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Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations
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A detailed analytical and numerical analysis of a recently introduced stochastic model for fluid dynamics
with continuous velocities and efficient multi-particle collisions is presented. It is shown how full Galilean
invariance can be achieved for arbitrary Mach numbers and how other low temperature anomalies can be
removed. The relaxation towards thermal equilibrium is investigated numerically, and the relaxation time is
measured. Equations of motions for the correlation functions of coarse-grained hydrodynamic variables are
derived using a discrete-time projection operator technique, and the Green-Kubo relations for all relevant
transport coefficients are given. In the following pag@art 2, analytic expressions for the transport coeffi-
cients are derived and compared with simulation results. Long-time tails in the velocity and stress autocorre-
lation functions are measured and shown to be in good agreement with previous mode-coupling theories for
continuous systems.
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I. INTRODUCTION oil or water. At the other extreme, approaches based on the
numerical solution of continuum equations encounter diffi-
Particle-based simulation techniques have recentlgulties for even such comparatively simple problems as col-
emerged as an interesting alternative to more traditionabidal suspensions due to the cumbersome treatment of mov-
methods for studying such diverse behavior as rarefied gagag boundary conditions. In fact, flows with dynamic
dynamics, flow and transport in complex geometries and nainterfaces are among the most difficult computational prob-
nometer devices, and the dynamics and rheology of complebems in continuum mechanics. The central challenges are to
liquids such as amphiphilic mixtures, polymer solutions, anddevelop numerical algorithms that accurately couple the fluid
colloidal suspensions. and solid domains and resolve the deforming interfaces, and
Phenomena involving rarefied gas dynamics and hypergeometric algorithms for evolving and managing the result-
sonic flow often occur in regimes where the continuum ap-ing dynamic particle-mesh systems. The associated dynamic
proximation breaks down and the traditional Navier-Stokesdata structures are particularly troublesome on highly paral-
equations are not valid. This is the case, for example, withel computers. Even worse, there are many physicochemical
flows in geometries in which the Knudsen number—defineckffects which cannot be captured by continuum models. In
as the ratio of the mean free path of a gas to the local lengthddition, while one is interested in understanding the phe-
scale of the problem—is not negligibly small. If the Knudsennomena that give rise to the non-Newtonian rheological be-
number is larger thar-0.1, the Navier-Stokes equations are havior of complex liquids, continuum approaches generally
no longer valid, and particle-based methods, such as the diely on the use of phenomenological constitutive relations to
rect simulation Monte CarléDSMC) [1,2], have been used model this behavior.
extensively. In all these cases, the correct modeling of the phenomena
Complex fluids present a challenge for conventionalof interest requires the use of “coarse-grained” mesoscopic
simulation techniques due to the importance of thermal flucapproaches that mimic the behavior of atomistic systems on
tuations and the presence of disparate time scales in theihe length scales of interest. The goal is to reproduce the
dynamics. On the microscale, molecular dynam{4D) physics of fluid flow, primarily the conservation laws, while
techniques can be used to model the dynamics of small atéacluding the essential features of the underlying micro-
mistic systems on time scales ranging from picoseconds tecopic and mesoscopic physics. Two rather well known
microseconds. However, the slower millisecond dynamics oparticle-based simulation techniques which have been devel-
larger structures, such as the self-assembly of micelles ayped with this goal in mind are Bird’'s DSMC methdd,2]
ordered surfactant phases, cannot be accessed by atomisdied dissipative particle dynami¢®PD) [3,4].
methods now or in the foreseeable future. Similarly, although Dissipative particle dynamics is an isothermal off-lattice
the accurate simulation of the atomic-scale properties of sutechnique which is essentially a molecular dynamics simula-
factant assemblies and polymers requires atomistic MDion in which each particle—which represents a mesoscopic
simulations, these methods are not suited for determininglement of the underlying molecular fluid—interacts with all
larger structures such as micellar sizes and shapes, bicontintire particles inside a sphere of radiysthrough a conserva-
ous phases, or to predict the phase diagrams of surfactantstine force, as well as dissipative forces which represent the
coupling to a heat bath, and random forces which supply the
energy lost by damping. In this coarse-grained description,
*Present address: InstitutrfiComputeranwendungen 1, Univer- the dominant interactions are the dissipative and random
sita Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany. forces; the conservative forces are weak and of relatively

1063-651X/2003/6(6)/06670%11)/$20.00 67 066705-1 ©2003 The American Physical Society



T. IHLE AND D. M. KROLL PHYSICAL REVIEW E 67, 066705 (2003

long range. The soft nature of the DPD potentials allows foron the number of particles in a cell. The evolution of the
much longer time steps than in traditional MD simulations.system consists of two steps: streaming and collision. In the
Since DPD is an off-lattice technique, it is Galilean invariant.streaming step, the coordinate of each particle is incremented
It has been showi5], using projection operator tech- by its displacement during the time step. However, unlike the
niques, that DPD vyields the correct macroscopic hydrodyDSMC method, collisions are modeled by a simultaneous
namic equations, and kinetic theory was used to relate thgtochastic rotation of the relative velocities eferyparticle
transport coefficients in the hydrodynamic equations with thdn €ach cell. The dynamics is explicitly constructed to con-
DPD model parametef§]. The effect of finite time steps on S€rve mass, momentum, and energy, and the collision pro-
the equilibrium state of the system has also been stydied €SS IS the simplest consistent with these conservation laws.
