is similar to the retroactive abstraction examples above. We need to
construct an abstract type that is the virtual induction of the existing classes
and our new implementation. Then the virtual class would be the top interface
and can be re-directed to both implementations.

To implement ”member removal” (narrowing the interfaces), we can use a
dummy class, called ”selector class”, to be a participant of the induction. The
effect is that only desired members from an implementation class is selected
to the induction class. For example, we have an implementation class C with
methods f () and g(), and define

class virtual I .. public C, public S { } ;

Whether I will have f () or g() depends on S’s members.

141

4.10 Mixing Induction and Inheritance Hierarchies

Virtual induction can also be applied on virtual classes, which leads to virtual
class hierarchies (or called subtyping hierarchies), capable of expressing sub-
typing and ideally separate from concrete class hierarchies (implementations).
Furthermore, virtual induction can even be applicable to a list of mixed classes
and virtual classes, leading to the combination of two kinds of hierarchies, with-
out any side affection on existing class code or sacrificing the efficiency and
security of strong typing. In fact, the two kinds of hierarchies are not actually
(tightly) coupled; the coupling by virtual induction is weak, and just represents
a dynamic dispatch scheme of class methods, which does not disturb the class
code.

4.11 Brief Comparison

The advantages and disadvantages of inheritance and induction are clear. The
following provides an intuitive comparison.

Inheritance has a "hard” superstratum and a ”soft” understratum: when a
member of a base class is added/removed, all its derived classes are changed
and their code needs recompilation, while all its base classes are not affected.
Therefore, inheritance is fit for ”framework-like” system architectures.

Induction, on the contrary, has a ”soft” superstratum and a ”hard” under-
stratum: any high-level abstraction does not affect the low-level implemented
subclasses, but (simultaneously) adding/removing a member of all subclasses
will change the high-level interfaces and may cause code recompilation. There-
fore, induction is fit for ”abstraction-based” system structures.

4.12 The Inductive Development Paradigm

From the above discussion we know that by virtual induction, real binary code
reuse of existing code can be achieved, as well as an extensible software construc-
tion methodology. Since virtual induction combines the strength of induction,
dynamic binding, subtyping and the ability to mix with inheritance hierarchies,
it is a powerful software technology.

The idea of using induction is far from brand-new, for it seems so natural
(though virtual induction may have a little subtleness at the first glance). It
corresponds to the thinking process from the special to the general, which is just
the reverse process of deduction (or derivation). When we think, we typically
cognize something fairly concrete. Only later do we perceive commonality among
concrete things, and find an abstraction that can cover some of them. Thus
induction is more naturally used than derivation in our cognition. Of course, we
do not use induction only; deduction is constantly in demand. And a dynamic
balance and a proper combination are naturally maintained in any practical
process.

Actually, even current OO technology implicitly supports a kind of ”weak
induction”, i.e., asking the developers to discover all of the commonality among

142

objects and to promote them into common base objects before the entire system
structure (usually a class library or class libraries) is fixed and is starting to
evolve. The problem of such process is: Finding all commonality among objects
is not trivial, especially for complex and evolving systems, and it cannot be
supported through all of the software development phases (from analysis, design
to implementation). This is because the induction mechanism is truncated out
of the model; thus there is no possibility to make a combinative and balanced
use of the power of induction and deduction (inheritance).

The induction mechanism can be explicitly promoted to a fundamental ob-
ject methodology, and a systematical use of induction for a set of problems could
shape a new software development paradigm. This paradigm can be strongly en-
couraged when the application domain has complex structure that is initially
hard to be expressed by an object hierarchy. We can start to develop the system
without necessarily having the restriction and cost that it should be designed as
part of a complex object-coupling graph. When more and more parts of the sys-
tem have been developed and significant similarity appears, proper abstractions
(such as retroactive abstraction) can be applied. The traditional OO develop-
ment paradigm of constructing extensible systems is also helpful when combined
appropriately. This process repeats through the system development and mainte-
nance periods, and we will eventually obtain object hierarchies with the strength
of both induction and deduction.

