
FORSCHUNGSZENTRUM JÜLICH GmbH
Jülich Supercomputing Centre

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

Verifying Causal Connections between
Distant Performance Phenomena in

Large-Scale Message-Passing Applications

Marc-André Hermanns, Markus Geimer, Felix Wolf,
Brian J. N. Wylie

FZJ-JSC-IB-2008-05

April 2008

(last change: 15.04.2008)

Preprint: Submitted for publication





Verifying Causal Connections between Distant Performance

Phenomena in Large-Scale Message-Passing Applications
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Abstract

In message-passing applications, the temporal or spatial distance between cause and

symptom of a performance problem constitutes a major difficulty in deriving helpful con-

clusions from performance data. So just knowing the locations of wait states in the program

is often insufficient to understand the reason for their occurrence. We therefore present

a method for verifying hypotheses on causal connections between temporally or spatially

distant performance phenomena without altering the application itself. The verification is

accomplished by modifying MPI event traces and using them to simulate the hypothetical

message-passing behavior. By performing a parallel real-time reenactment of the commu-

nication to be simulated using the original execution configuration, we can achieve high

scalability and satisfactory predictive accuracy in relation to the measured behavior. Not

relying on a potentially complex model of the message-passing subsystem, our method is

also platform independent.

1 Introduction

World-wide efforts to build supercomputers with performance levels in the petaflops range ac-

knowledge that the requirements of many key applications can only be met by the most advanced

custom-designed large-scale computer systems. However, as a prerequisite for their productive

use, the HPC community needs powerful and scalable performance-diagnosis tools that make the

optimization of parallel applications both more effective and more efficient [10].

One major difficulty application developers are confronting with traditional performance

tools is that the tools often diagnose only the symptoms of performance problems but not nec-

essarily their causes. In fact, the symptoms may appear (i) much later than the event causing

it, (ii) on a different processor, or (iii) both. The temporal or spatial distance between cause

and symptom constitutes a substantial challenge in deriving helpful conclusions from a set of

performance data. Especially in message-passing applications, load imbalance may create wait

states at the next synchronization point following the imbalance. Since some processes arrive



later at this point due to a higher share of the overall workload, those arriving earlier have to

wait. Especially when trying to scale communication-intensive applications to large processor

counts, such wait states can present severe challenges to achieving good performance. Of course,

these effects are not necessarily confined to load imbalance and may be initiated by a large vari-

ety of behaviors including disparate communication requirements or coordination activities that

are performed only by designated processes. Additionally, messages may propagate wait states

from one process to the next, creating potentially complex and far-reaching propagation chains.

Finally, the individual contribution of a performance phenomenon to a given wait state is hard

to quantify because wait states may occur as a superposition of several influences.

In our earlier work on the SCALASCA toolset [6], we have shown that wait states in MPI

message passing can be identified by searching event traces for characteristic patterns – even at

very large scales. Here, we present a complementary approach aimed at better understanding

their causes. Drawing from earlier ideas on trace-based performance prediction [9, 7, 16, 17], we

have designed and implemented a simulator called SILAS (SImulation of LArge-Scale parallel

applications) that can be used to verify hypotheses on causal connections between different

performance phenomena at very large scales. The verification is accomplished by modifying

event traces according to a hypothesis and using them to simulate the hypothetical message-

passing behavior. The predicted behavior can then be scanned for wait states to investigate how

the modification would influence (and hopefully reduce) their occurrence in various parts of the

program. Typical questions the simulation can answer include how the performance behavior

changes if a specific computation is more evenly distributed across the machine or if a specific

communication operation is replaced or eliminated.

As a distinctive property, the simulator performs a parallel real-time reenactment of the com-

munication to be simulated using the original execution configuration. Supporting conclusions

with respect to the same hardware and an identical number of processes, our approach offers the

following advantages:

• Scalability – Since the simulation is carried out at the original scale, that is, on as many

CPUs as have been used to generate the traces, processing capabilities (i.e., both processors

and memory) grow proportionally with the number of application processes, allowing us

to simulate execution configurations with thousands of processes.

• Accuracy and platform independence – The real-time replay eliminates the need for mod-

eling communication and, thus, removes a major source of prediction inaccuracy. At

the same time, using the communication substrate of the target system automatically in-

tegrates the most important platform-specific parameters at basically no additional per-

platform design cost. Porting the simulator to a new system is therefore straightforward.

The simulator has been designed to enhance the trace-analysis functionality of the

SCALASCA toolset by adding accurate and scalable predictive capabilities. Our ultimate ob-

jective is to go beyond the present localized wait state diagnosis by automatically identifying

and evaluating hypotheses on how the detected wait states can be most effectively removed. The

current prototype of the simulator has been tested and evaluated on Blue Gene/L.