DPD has been used to study a rather large range of problenfish@s been shown that there is Hrtheorem for the dynam-
ranging from flow past complex objecf8], concentrated IS an_d that this procedure yields the correct hydrodynamic
colloidal suspensionf4,8,9], polymer suspensionigl0,17, ~ €duations for an ideal g481]. _ _
and phase separatiofl2—14. More recently, the DPD Th_e essential featgres of.the algonthm.are the folloyvmg.
method has been generalized to include energy conservatidrensider a set ol point particles with(continuous coordi-
[15—17, and the wave vector dependent transport propertie8atesri(t) and velocities/i(t). In the following, the mass of
of the DPD fluid have been calculated analytically using ki-the particles is set equal to 1. In the streaming step, all par-
netic theory methodEL8]. ticles are propagated simultaneously a distaneg wherer
The direct simulation Monte Carlo algorithf,2,19isa 'S the valge of the dlscretl_zed time step. For t_he collision
stochastic, particle-based approach for solving the nonlineaf€p. particles are sorted into cells, and they interact only
time-dependent Boltzmann equation. In this approach, th¥ith members of their own cell. Typically, the simplest cell
system is partitioned into cells, witk'50 particles per cell. construction consisting of a hypercubic grid with mesh size
Each particle in the simulation is taken to effectively repre-iS Used. The collision step consists of an independent random
sent a large number of molecules in the physical system. FdPtation of the relative velocities; —u of the particles in
accurate calculations, the linear dimension of the cells musgach cell, where the macroscopic veloai; ) is the mean
be less than the mean free path of the particles, and th¢elocity of the particles in the cell with coordinag The
general rule of thumb is that in regions with large gradients!ocal temperaturd (£,t) is defined via the mean square de-
the cell dimension should be approximately one-third theviation of the particle velocities from the mean velocity in a
mean free patf2]. The algorithm consists of two steps, Cell. All particles in a cell are subject to the same rotation,
streaming and collision. In the streaming step, particledut the rotation angles of different cells are _statlst|cally in-
propagate freely for a time stegy; collisions are then per- erender!t. There is a great deal of _freedom in how the rota-
formed stochastically, with scattering rates and postcollisiorion step is implementef81,33,33, since, by construction,
velocity distributions determined from dilute gas kinetic the local momentum and kinetic energy are invariant. The
theory. Since the Boltzmann equation provides an accurat@ynamics is therefore summarized by
description of dilute gases arbitrarily far from equilibrium,
even \?vhen there arg large gradien);s in the hﬁdrodynamic ri(t+ ) =r(t+7vi(1), @)
fields, this approach can be used to study phenomena outside
the range ofpzfpplicability of hydrodynami?:/ (Equations. In fact, Vi(tT D= ULEt+ DI+ o §(t+ D] {vi(D) —u[&(t+ )]},
in 1989 the DSMC method was callg20,21] “the dominant 2
predictive t.ool in rarefied gas dynamics for the past decade.jyhere w(£&) denotes a stochastic rotation matrix, afids
Comparisons of the results of the DSMC method and MOoye coordinate of the cell occupied by particiet the time of
lecular dynamics simulations have shown that the DSMGpe collision.u(§)=(1/M)=. sy is the mean velocity of the
method yields accurate results for shod2] and slip  particles in cellé. In two dimensionse is typically taken to
lengths[23], and many computational studies have shownyg g rotation by an angle @, with probability 1/2. How-
that the DSMC resullts are in good agreement with solutiong,er any stochastic rotation matrix consistent with detailed

of the Navier-Stokes equation in the limit of very small pj1ance can be used. Several choices in three dimensions are
Knudsen numbef20]. For reviews of recent advances and yiscussed in Re{35].

applications of the DSMC method, see Ré#&1—-26. Some
notable recent extensions of this approach include generali-
zations to model the Enskog equation for a hard-sphere fluid
[27-29 and fluids with a van der Waals equation of state In order to perform the collision operation, the system is
[30]. coarse grained into the cells of a regular lattice. This breaks
In this paper, we discuss an alternative particle-basealilean invariance, since the collision environment of any
simulation technique for modeling fluid dynamig31-34, given patrticle depends on the value of a superimposed con-
called stochastic rotation dynami¢SRD). It shares many stant velocity field. Consider the difference between a sta-
features with the DSMC method and its variants, but differstionary medium and one that moves with a constant velocity
in the nature of the collision rules. Like the DSMC method, U. Unless the displacement of the moving system in one
the fluid is modeled by particles whose positions and velocitime step is exactly commensurate with the cell structure, a
ties are continuous variables, and the system is coarggarticle in the moving system will find that its position rela-
grained into the cells of a regular lattice with no restrictiontive to the cell boundaries is different than in the stationary

A. Galilean invariance and molecular chaos
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1.2 ‘ ‘ ‘ ‘ the samerandom vector with components in the interval
. [—al2,a/2] before the collision step. Particles are then
shifted back to their original positions after the collision. If
we denote the cell coordinate of the shifted partichy &,

the collision step is described by

A I R L RR e S IR VIO E (G
| @)

instead of Eq(2).
~~~~~~~~~~~~ The random shifts also rectify an unphysical property of

1 ‘ e : . the multiparticle interaction provided by the rotation. The
0 0.25 0.5 0.75 partitioning of the particles into cells means that there is the
possibility that there is no interaction between two particles

FIG. 1. Test of Galilean invariance. The ratio of the self- €ven if they are infinitesimally close, but separated by a cell
diffusion coefficientsD, andD, in x andy directions plotted as a boundary, while o.ther particles in the same cell Interact non-
function of the ratio of the mean free pathto the cell sizea. A locally up to a distance/2. On average, the interaction
homogenous flow irx direction, u=(0.2,0), is imposed, and no between two particles is a smooth function of the distance
random shift has been applied. Parametkgd:=0.0625, M =35, (and the orientation of the connecting vegtbetween two
andL=32. particles if random shifts are applied.