4.13 Previous work related to induction

From above discussion we know that the induction method cannot be subsumed
by C++’s abstract classes [Str 97|, Eiffeil’s deferred classes [Mey 97], Java’s
interfaces [Gos 97], or other similar constructs, since any topmost abstract class
need to be inherited by all classes in the hierarchy.

The most relevant related concepts to object induction and virtual induction
are: the supertypes of Sather [Sather]; the least-upper-bound (l.u.b) types of Ce-
cil [Cecil] and related typing systems; the signatures of GNU C++ [Bau 95, 97].
The substantial differences between these methods and induction are that induc-
tion involves the comparison and extraction of common members of subclasses;
the result of induction is the generation of new classes with those common mem-
bers, which can be used as redirection interfaces for existing classes to reuse their
implementation; induction can be combined with inheritance.

- Sather’s supertyping:

Sather allows the programmer to introduce types above existing classes. This
is introduced to define appropriate type bounds for parametrized classes. The
purpose of the type bound is to permit type checking of a parametrized class
over all possible instantiations. The type parameters can only be instantiated by
subtypes of their type bounds. Thus supertyping is a type constraint mechanism,
a facility for static typing checking. For example, we may defined a supertype
(which must be abstract) as following:

143

abstract class $ UPBOUND>INT FLT,STR is end
Then we define a bounded parametrized class (class template):
class SET { T < $ UPBOUND 1} is end

The SET class can now be instantiated using only integers, floating point
numbers and strings. Therefore, the differences between supertyping and virtual
induction are obvious: supertyping involves no commonality abstraction; super-
typing is not a method for code reuse; supertypes are not interfaces of dispatch.

- Cecil’s l.u.b types:

Cecil and related languages support type constructors forming the least upper
bound and greatest lower bound of two other types in the type lattice. Cecil uses
a pure classless (prototype-based) object model. Types in Cecil are specifications
for objects to conform. The least upper bound of two types typei| types is an
unnamed supertype of both type;and types, and a subtype of all types that are
supertypes of both typejand types. The greatest lower bound type of type; &
typeo is a subtype of both type; and types, and a supertype of all types that
are subtypes of type; and types. Least-upper-bound types are most useful in
conjunction with parameterized types.

Like supertyping, least-upper-bound types are not for abstraction and reuse.
It provides only some similar features to make abstraction on abstract types,
while the purpose of induction is to construct a dispatch interface, with which
methods of existing classes can be reused in a polymorphic way.

- GNU C++’s class signatures:

The signature mechanism tries to decouple subtyping and inheritance in C4++
and to provide the user more of the flexibility of dynamic typing. Signatures are
almost ideal for implementing retroactive abstraction and other induction uses.
Unfortunately, the implicit structural conformance (or structural subtyping, im-
plicit inference of the subtyping relations) used by signatures, which is similar
to recursive subtyping [Ama 93], causes more trouble than the advantages it
would have [GCC], and it is too loose to be good for strong typing. Structural
subtyping is a well-understood solution to the problem of subtyping relations
in some systems. However, it cannot guarantee a consistent dynamic dispatch
mechanism, which is essential to binary reuse. The conformance rules of class
signatures suffer many implicit conversions, less typing check, and extreme dif-
ficulties of any ideal implementation, especially for signature-signature pointer
assignment, which could incur redirection chains of unlimited length. Virtual
induction, by using commonality abstraction rather than implicit conformance,
retains the integrity of type system and overcomes the above obscure aspects of
class signatures.

