001     29694
005     20240712100847.0
017 _ _ |a The original publication is available at http://dx.doi.org/10.1023/A:1024056026432
024 7 _ |a 10.1023/A:1024056026432
|2 DOI
024 7 _ |a WOS:000183325000004
|2 WOS
024 7 _ |a 2128/644
|2 Handle
037 _ _ |a PreJuSER-29694
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Krämer, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)129131
245 _ _ |a Intercomparison of stratospheric chemistry models under polar vortex conditions
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2003
300 _ _ |a 51 - 77
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Atmospheric Chemistry
|x 0167-7764
|0 3073
|v 45
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4-80% for different 30-50 days long air parcel trajectories, the mean scatter of model results around these values is only about +/-1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about +/-7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a participating models
653 2 0 |2 Author
|a scenarios arctic case study
700 1 _ |a Müller, Ri.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Bovensmann, H.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Burrows, J.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Brinkmann, J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Röth, E. P.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Grooß, J. U.
|b 6
|u FZJ
|0 P:(DE-Juel1)129122
700 1 _ |a Müller, Rolf
|b 7
|u FZJ
|0 P:(DE-Juel1)129138
700 1 _ |a Woyke, Th.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Ruhnke, R.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Günther, G.
|b 10
|u FZJ
|0 P:(DE-Juel1)129123
700 1 _ |a Hendricks, P. V.
|b 11
|0 P:(DE-HGF)0
700 1 _ |a Lippert, E.
|b 12
|0 P:(DE-HGF)0
700 1 _ |a Carslaw, K. S.
|b 13
|0 P:(DE-HGF)0
700 1 _ |a Peter, Th.
|b 14
|0 P:(DE-HGF)0
700 1 _ |a Zieger, A.
|b 15
|0 P:(DE-HGF)0
700 1 _ |a Brühl, Ch.
|b 16
|0 P:(DE-HGF)0
700 1 _ |a Steil, B.
|b 17
|0 P:(DE-HGF)0
700 1 _ |a Lehmann, R.
|b 18
|0 P:(DE-HGF)0
700 1 _ |a McKenna, D. S.
|b 19
|0 P:(DE-HGF)0
773 _ _ |a 10.1023/A:1024056026432
|g Vol. 45, p. 51 - 77
|p 51 - 77
|q 45<51 - 77
|0 PERI:(DE-600)1475524-5
|t Journal of atmospheric chemistry
|v 45
|y 2003
|x 0167-7764
856 7 _ |u http://dx.doi.org/10.1023/A:1024056026432
|u http://hdl.handle.net/2128/644
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_txt.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_tab%2Bfig.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_tab%2Bfig.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_tab%2Bfig.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_tab%2Bfig.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_txt.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_txt.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/29694/files/kraemer_et_al_txt.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:29694
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k ICG-I
|l Stratosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB47
|x 0
970 _ _ |a VDB:(DE-Juel1)26614
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21