The random shift procedure is also essential for generali-
frame. Because of this, the particles participating in the colzations of this model to nonideal gadé&$] where a phase
lision process will be different in the stationary and movingboundary between fluid and gas phases can occur. Without
frames, thus breaking Galilean invariance. This breakdownhe modification, a homogeneous flow would lead to a defor-
of Galilean invariance is negligible if the mean free path mation of a spherical droplet at small mean free path.
= 7JkgT of the particles is large compared to the cell size Finally, note that the random shift procedure does not al-
In this casemolecular chaoss a valid assumption because ter the anisotropy caused by the underlying cubic grid. In
most collisions involve particles that have just arrived fromdimensiond=2, the anisotropy can be reduced by using a
different cells, and are therefore not correlated. After a colhexagonal cell structure. More generally, additional random
lision, particles immediately leave to other cells, and henceotations of the grid should be applied in order to achieve full
decorrelate quickly. There are no correlations which can bésotropy. We will assume that the anisotropy is small, at least
affected by a homogeneous flow field. The breakdown of thet moderate and large mean free path, and will not consider it
Galilean invariance can, however, become significant fohere.
small A/a. In the limit of small mean free path, essentially
the same set of particles “collide” several times before some
of the participating particles leave the cell or other particles
enter. The particles are therefore correlapeior to the col- It was shown in Ref[31] that there is a Boltzmanh
lision step, and the degree of correlation depends on th#heorem for the SRD algorithm {&) the stochastic collision
value of the imposed flow field. The transport coefficientsrules satisfy semidetailed balance afii Boltzmann's as-
depend on the value &f, and Galilean invariance is broken. sumption of molecular chaos is valid. The assumption of
This behavior is confirmed by simulations. For example,molecular chaos is required in order to be able to write the
simulation results for the ratio of the self-diffusion constantsfull N-particle probability distribution function as the product
in x andy directions,R=D,/D,, measured in a homoge- of identical single-particle distributions, and semidetailed
neous flow field as a function of/a are presented in Fig. 1. balance is required to guarantee that théunctional
While there are significant deviations froR=1 for small
N a, for A>a/2, R deviates from 1 by less than 0.3%. HB(t):f dvdrf(v,r,t)Inf(v,r,t), (4)

Consider now what happens if, before the collision step,
all particles are shifted by theameuniformly distributed
random translation vector with components in the intervalwhere f(v,r,t) is the reduced single-particle distribution
[ —a/2,a/2] before the collision step. The shift randomizesfunction, decreases with time and attains a minimum for the
the position of particles in the cell, and any given particle hasequilibrium Maxwell distribution,
an equal probability to be found any position in a cell.
This is true inboth stationary and moving frames. There is N 1
therefore an equal probability that the outcome of the colli- f= (—
sion process is the same in both frames, so that Galilean 2mkgT
invariance is exactly restored. This makes it possible to per-
form simulations at arbitrary Mach number, even for low TheH theorem guarantees that the dynamical system relaxes
temperature, at little additional computational cost. In ourto the correct Gibbs equilibrium state. Furthermore, it en-
implementation of this procedure all particles are shifted bysures that there are no numerical instabilities associated with

—_

B. Detailed balance and theH theorem

d/r2
feq—v ) exd (v—u)?/2kgT]. (5
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a nonmonotonic decay of thé functional, as are often found In the following discussion, we consider random grid
in interacting lattice-gas and lattice-Boltzmann modelsshifts, while keeping the particle positions fixed. This is
[37,38. equivalent to the procedure described in the preceding sec-

As discussed in Sec. | A, the assumption of moleculattion. The functional form of Eq(6) is independent of the
chaos is not valid for the SRD algorithm because of the celthoice of grid origin; the center of mass velocities of a cell,
structure introduced to define the collision environment. Al-and the sets of collision partners will, of course, depend on
though theStosszahlansatis not a bad approximation for the particular choice db. The grid shift before the collision
large mean free pathsy>a, it breaks down completely step entails a displacement of the grid by a random transla-
when\ is significantly smaller then the cell size, since cor-tion vector with components uniformly distributed in the in-
relations build up over several collisions. It follows thatkn terval [ —a/2,a/2]. Because the size of the random transla-
theorem of the type discussed in the last paragraph is ndion does not depend on either the particle positions or
strictly valid. Nevertheless, there is a more general typd of velocities, and is uncorrelated in time, the Liouville operator
theorem which the SRD algorithm does satisfy. In generalfor the system with random shift is simply a superposition of
any Markov chain or process with an equilibrium distribu- the operator for a fixed grid. Equati@6) therefore becomes
tion will have anH theorem associated with it, in the sense
that there is a whole class of Lyapunov functions that deP(V®N RN+ 7v(MN) ¢+ 7)
crease monotonically with time. Any convex function of the 1 a2 2
N-particle distribution achieves this. In particular,ié@ has _ o+ . N) (N
shown quite generally39] that the assumption of semide- Cad)ian L/Zdb1~ Aoy CpeP(VEL.RM.). - (8)
tailed balance in such a process is sufficient to proveian
theorem of this type. More generally, thetheorem follows  For any fixed grid, the Maxwell distribution is a fix point of
directly from the master equation for tiNeparticle distribu-  the Liouville equatiof31], and because of E¢g) it remains
tion function if the Markov process satisfies a detailed bal-g fix point with random shifts. Assuming molecular chaos,
ance condition[38,40. In the remainder of this section we this means that thél theorem proven in Ref31] remains
show that the collision dynamics of the SRD algorithm with valid when random grid shifts are performed. This is sup-
random cell shifts satisfies a detailed balance condition angorted by simulations, which showed convergence to the
discuss the resultingl theorem. Maxwell distribution, both with and without random cell

Malevanets and KaprgB1] have shown that the original shifts. There were no instabilities, and the final state is al-
SRD algorithm conserves the elementary measdié  ways spatially homogeneous; for large mean free path, both
=IIdr; dv;. For the streaming step, E@l), it is clear that the dynamics and transport coefficients are not changed.