144

4.14 Member Backpatching

The Cxx programming language that adopts a static type system has an even
more restricted backpatching scope rule. Cxx’s scheme of member backpatching
is restricted in order to retain the static type system and to avoid code recompi-
lation. The rule is that only static members can be backpatched, which can be
used as local functions and variables of class scope. The following is an example
of combinative use of virtual induction and backpatching:

class virtual IShape .. public Circle,
public Rectangle /* others...*/
{public heavy:
//backpatched methods, actually global calls
static Color GetBgcolor();
static void SetBgcolor(Color);

b
void Draw_all(vector<IShape*>& a) {
for(int i = 0;i < a.size();i++) {
ali]— >SetBgcolor(BLACK);
afi]— >draw();

5 Micro-Kernel Language Structure

Besides the above extensions of problem domain, Cxx also provides consider-
able enhancement to traditional constructs, and reorganizes them according to
a micro-kernel logic structure, as shown below.

types
pre-defined controls
user-defined operators

named subprograms { functions / procedures

There are 3 categories of facilities: types for manipulating objects, execution con-
trols, and subprograms, including procedures, functions and operators (as special
functions). The language micro-kernel only provides constructs for defining these
3 categories of facilities, and more importantly, keeps as much symmetry as pos-
sible between all corresponding predefined and user-defined facilities. It means
that syntactically the two kinds of facilities should be equal. In case of conflicts,
user-defined facilities will always take precedence, for user knows what special
context he/she is facing. Micro-kernel structure greatly improves the clarity of
the language, and reduces the complexity as well.

145

One of C++’s advantages is that it keeps the symmetry between predefined
and user-defined types so that user can use them the same way. While extending
C++’s type system to support inductive programming (as presented above),
Cxx also brings symmetry to more constructs by allowing user to define new
controls and operators.

People might fear that user controls, and especially user operators (as in ML,
Cecil, etc.), would obscure program structure. As we see below, by introducing
appropriate rules, that will not be the case in Cxx. On the contrary, they pro-
vide a good programming style — user can hide considerable local information
of control logic and implementation details into user controls and operators.
Experiences show that after a short while of adapting, Cxx user controls and
operators can be used as easily and efficiently as predefined ones.

Here are some examples of user control definition:

control when (int times){} {
if (n < 1) info(”bad loop number”);
else while(times) { do when; times—; }

void f (int 1) { when(i) { loop_action(); } }
control If (T*pl){} Or(T*p2){} Else{} {
if (pl) goto If ; if (p2) goto Or; goto Else;

The do clause means to return. The usage of goto here is quite intelligible (and
corresponds to an efficient implementation). This is one of the rare cases that
goto, retained since C, does improve control structures.

User controls may also be overloaded, and the rule is that only the first
control-id’s parameter lists take part in overloading:

control when(int times){};
control when(int t1, int t2){};
control when(char*p){};
control when{} error{};

One would like to further overload predefined controls (if, switch, for, while. . .),
just as overloading predefined operators. However, that will cause lexical com-
plexity and, in most cases, does not improve readability. Thus overloading of
predefined controls isn’t part of Cxx.

User controls can be defined as members of classes or namespaces. Again,
only the first control-id’s need to be qualified by class or namespace names. The
general idea of using controls is that they should improve the consistency of
program structure and system structure, or ”structure seamlessness” between
design and programming.

Examples of user operator declarations are:

operator void * New (Tt) {/*...*/} //operator-def

146

void * operator New (Tt, int i); //overloading
operatorT(T t1) infix (Tt2);
operator T prefic(T t1); operatorT (T tl) postfiz;
operator T mop (Tt1,Tt2, Tt3) ; //multi-operand
operatorT& (C p) like (C al, C a2); //unusual
//use:
TF(TH, Tt2, Tt3) {

Tt0 = mop t1, 12, t3;

return (10 infiz (prefiz t0)) postfix;

}
T& g (CI, C dogs, C cats) {

return I like dogs, cats; //and maybe more
}

The spirit here is still to ” Trust programmers, equally”. Corresponding Cxx rules
are: (1) all user operators have the same precedence — only higher than assign-
ment operators and lower than other predefined ones; (2) the associativity of all
user operators is the same — no associativity. This means that all programmers
defining or using user operators are equal, and so parentheses are required when
several user operators appear in the same expression. This will make program-
mers carefully read the prototype declarations of operators defined by them or
others, with the caution that they should not try to take precedence over the
others. Finally, (3) the names of user operators are limited to identifiers. This
is because Cxx should not cause any incompatibility with the lexical rules of C
and C++4. More importantly, it also ensures that user operators would not be
the source of cryptic code. This spirit helps both Cxx implementation and the
use of user operators in a simple, efficient and unambiguous way.