the Jacobian is 1. The collision step is a rotation of the rela- In general, however, molecular chaos is not a valid as-
tive momenta. Semidetailed balance and the fact that theumption, and there is rid theorem for functionaf4). Nev-
choice of rotation does not depend on the relative momentartheless, there is a more general typ¢idheorem describ-
ensure that the Jacobian of this operation is also equal to Ing the relaxation of thé\-particle distribution function. As
so that the phase space measure is invariant. Note that thiscussed above, the SRD collision rules must satisfy a de-
remains true even if the random shift operation discussed ifmiled balance condition in order for this to be true. In two
the previous section is implemented. The evolution in phaséimension, where the stochastic rotation matrix is a rotation
space is Markovian, and the Liouville equation for the evo-by an angle+ «, with probability 1/2, detailed balance is
lution of theN-particle probability distribution in the original clearly satisfied. More generally, detailed balance requires
SRD algorithm ig[31] that the inverse rotation can occur with equal probability.

Consider a system o particles, with a fixed grid consisting
POV, RN 47V t+7)=CreP(VIV,.RM.1),  (6)  4f g cells. The microscopic state of this system,,v;}, will
be denoted byA. Let B be the state after one streaming and
collision step. The transition probability from to B, w(A
CpoP(VV RM t) —B), is proportional to 1/2, because we have two possi-
' ' bilities for the rotation in every cell. Now invert time,
1 . . 7— — 1, and perform another collision and streaming step.
== > f dRN PV RN ) The probability of obtaining statd, w(B—A), is exactly
2% o} the same asv(A— B), so that detailed balance is realized.
N Consider now the effect of the grid shift. Starting from
<1 s(v,— up— e ). [vi— ugl), (7)  configurationA, the streaming step is performed and the grid
i=1 : : is shifted by a particular vectdr. The velocities are rotated
by the anglea, and a new stat® is obtained. The grid is
where Q is the number of simulation cellsV®™  now shifted back to its original position. Because of the shif,
=(vq, ... Vn), RN=(ry, ... ry), and VN denotes the there are many more possibilities for obtaining configuration
velocities before the rotation.&® is the cell coordinatésee B than without shifting. However, after time reversal, the old
Sec. Il A, andb indexes a particular choice of origin for the stateA can be obtained again with the same probability, since
grid (e.g., the position of a particular cell centewhich is  one needs again a random shift by the same vdziand a
fixed but arbitrary in the original algorithm. rotation by angle— « to attain this state. The probability of

where the action of the collision operat@y, is given by
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choosing the samke for the inverse operation is the same ask-dependent anomalies in the viscosity and that the measured
for the forward time step time, since the selectionbofs ~ Vvalues of the viscosity depend on the direction and magni-
independent of time and state of the system. Detailed balandgde of an external homogeneous flow field if there are no
is therefore not affected by the shift, so the conditions for affandom cell shifts before collisions. It is then shown that the

H theorem are fulfilled. shifting procedure removes the anomalies.

In principle, any convex function of thi-particle prob- In the following paper(referred to hereafter as Par}, 2
ability distribution can be used to defit& but the standard calculations of the leading terms of the stress correlation
choice, functions are presented, which take explicit account of the

cell structure. It is shown that finite cell size effects can
persist even in the large mean free path regime and that they
are the cause of previous discrepancies between analytic and
simulation results i =2 for a~90°. Explicit results for all
where theN-particle distributionP=P(V™ XM t), and  the transport coefficients id=2 are derived and shown to
dl'=dvMdX™ ensures that the Maxwell distribution mini- e in excellent agreement with simulation results fond#.
mizesH. To see this, note that sinéIn P is a convex func-  Finally, long-time tails in the velocity, shear stress, and heat-
tion of P, flux autocorrelations are measured and compared with the
predictions of mode-coupling theory.

H(t)=f dI'PInP, 9

H(t)—Heq=f dl(PINP—PgqIn Peq)zf dr(InPegt1)
II. HYDRODYNAMICS

X(P— Peq)* (10) A. Definition of hydrodynamic variables
where, for the momen®,, is arbitrary. However, the Max- The density, momentum, and energy density operators are
well distribution N
N Ap(r)=2, ag8(r—ry), (14)
Peq~exp — 2, (vi—u)%/2kgT (12) =1
I
where a;;=1 for the density,{az;}={vi-1)}, with 3
provides a lower bound for thel-functional, Eq.(9), be- =2,...d+1, are the components of the particle momenta,
cause conservation of mass, momentum, and energy guarasndag +2’izviz/z is the kinetic energy of particlie Cell op-
tees that erators{A%(§)} can be defined as integrals over the cell vol-

ume of the density operators:

j drPin Peq:J dlPeqINPeg=Heq, (12 | |
c a
and AB({E)=2:1 Jdraﬁ'ié(r—ri)yﬂl @(§_|§y_ry|>
N d .
f dFPZJdFPeq- (13 :izl aﬂ,iﬂl®(§—|§y—riy|>, (15)

The right hand side of Eq10) is therefore zero foPeq  with the discrete cell coordinateg=am, with mp
given by Eq.(11), proving theH theorem. =1,... L, for each spatial component.
The Fourier transform of the densities is

C. Outline
The remainder of the paper is organized as follows. In Aﬁ(k)zf Aﬁ(r)e”"rdr, (16)
Sec. I, we introduce our choice of coarse-grained hydrody- v

namic variables and derive the equations of motion for the . )

correlation functions using a discrete-time projection opera/VhereV is the volume of the system. The inverse transform
tor formalism similar to that utilized by Dufty and Errjgtl] 'S

in their derivation of the Green-Kubo relations for lattice-gas 1

cellular automata. The shifting procedure discussed above is Ag(r)=5 > AB(k)e*””_ (17)
incorporated into the formalism, and it is shown that while it VK

does not change the reversible Euler terms in the equations ] ) ) .
of motion, it does lead to new contributions to the Green-For ad-dimensional system of volumé= (aL)® with peri-
Kubo relations for the transport coefficients. In Sec. IlI, nu-0dic boundary conditionsk=2mn/(alL), where nz=0,
merical results for the rate of decay to thermal equilibrium=1, ... for allspatial components.

and the shear viscosity are presented. In particular, the vis- The Fourier transforms of the cell variables are
cosity is determined from both the rate of decay of vorticity

correlations and the linear response of the system to an im- Clo)— c iq-é_ A&

posed k-dependent force. It is shown that there are Ag(a) Eg Aslde 2 g7 (18
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where§; is the coordinate of the cell occupied by partigle well as dissipative terms of the long-time large-length-scale
The inverse transforms are hydrodynamics equations for the coarse-grained hydrody-
namic variables can be derived. In addition, Green-Kubo re-
lations are obtained which enable explicit calculations of the
transport coefficients of the fluid.

In the following, we summarize results for the equations
where the wave vectorgj=2mn/(al), where nz=0, of motion for the equilibrium correlation functions of the
+1,...,2(L—1),L for the spatial components. The Fou- coarse-grained conserved variables. Since the correlation
rier transform(16) can also be applied to cell variables if we functions define the linear response of the average value of
define densities the conserved quantities, the same approach could also be

q used to determine the equations of motion for the average

c a values of the conserved variables. The equilibrium correla-
AB(r)=[AB(§)/a"]y1;[l ®(§_|§7_r7|)' (20 tion functions for the conserved variablédenoted collec-
tively by Ag), are defined by 8Ag(r,t) 6A,(r',t)), where

1 )
3= a % A5 (q)e g, (19

In this case, one has (5A)=A—(A), and the brackets denote an average over the
. equilibrium distribution. In a stationary, translationally in-
Ag(k)=Agk)f(ak), (21)  variant system of the type considered here, the correlation

function depends only on the differencesr’ andt—t’,
and the Fourier transform of the correlation function, which
we shall denote by, (k,t)=(Ag(k,0)|A,(k,t)), is

where

2sin(ak,/2)

d
f(ak)= 7111 K (22)

y G, (k,t)=V X 5A%(Kk,0)0A,(k,1)), (24

is the form factor of a cell. The first term on the right hand where the asterisk denotes complex conjugation. To simplify
side of Eq.(21) is the cell transforn{18). notation, we omit the wave vector dependence in the corre-

There is a certain amount of freedom when identifyinglation function in the remainder of this section.

coarse-grained densities in this model. For the momentum Including the shift operation, the dynamics described by
and energy densities, the cell densities are the obviouggs.(1) and(3) consists of consecutive streaming and colli-
choices, since Eq2) has the collision invariants sion operations. Since particles are neither created or de-
stroyed, the number of particles is trivially conserved. The

2 eiq'fi(‘”)[agjj(tJr )—a,,()]=0. 29 collision invariants for the momentum and energy density are
i

_ ek § M a, (t+7)—a, (1)]=0, 25
It would therefore be natural to also use the cell particle EJ: J [8p(t+ )= a,(V)] @9

density. If this is done, however, one finds that there is a

small anomalous dissipative terifof order wave vector Whereg is the coordinate of the cell occupied by particla
squared in the hydrodynamic equation for the density. The the shiftedsystem. These conservation laws can be written as
reason for this is that for this choice of variables, the cancel- ,

lation of terms in the corresponding Green-Kubo relation for AAg(t) +ik-Dy(t)=0, (26)

the particle density is incomplete. One way around this prob- _ . i
lem is to use the particle density defined in Etd) and the whereAA() =[A(t+ ) —A(1) /7 and the flxDy is given

corresponding Fourier transforifi6). For the momentum by
and energy densities, the corresponding Fourier transforms 1 Arj(t)eik'rj(t) '
are given by Eq(21). Dy(t)== 2> [1-€kAn0], (27

The choice of coarse-grained hydrodynamic variables is T kA

reflected in the detailed form of the Green-Kubo relations for,
the transport coefficients. Note, however, that the physics o\fv
the problem, i.e., the hydrodynamic modes, are not affected

hereAr;(t) =r;(t+ 7) —r;(t), for the particle density, and

agj(HAg (e &sm

by the particular choice of the density operator. Any addi- Dy(t)= E > [ i [1—e'k2§0]
tional contributions to the continuity equation will be can- T ik-A&(t)
celed by other spurious terms when calculating the hydrody- A A k-0
namic modes. N aB,J(_t) g(e™ s [e k-8
|k~A§jS(t)
B. Equations of motion for the correlation functions
The projection operator technique introduced by Zwanzig — 176k 240} £(ak) (28)
[42—44 provides a convenient formalism for deriving the ’

linearized hydrodynamic equations from the microscopic
equations of motior{1) and (3). With the help of this tech- where Ag(t)=§(t+7)—§(t), Agjs(t)=§j(t+ r)—g’js(t
nique, explicit expressions for both the reversitiiilen) as  +7), andAag ;(t)=agz;(t+7)—ag(t), for the momentum
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and energy densities. The conservation 1426 imply the
following equations for correlation functions of the con-

served variables and their fluxes:
A(AJAD) +ik-(AID(1))=0, (29
A¢Dj|A(1))+ik-(D{|D(t))=0, (30)

whereA=A(0) and, similarly,D;=D;(0). Finally, station-
arity implies the relation

(A[D(1))=(D[A(t+ 1)), (31)
or, using Eq.(29),
A(AJA(t))+ik-(D|A(t+7))=0. (32
Introducing the discrete Laplace transforms
[As))= 2 e *M|A((n+1)7),
|E>(s)>=ng0 e 5™ D(n7)), (33)
Egs.(29), (30), and(32) can be written as
(1-e *)(AJA(s)) +itk-(AID(s)) =(AIA), (34
(1—e *)(Di|A(s)) +ik-(Di|D(s))=(D[A), (35)
(1—e *)(AJA(s)) +irk-(DIA(s)) =(AlA).  (36)

Note that with definition$33), the Laplace transform of Eq.