User controls and operators are also good candidates of templates and mem-
ber templates. User may save considerable efforts if the most commonly used
controls and operators are provided by corresponding template libraries. So Cxx
extends C++’s template syntax to these two kinds of facilities.

The syntax of C/C++ declarators is also enhanced for ease of comprehension.
Both the C++ prefix declarator operators *(” pointer to”), & (”reference to”) and
the postfix ones [|(7array of”), ()(” function with parameter list . .. returning. ..”)
can now be placed at any positions in the declarator, without the need of paren-
theses to indicate precedence. For example, f1, f2 and f3(has "balanced” oper-
ators on both sides) declared below have the same type (read in corresponding
directions): a function with an int parameter returning a reference to a const
pointer to int:

int *const & (int) f1; int f2 (int) & *const, int *const & f3 (int) ;

147

The "point of balance” of a declarator is the introduced identifier. So abstract
declarators cannot be balanced.

The strange looking for loop syntax of C/C++ is simplified, so that user
may optionally use a simpler form:

for (int i =0){ /* ... */;i++; /* ... */ break;}
Actually, the Cxx rules of for, if, etc. are:

for (for_init_statement DPre_post_erpr pi) local_statement
if (condition pre_post_exprop) local_statement
Pre_post_expr: ; pre_exTPTopt POSL_ETPT opt

pre_expr: expression on_falseqp

on_false: : expression

POSt_expr: ; eTpressionopt

Cxx pre- and post-expressions is derived from C’s for statement, and can be
used at any place where condition tests may occur, and even in the argument
list of function, operator or control call:

flint x=X; Pre(z) : R(z); Post(x));
New (Tt=asp(t) = r(t); q(t));

In this case, pre- and post-expressions resemble Eiffel’s pre- and post-conditions.
Cxx overloading rules do not take pre/post-expressions into account, so user
cannot overload functions, operators or controls based on them.

Cxx adds a few new predefined loop controls, i.e., the well-known N-+1/2
loops, switch loops (corresponding to the ”event-driven clauses” of C. T. Zahn
and D. E. Knuth), together with other do—pairs (do/for, do/switch, do/if), as
shown by the following examples:

do { get_input } while (! end_of-input) { process }
switch(wait_event()) {

default : Sp ; continue; //switch again

case By : Sy ; break;

case Eo : So ; break;

}
do { do-body; } for (int i=0; i < N; i++) { action(); }
do{...}if () {...} else {...}

Each do-pair is logically integrated enough to be used as a definition body of
functions, operators or controls:

void f() do :int i; {...} switch (3) {...}

148

The reasons for including them are that they are of general-purpose, of high
efficiency, do not add complexity, and are emulated when absent. In fact, they
have nice symmetry/asymmetry to existing facilities.

Cxx also introduces a new linkage specification for program organization:

extern " Cxx” { global_declaration_listop }
extern ”Cxx” global_declaration_list

Global names with Cxx linkage are corresponding static members of class main,
which may also serve as a namespace for user defined global variables and func-
tions. Both of the above declarations add global_declaration_list to namespace
main. A Cxx program may be viewed as a process of constructing and destruc-
ting an instance object of main. A simple Cxx program may look like:

include <XApp>
class main : XApp { }; //call base c-tors & d-tors

And the general structure of Cxx programs is:

/] ...

class main : baselistope {

public heavy:
main();
//main(int arge, char*argv|]); —only one c-tor
~ main() {/*...*/}

main::main() try : baselist()opr {

} /...
catch(...) { /*...... */}

The compiler will provide a default run-time startup routine (corresponding to
C and C++’s int main()) to properly construct one and only one main ob-
ject, as well as ensure proper destruction. User does not need to care about the
details. Such kind of program style represents a trend of modern applications
development based on large class libraries: the main control programs tend to
be smaller, with more and more operations being performed in methods of ob-
jects. For compatibility, the traditional program form is, of course, still useful.
The default startup routine is suppressed if a user-defined main() function is
provided.