(31 is

(A|D(s))=(D|A(s)). (37)

In order to determine the linearized hydrodynamics equa-

tions corresponding to the dynamics described by By
(36), we follow Ref.[41] and introduce a formal linear hy-

drodynamics for A|A(s)) by the equation

[(1—e *)+7L(k,S)[(A[A(s))=(A[A). (39

The linear hydrodynamic equations describe the long-time
large-length-scale dynamics of the system, and they are valid

in the limits of smallk ands. To evaluatd_ is this limit, first
note that a comparison of Eq®6) and (38) shows that
L(k,s)(AJA(s))=ik-(D|A(s)). (39)

Multiplying this result by (1-e°7) and using Eqs(34) and
(35), we have

L[<A|A>—irk'<A|“D<s>>]:iki[<Di|A>—irkj<Di|E>,-<s>(>£6

which shows that is of order ofk. Solving Eq.(40) for L to
orderk? yields

PHYSICAL REVIEW E 67, 066705 (2003

L=iki(Dj|A)(A|A)o T+ 7kX(1[T(s))(AlA) g *,  (4)

where

k¥l |~|(S)>:kikj[<Di|5j(S)>_<Di|A><A|A>51<A|5j(s)(gé)

In Eq. (42), (A|A), is the k—0 limit of the susceptibility
matrix. Since the form factof (ak)=1—a?k?/24 for small
k, only the zero wave vector limit of the susceptibility matrix
contributes taL to this order ink. The reduced flux
| (K)=k-[Dg—(DglA,)((AlA)o)JA] (43
is the component dt- Dg that is orthogonal to the conserved
variables.
The first term on the right side of E¢41) also contains

contributions of the order dk2. In particular, Eq.(26) im-
plies

7(k-Dglk-D,y=i(k-DglA (7)) —i(k-DglA,), (44)

so that stationarity, Eq31), yields

7(k-Dglk-D,)=i(k-DglA)* —i(k-DglA,) (45
=2Im[(k-Dg|A,)]. (46)
It follows that
iki(Dj|Ay=ikw—37kik(DP|DD) +O(k%),  (47)
where
w=Kk-(DY|A)|v=0, (48)

and DP is the smallk limit of D. The frequency matrix)
=w(A|A) Y|, contains the reversiblgulen terms of the
hydrodynamic equations.

In particular, for the particle density,

1 :
Di=—=2 Arel, (49)
J
while for the momentum and energy densities,
o__1 > {agA Age S
Dp=—— : {agjAg+Aag AL e 5. (50)

T

The hydrodynamic poles of E¢38) are proportional tk
ask—0. It follows that to ordek?, these poles are given by
the solution of the quadratic equation

82— 2s5—2(ikQ +T'k?) =0, (51)

where
~ 1..
=7 (1T(s)) - Skk(DYIDD[(AlA) Y, (52

so that
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reduced energy density. F&r(D;|A,)|c—o, the correlation

—ST T .
[(1-e*)+71L(k,5)]—~ §(5+'kQ+Ak2)(ST_2 of the particle density flux with the momentum density, one

finds
—i7kQ— 7AK?), (53
L - 1 )
whereA is given by the smals limit of K-(D1|A2)|k=0=— ~ > k-(Arjue* @iy o
j,l
~ 1 - _
A(S)=F+%QZ=T(I|I(S) —§<|||>}<A|A>01. (54) =~ rksTky, (59

o ) ] ] since Ar;=7v;. Although we know from symmetry that
Combining these results, the linearized hydrodynamic AU . (D, | Ag)|k_o=K- (Ds|A1)|k_o it is instructive to calculate

tions of the system are therefore k-(D,|Ar)| o explicitly. In particular,

- 1
[s+ikQ+k2A]<A|A(S))=;<A|A>R(k), (55) K- (D4l A4 Oz_iz K- (oA
- 7V 17 X

whereR(k) =[1+ 7(ikQ +k?A)] ! is the residue of the hy- + Ao ALY o (60)
drodynamic pole. X295 =0
A is the matrix of transport coefficients. Expressi@)

is the discrete analog of the usual Green-Kubo expressiorls €@n be shown using the techniques described in Sec. 11 B
for transport coefficients. Explicitly, of Part 2 that the ensemble average on the second term on

the right hand side of Eq60) is zero. It is also shown in
o Sec. 1IB1 of Part 2 that\§; can be replaced byv; in
A(s)= rV*E/e*St(I|I(t)><A|A)51, (56) expectation values of quantities which are lineadig , so
t=0 that, in agreement with E¢59),

where the prime indicates that the-0 term has a relative 1
weight of 1/2. Aside from the sum over discrete times, thisis k- (D,|A)|x=o=— = 2 k-(v A& 18], _,
the primary difference in the form of the Green-Kubo rela- ™V I

tion from that for continuum dynamidg5]. KaT
——2 S (@)
. . VT

C. Explicit expressions '

For the current model, the hydrodynamic variables are the =~ pkgTk, (61)
density 5A,(k) = 6p(k), the components of the momentum
density 5Az= dv g_q, With =2, ... d+1, and the energy where the last equality follows fronE(e'* (=& _,
density se(k). However, in the following, it is more conve- =Ng);. The other terms in the frequency matrix can be

nient to work with the variable evaluated in a similar fashion. The final result is
1 . -
SAqs2(K)= 5 > [vi-(vD)le*dif(ak), (57 0 k 0
j N A
which we will call reduced energy density, instead of the cell r
. ; ; 0 kgTk O
energy. If we now assume, as in an ideal gas, that the particle
coordinates and velocities are uncorrelated, the susceptibility R
matrix for this set of variables is diagonal The reduced fluxeb,(k,t) defined in Eq(43) are
1 0 0 R 1 A
0 keTl f2(ak) 0 |1(k,t)=;; k-[—Arj(t)+7v;(D)], (63)
0 0 E(kBT)zfz(ak) 1
(58) IH,g(R,t):;; (—[vmmﬁ-Af,—(t)+Av,—B<t)l2.A§f<t>]
wherel is the d-dimensional identity matrix, ang is the &
particle density. + —ijz(t)) , (64)
The reduced frequency matrix is defined in Eq.48). d
By symmetry, the only nonzero elementswfire those cou-
pling the momentum density with either the density or thefor g=1, ... d, and
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N 1 N
lava(ki)=2 2 (C[{f(D/2-¢,THk-A5 ()

+3AvT(Hk- AE(D) ]+ ke Tk-vj(1)),
(65)

wherec,=dkg/2 is the specific heat per particle at constant
volume of an ideal gas antiv?(t) =v?(t+7)—v?(t). Since
Ari(t)=7vi(t), 11(k,t)=0 to this order ink.
The hydrodynamic transport coefficients for a simple lig-
uid are the kinematic shear and bulk viscositieand y and 107 107 10° 10’
the thermal transport coefficient;. Using Eq.(64) in Eq. 1-cos(ov)
(56), the asymptoti¢long-time limit) shear and bulk viscosi-
ties are found to be FIG. 2. Normalized relaxation timeg/M for the fourth mo-
ment of the velocity distribution as a function of-os(), where
« is the rotation angle. Measurements with different value$/of
V( Su 4 d—2 kgk, ykﬂks (average number of particles per bdall on the same curveM
Be d Kk k2 =15 (filled circles, M =35 (squares and dashed ljneM =70
(filled triangles. The solid line is a plot of 1—cosf)] *. Param-
eters: time steg=1, kgT=0.012 75, and.=16.

:NkT_BT tzz(),<ll+ﬁ(|2,0)||1+g(|z,t)>. (66)

Similarly, the thermal transport coefficient is B. Measuring the shear viscosity

We present here results for the shear viscosity at nonzero
o wave vector measured for both short and long times using
T ’ ~ ~ . . . . . s
A=———s >, (lgs2(K,0)[1 45 2(k,1)). (67)  two different approaches. First, the kinematic viscositis

¢,NksT* =0 determined from the temporal decay of the vorticity. Since
the decay is quite rapid, this allows us to measure the short-

Ay is related to the thermal diffusivityD; by D,  time viscosity in equilibrium. The viscosity is also deter-
=\+1¢,/c,, Wherec,=c,+kg is the specific heat per par- mined at long times by measuring the linear response of the

ticle at constant pressure. The thermal conductivity,is ~ fluid t0 a spatially modulated force. As will be seen, both
kr=pC,Dr. measurements agree, validating the fluctuation-dissipation

theorem for this model. In Part 2, we determine the transport

coefficients using Green-Kubo relations for the microscopic
I1l. NUMERICS stress tensor. This allows us to determine the time-dependent
viscosity from an equilibrium measurement, and enabled us
to observe long-time tails in two dimensions.

A series of simulations were performed on systems with In order to determine the shear viscosity, we need to
periodic boundary conditions consisting bf cells, withL  project out the longitudinal part of the velocity field. We
ranging from 16 to 64. The average number of particles petherefore consider the correlations of the vorticity,
cell, M, was between 5 and 70. The simulations were initi-— ¢ 1j —k,U,, wherel, is the Fourier transform of the

ated with a random distribution of particles, with random component of the macroscopic velocity. Fluctuating hydro-

velocities with components uniformly distributed in the in- gynamics[46] predicts that vorticity correlations decay as
terval[ —vmax:Umaxl- The velocity distribution was found to

quickly relax to a Maxwell-Boltzmann distribution. In order (W (H)w_,(0))~exd — v(k)k?t]. (68)

to characterize this relaxation in more detail, we measured

the fourth moment of the velocity distributionM,

=3L (v +vf), which is a nonconserved quantity, as a\We have used E¢68) to determine the shear viscosity both
function of time. It was found thatl, relaxes exponentially with and without the random shift before the stochastic rota-
to the equilibrium value given by the Maxwell-Boltzmann tion step for the parametekgT=0.01275 §/a=0.11), «
distribution with a relaxation timerg which is essentially =90°, M =35, andL=16. Without the shift, the value of
temperature independent, see Fig. 2. As can be sgeis  determined in this way is at least a factor of 2 larger than that
proportional to the average number of particles in a ¢dJl, given by Eq.(47) of Ref.[31] for «=90°. We also observed
and depends strongly on the value of the rotation anglé  an anomaly inv(k) for small mean free path if one compo-
diverges approximately ass~ a2 for a—0; in this limit,  nent of the wave vector is zero. In particular, as can be seen
there are no collisions and thermal equilibrium cannot ben Fig. 3 (solid lineg, the viscosity at wave vectok
achieved. =2(1,0)/L is approximately four times smaller than for

A. Relaxation towards equilibrium
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was large, and we did not see any significant difference be-
tween the viscosities measured using the equilibrium method
(via the vorticity and the nonequilibrium{constant forcg
method, in agreement with the fluctuation-dissipation theo-
rem.