The last Cxx feature that would be mentioned in this section is a new prepro-
cessor directive # included, which is introduced to deal with the multi-inclusion
problem of header files:

included <filename>

149

/*only the first # included <filename> is effective; multi- inclusion will
simply be ignored by the preprocessor. */

The idea here is that it is better to let the preprocessor be responsible for the
multi-inclusion problem; neither should the language proper (as was suggested
by [Str 94]) nor should the user (the situation in C/C++).

6 Implementation Issues

We plan to implement Cxx using fairly traditional techniques that are present
in most existing front-end implementations. First a YACC grammar is devised.
Using the usual pre-lookahead lexical techniques [Rei 93,Yang 98] the total 610
YACC rules of Cxx can be conflict free. Then various processing routines are
inserted to appropriate rules to translate declarations and statements with Cxx
constructs to plain C/C++ code. This section briefly discusses a few important
issues that we have to consider.

virtual redirection
pointer layer
vp dispatch table

L T i or—

&A:f I method body
of subclass

Induction mechanism, as a programming construct, can be implemented as
an extension to most OO languages. The implementation of static induction is
straightforward. The basic idea of virtual induction implementation is to provide
a redirection mechanism (method dispatch) for each class accessed via virtual
pointers or references, according to the run-time types of the objects actually
pointed to. This is very similar to the implementation of normal dynamic bind-
ing, with only minor adjustment needed. But here the dispatch mechanism is
related to virtual classes, rather than built in the object representation of or-
dinary classes, which is essential to avoid affecting existing code. The idea is
shown as the following:

A simple, yet useful technique is to directly use the vtable generated by C++
compiler to redirect the virtual class method invoking. Also see [S 00a] for details.

Like C++4 overloaded operators, user-defined operators are translated to
functions. All conflicts related to expressions with user operators can be elimi-
nated by introducing two pre-lookahead tokens. The corresponding YACC rule
is similar to

USETOP_eTPTeSSIOn:
IN_.UOP_EXPR expression_list,p: IN.UOP user_operator IN.UOP_EXPR
expression_list opt IN.-UOP

150

A local recursive descent lexical routine inserts the above two ”faked” tokens
at appropriate positions.

User controls can be implemented using an inlining method. For example, a
function using the If/Or/Else control defined previously will correspond to the
following generated C/C++ code:

void f (T* pl, T* p2) {
If (p1) { CX z; dosomething(pl); } // If-block
Or(p2) { use(p2); } // Or-block

Else { askwhy(); } // Else-block

// generated code:
void f (T* pl, T* p2) {
T* _pl=pl; T* _p2=p2;
if (_pl) goto If ; if (_p2) goto Or ; goto Else;
If : { // local scope of If-block
CX x; dosomething(_pl);
}

goto end_control;
Or : { // Or-block

use(p2);
}

goto end_control;

Else : { // Else-block
askwhy();

}

end_control: ;

}

This is a simple-minded and efficient implementation, naturally based on
the semantics of goto. But it requires that control definitions must be avail-
able when translating, which is very similar to the case of macro expansion, or
more precisely, template instantiation. Various schemes of automatic template
instantiation can be used as reference. For example, we may defer the transla-
tion until link time, and use a pre-linker to examine desired control definitions
and execute appropriate re-compilation. At present stage, we adopt a relatively
restrictive but still acceptable scheme, i.e., requiring the definition of a control
to be included into each translation unit that actually uses that control, like the
way many C+-+ compilers deal with the instantiation of template entities. Other
more automatic methods will be taken into consideration in the near future.