-
(=]

<w,(0) w_ (D)>/<[w (O)]>
=

10 (= L L =
0 50 100 150 IV. CONCLUSION

Ti : . .
e In this paper, we have presented a detailed, systematic

FIG. 3. Normalized vorticity correlations  derivation of the equations of motion for the correlation
(Wi(0)w_ (1) )/{|w,(0)[) versus time for two different wave vec- functions and discrete Green-Kubo relations for the stochas-
torsk at small mean free path/a=0.11, with(dashed linesand  tic rotation dynamics model originally proposed by Maleva-
without (solid lines the random shift of the grid before the collision nats and Kapral31,37. Several results for this model have
step. The upper solid ar_1d dashed Iine_s are results Kor been presented in Refi31,37; for example, it was shown
z;:ggt Lgfalr?]gtee rr:;B“szag gl%afgegzhggf chzrieggor;cﬁo that there is aH theorem and that this algorithm yields the
L=16 ' ’ ' ’ correct ideal gas hydrodynamics equations. However, the

analysis of Refs[31,32, as well as the applicability of the
_ ) . original algorithm, is limited to situations in which the mean
k=2m(1,1)/L. This would imply, for example, that the ViS- feq path is larger than the cell size, so that the assumption of
cosity for Poiseuille flow would be four times larger if the . \1ciar chaos is valid. In this, and a previous pdpal,
flow axis makes an angle of 45° with respect to the cell axe§,e have shown that there are unphysical anomalies in the

than if it were parallel. We also observed a similar drasticyynsnort coefficients and a breakdown of Galilean invari-
change in the value af(ko) if we imposed a homogeneous gnce for small mean free paths. It was also shown that a

flow parallel to the wave vectdt= (ky,0). This breakdown  ga| modification of the algorithm, which involves a ran-

of Galilean invariance for small mean free path is consistenfjomization of the collision environment, resolves these prob-
with the anomalous behavior described in Sec. | A for theemg | addition, as will be shown in detail in Part 2 of this

self-diffusion constant. _ _ , series, there are large discrepancies between the value of the
If @ random shift of the particle coordinates is performed,iscosity measured in simulations and the result of Maleva-

prior to the collision step, as described in Sec. | A, all theqts and Kapra(Eq. (47) in Ref.[31] and Eq.(29) in Ref.
anomalies described above disappear. Figuaashed lines PZ]) in two dimensions fora~90°. This discrepancy is
r

shows the exponential decay of the vorticity correlations fo esolved in Part 2 by explicitly considering the effects of the

two different wave vectors when there is a random shift. ASjigcrete cell structure, an effect which was neglected in Refs.
can be seen, the viscositylat 27(1,0)/L is now essentially [31,32.

the same as fok=2m(1,1)/L. We also found that’ no The discrete-time projection operator formalism em-

longer depends on the value of a superimposed homogeyoved in this paper is similar to that utilized by Dufty and
neous flow in this case. The shifting procedure, in CONjUNCEngi141] in their derivation of the Green-Kubo relations for
tion with the stochastic collision, leads to an additional con-4ytice gas cellular automata. Using this approach, we were
tribution to the viscosity which removes thedependent 5pe tq incorporate the cell shifting procedure discussed in

anomalies. This is the source of the additional term in thega. | A and it was shown that while the shifting procedure
stress tensor, Eq64), which determines the shear viscosity joeg not change the reversible Euler terms in the equations

via the Green-Kubo relatio(66). . . _ . of motion, it does lead to new contributions to the Green-
We have also measured the viscosity at long times using g relations. The Green-Kubo relations are analyzed in
nonequilibrium(linear responsetechnique in order to vali- - part 5 \where accurate, analytical expressions for the various
date the fluctuation-dissipation theorem for this model. In §.angport coefficients are derived which are valid for all val-
periodic L XL system, a constant, but spatially modulated,eg of)/a and arbitrary Mach number. The derivations pre-
force, f=(f,,0), with f,=Fcos(2ry/L)/M, was applied 10 gented in Part 2 require no assumptions regarding molecular
every particle. After a sufficiently long time, the averagedchaos; they are quite general, and as will be shown else-

cell velocity in x direction converged tdu,)=Acosky),  \here, can be used to analyze more complicated situations
with wave numberk=2=/L. The Navier-Stokes equation ¢ ch as binary fluids or nonideal gases.

predictsA=F/(vk?). A was measured for different values of
the driving forceF, extrapolated té¢-=0, and used to deter-
mine thek-dependent viscosity(k). Note that this method
yields the viscosity at large times. In two dimensions, the
viscosity is predicted to diverge very slowljyogarithmi- Support from the National Science Foundation under
cally) with time, with an amplitude proportional toNl/ (for ~ Grant Nos. DMR-9712134 and DMR-0083219, and the do-
more details, see Part 2 of this papdn a finite system, nors of The Petroleum Research Fund, administered by the
however, v will saturate at some system-size dependentACS, are gratefully acknowledged. T.l. thanks G. Gompper
value. In our case, the average particle number per bhx, for his hospitality at the IFF, Forschungszentruntichu
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