7 Conclusion and Future Work

By providing the classical OOP support while retaining the traditional tech-
niques of proven merits, C++ serves well as an efficient and flexible development

151

tool for the problems it has been designed to deal with. Cxx further extends C++
with the support for the new XOO development paradigm within the consistent
context of a general-purpose programming style since C. In the language de-
sign of years, every Cxx’s new feature has been reviewed to ensure not only the
compatibility with existing language features, but also the conformability to the
spirit of an efficient and flexible systems/applications programming language.

As the first XOOP language, the mission of Cxx is to pioneer the use of XOOP
paradigm and techniques. Clearly, Cxx has a long way to go when lessons from
practice and experiences are learned and a deterministic conclusion can be made
on whether Cxx’s extensions are worth them or not.

We here argue that the inductive method is a useful software development ap-
proach, and the inheritance mechanism of present OO technology would be best
used when combined with induction. We believe that induction and other XOO
approaches could play a significant role in the software development technology.

The main work planned in the near future is to improve the current Cxx
implementation, and to find and construct some common patterns and solutions
to design a fundamental library, including inductive patterns, control and oper-
ator templates, etc., through large scale applications and experiments of Cxx’s
features in typical problem domains, and to put such a library into system de-
velopment.

References

[Ama 93] R. M. Amadio and L. Cardelli, Subtyping recursive types, ACM TOPLAS
15, 4(Sept.), 1993.

[Bau 95] G. Baumgartner and V. Russo, Type Abstraction Using Signature, in Using
and Porting GNU CC, R. M. Stallman, Ed. FSF, Cambridge, Mass., 1995.

[Bau 97] G. Baumgartner and V. Russo, Implementing Signatures for C++, ACM
TOPLAS 19, 1(Jan.), 1997.

[C++ 98] ISO/IEC: 98 4882 Programming Languages - C++.

[Cecil] C. Chambers, The Cecil Language: Specification and Rationale, Tech. Rept.
93-03-05, Univ. of Washington, Mar. 1993; Version 2.1, Mar. 1997; Cecil project
home page at http://www.cs. washington.edu/research/projects/cecil/.

[GCC] The GNU C++ signature extension has been deprecated since GCC 2.95.1
and will be removed in the next major release. See GCC 2.95.1 Release Note,
GNU, Aug. 1999; Web page http:// www.gnu.org/software/gec/gec-2.95/gec-
2.95.1.html.

[Gos 97] J. Gosling, B. Joy and G. Steel, The Java Language Specification. Addison-
Wesley, Reading, Mass., 1997.

[Mey 97] B. Meyer, Object-Oriented Software Construction. 2nd Ed. Prentice Hall,
1997.

[Mus 98] D. Musser and A. Stepanov, Generic Programming — Projects and Open
Problems. August 1998. Available at http://www.cs.rpi.edu/~musser/gp/.

[Rei 93] S. Reiss and T. Davis, Experiences Writing Object-Oriented Compiler Front
Ends, Working Paper, in CPPP 1.86 Distribution, CS Dept., Brown University.
Web: ftp:// wilma.cs.brown.edu/pub.

[Rit 93] D. M. Ritchie, The Development of the C Language, 2nd History of Program-
ming Languages Conferences, Cambridge, Mass., April, 1993.

152

[S 96] Bing Swen, Extending C++ to Support Reverse Member Propagation (in
Chinese), Internal Report, Phys. Dept., Hu'nan Normal University, Changsha,
Hu’'nan, 1996.

[S 98] Bing Swen, A Bi-directional Derivation Model of Objects, Proceedings of the
27th TOOLS Asia '98 and the 2nd OOT China 98 (in Chinese). Sept. 1998,
Beijing.

[S 99] Bing Swen. Theory and Application of Extended Object-Orientation. Selections
of Inst. of Comp. Ling., Vol. 4. CS Dept., Peking University, 1999. A shorter
version appeared in Chinese Journal of Computers, No.3, 2001.

[S 00a] Bing Swen: Object-Oriented Programming with Induction. SIGPLAN Notices
Vol.35, No.2 (Feb.), 2000.

[S 00b] Bing Swen, Inheritance-Induction System, with Applications to Object Tech-
nology and Information Extraction (in Chinese). Ph.D. Dissertation of CS Dept,
Peking University, May, 2000.

[Sather] S. Omohundro and C. Lim, The Sather Language and Li-
braries, Tech. Rept. TR-92-017, ICSI, Berkeley, Ca., 1991. Web:
http://www.icsi.berkeley.edu/~sather; www.gnu.org/ software/sather.

[Str 94] B. Stroustrup. The Design and Evolution of C++. Addison Wesley, Reading,
MA. 1994.

[Str 95] Bjarne Stroustrup, Why C++ isn’t just an Object-Oriented Programming
Language. Addendum to OOPSLA ’95 Proceedings. OOPS Messenger. Oct.1995.

[Str 97] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
Reading, Mass., 1986; 2nd Ed., 1991; 3rd Ed., 1997.

[Tic 92] W T. Tichy, M. Philippson and P. Hatcher, A Critique of the Programming
Language C*. CACM 35(6), June 1992.

[Thinking 90] C* Programming Guide. Thinking Machines Corp., Cambridge Mass.,
1990.

[Yang 98] F. Yang et al., Experiences in Building C++ Front End, SIGPLAN Not.
33, 9(Sept.), 1998.

153

Extracts from the upcoming book
“Concepts, Techniques, and Models
of Computer Programming”

Peter Van Roy! and Seif Haridi?

! Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
pvr@info.ucl.ac.be
2 Royal Institute of Technology (KTH), Stockholm, Sweden
seif@it.kth.se

1 Introduction

There are a large number of “programming paradigms”, i.e., different approaches
to practical computation based on different underlying theories of computing.
Popular paradigms include declarative programming, which includes logic pro-
gramming (both deterministic and nondeterministic) and functional program-
ming (both strict and lazy). Adding explicit state leads to imperative pro-
gramming, component-based programming, and object-oriented programming.
Adding concurrency further increases the number of useful paradigms, including
declarative concurrency, shared state, and message passing.

Each paradigm was originally designed to be used in isolation. Despite this,
there has been some attempt to use the paradigms together. This is technically
possible because the paradigms have many concepts in common. For example,
the differences between declarative & imperative paradigms and concurrent &
sequential paradigms are very small: imperative programming just adds state
and concurrent programming just adds threads.

But even though it is technically possible, why would one want to use several
paradigms together in the same program? The deep answer to this question
is simple: because one does not program in paradigms, but with programming
concepts and ways to combine them. Depending on which concepts one uses,
it is possible to consider that one is programming in a particular paradigm.
Certain things become easy, other things become harder, and reasoning about
the program is done in a particular way. Therefore, it is quite natural for a well-
written program to use different paradigms, if the underlying language supports
the requisite concepts.

2 Programming techniques and examples

We are working on a book whose goal is to give a broad and deep survey of
practical programming concepts and techniques, covering many useful paradigms
in a meaningful way [4]. The book is suitable for teaching both graduate and

155

undergraduate courses in programming techniques. There is an accompanying
Open Source software development package, the Mozart Programming System,
that can run all program fragments in the text [3]. In spirit, the book is a
successor to Abelson & Sussman [1].

The book introduces the paradigms progressively in a uniform framework. It
examines the relationships between the paradigms and shows how and why to use
different paradigms together in the same program. We give two extracts from
the book, on concurrency (taken from Chapter 5) and graphic user interfaces
(taken from Chapter 11).

2.1 Concurrency made easy

In a traditional computer science curriculum, e.g., based on Java, concurrency
is taught by extending an imperative paradigm. The basic concept for control-
ling concurrency is the monitor. This is rightly considered to be very complex
and difficult to program with. There are alternative approaches using simpler
paradigms than concurrent imperative programming. For example, the concur-
rent declarative paradigm adds concurrency to functional programming, resulting
in a simple dataflow language with implicit synchronization. Programs written in
this paradigm are truly concurrent as well as being declarative. We explain this
paradigm by means of examples and show how it can make concurrency easy.
This paradigm can be used to add concurrency to an object-oriented program
while avoiding the complexities of concurrent imperative programming.

2.2 Dynamic user interfaces made easy

We show how using different paradigms together can help with user interface
design. There are three popular approaches to implementing graphic user inter-
faces: purely procedural (as a sequence of commands), purely declarative (giving
a description, chosen from a set of predefined possibilities), and using an interface
builder (a interactive graphic version of the purely declarative approach). The
procedural approach is expressive but its descriptions (i.e., programs) are hard
to manipulate in a program. The declarative approach is easy to manipulate (its
descriptions are data structures) but lacks in expressiveness. Both approaches
can be used together to get the advantages of either without their disadvantages:

— The declarative description is used to define widget types, their initial states,
their resize behavior, and how they are nested to form each window. All this
information can be represented as a data structure.

— The procedural approach is used when its expressive power is needed, i.e., to
define most of the interface’s dynamic behavior. Interface events trigger calls
to action procedures. Widget state is changed by invoking handler objects
associated to the widgets. Both action procedures and handler objects are
embedded in the declarative data structures.

We present a user interface design tool that uses this approach [2]. When in-
tegrated in the programming language, this supports dynamic user interfaces

156

where the user interface is calculated at run-time. This is done by giving inter-
face specifications as data structures and transforming these into interfaces by
simple data structure manipulation.

3 Conclusion and future work

We find that it is quite natural for a well-written program to use multiple
paradigms. We illustrate this claim with two extracts from an upcoming book
on programming concepts and techniques. Many more examples are given in
the book. The book will be teach-tested in the fall by the authors and other
instructors in several second-year programming courses and other courses.

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, Cambridge, Mass, 1985.

[2] Donatien Grolaux. QTk module, 2000. Available at
http://www.mozart-oz.org/mogul/info/grolaux/qtk.html.

[3] Mozart Consortium. The Mozart Programming System version 1.2.0, May 2001.
Available at http://www.mozart-oz.org/.

[4] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming — with Practical Applications in Distributed Comput-
ing and Intelligent Agents. 2002. Work in progress. Draft available at
http://www.info.ucl.ac.be/ pvr/book.pdf. Expected publishing date 2002.

157

NIC-Series John von Neumann Institute for Computing

Already published:

Modern Methods and Algorithms of Quantum Chemistry - Proceedings
Johannes Grotendorst (Editor)

NIC Series Volume 1

Winterschool, 21 - 25 February 2000, Forschungszentrum Jilich

ISBN 3-00-005618-1, February 2000, 562 pages

Modern Methods and Algorithms of Quantum Chemistry -
Poster Presentations

Johannes Grotendorst (Editor)

NIC Series Volume 2

Winterschool, 21 - 25 February 2000, Forschungszentrum Jilich
ISBN 3-00-005746-3, February 2000, 77 pages

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings, Second Edition

Johannes Grotendorst (Editor)

NIC Series Volume 3

Winterschool, 21 - 25 February 2000, Forschungszentrum Jiilich
ISBN 3-00-005834-6, December 2000, 638 pages

Nichtlineare Analyse raum-zeitlicher Aspekte der
hirnelektrischen Aktivitat von Epilepsiepatienten
Jochen Arnold

NIC Series Volume 4

ISBN 3-00-006221-1, September 2000, 120 pages

Elektron-Elektron-Wechselwirkung in Halbleitern:
Von hochkorrelierten koharenten Anfangszustanden
zu inkoharentem Transport

Reinhold Lovenich

NIC Series Volume 5

ISBN 3-00-006329-3, August 2000, 145 pages

159

Erkennung von Nichtlinearitaten und
wechselseitigen Abhangigkeiten in Zeitreihen
Andreas Schmitz

NIC Series Volume 6

ISBN 3-00-007871-1, May 2001, 142 pages

All volumes are available online at http://www.fz-juelich.de/nic-series/.

160