In this article, we give an overview of the simulator and show how it can be used to accurately

predict the effects of very fine-grained changes in the application behavior. We start with a
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review of related work in Section 2. In Section 3, we describe the basic workflow of verifying

optimization hypotheses, outlining the usage of the simulator in the context of the SCALASCA

toolset. In Section 4, we illuminate fundamental design principles, explain key mechanisms,

and discuss limitations. Experimental evidence of accurate predictions at larger scales using

both synthetic benchmarks and real applications is presented in Section 5. Finally, in Section 6,

we conclude the paper and outline future directions.

2 Related Work

The principle of trace-driven performance prediction has already been intensively studied. Sev-

eral approaches have addressed questions about performance implications when varying archi-

tectural parameters, such as CPU speed and network latency and bandwidth, and to a lesser

extent also when introducing synthetic perturbations [8] that reflect modified application-level

behavior.

Mendes transforms event traces of message-passing applications according to a prediction

model based on relative processor speed, optionally differentiated by code section, and message

transfer times previously obtained from benchmark measurements as a function of the message

size [9]. Since the order in which messages are received may be sensitive to changes in the

execution configuration and an unstable message order may adversely affect simulation fidelity,

the stability of the order is verified prior to the simulation by repeatedly introducing short delays

(i.e., perturbations) into the code and comparing the message order recorded in trace files to the

original order.

An early performance-analysis toolkit offering trace-based simulation capabilities as one

element of a comprehensive feature catalog is AIMS [16], which estimates the scalability of

parallel applications by extrapolating previously generated execution traces to higher numbers

of processors and larger problem sizes. The extrapolated traces can be subsequently analyzed

using standard trace-analysis modules provided by the toolkit.

Originally motivated by the need to study the sharing of multiprocessors among multiple

applications, DIMEMAS [7] provides the ability to simulate the execution behavior of parallel

programs based on previously generated event traces. The processes used to generate the traces

match the number of simulated processes, but may share a smaller number of physical processors

during the instrumented run. The underlying prediction model allows the adjustment of relative

processor speeds, network bandwidth and latency within and across nodes, the number of input

and output links, and the processor scheduling policy. Additionally, DIMEMAS can distinguish

between networks with full connectivity and bus-based networks with potential bus access con-

flicts. While DIMEMAS itself is a sequential tool, traces used as input for DIMEMAS stem from

message-passing or multithreaded programs. The traces produced as output can be analyzed

using the Paraver [7] trace browser, taking advantage of its powerful time-line visualization

and rich statistical functionality. Besides simple architectural parameter studies, DIMEMAS has

been used to investigate the effects of scaling individual program states and to develop analyt-

ical models as functions of latency, bandwidth, processor speed, and the number of processors

by extrapolating simulations from multiple traces [11]. Moreover, it has been instrumental in

designing cooperative caches [4] and predicting MPI application behavior in grids [2]. An ap-
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proach similar in spirit to the one taken in DIMEMAS has also been used in the KOJAK project to

compensate for perturbation errors caused by instrumentation overhead [13].

Predicting application performance for emerging architectures larger than those at one’s dis-

posal is the focus of BigSim [18]. Based on Charm++, an object-based and message-driven

parallel programming language, BigSim combines an emulator that is capable of running larger

numbers of virtual processes on a smaller number of physical processors with a postmortem

simulator that uses traces generated during an emulated run. The simulation occurs in two steps:

At runtime, the emulator already corrects timestamps of individual messages. After program ter-

mination, the simulator accounts for network contention and topological characteristics. If the

memory requirements of the application are larger than the memory available to the emulator,

data may be swapped out to the file system while not being used.

Compared to the approaches described above, our work clearly concentrates on the effects of

fine-grained alterations of application-level behavior with respect to the performance under an

identical execution configuration. Typical use cases include the balancing of individual functions

or the elimination or replacement of communication operations. The most important method-

ological difference is the use of a parallel real-time replay of the simulated communication at

the original scale, which offers scalability advantages and relieves us of the burden of modeling

the extremely complex communication infrastructures found on today’s large-scale machines.

3 Hypothesis Verification

In this section, we describe the typical usage scenario of our simulator in the context of the

SCALASCA toolset. SCALASCA has been specifically designed for use on large-scale systems

including IBM BlueGene and Cray XT, but is also well-suited for small- and medium-scale HPC

platforms. A distinctive feature is the ability to identify wait states in event traces of MPI appli-

cations with very large numbers of processes using a parallel replay of the target application’s

communication behavior [6]. During the wait-state analysis, SCALASCA searches process-local

event traces in parallel for characteristic patterns indicating wait states and related performance

properties, classifies detected instances by category and quantifies their significance. The result

is a pattern-analysis report similar in structure to a typical call-path profile but enriched with

higher-level communication and synchronization inefficiency metrics that provide information

on the type, location, and severity of wait states. The report can be interactively examined in a

visual report explorer (Figure 4).

Looking for ways to extend our trace analysis toward a better understanding of the relation-

ship between imbalanced execution and wait states, we soon realized that finding the cause of a

given wait state by searching the trace backward in time would be much harder than verifying

whether a suspected cause can be held responsible. This lead to the idea of designing a trace-

based simulator, capable of operating at very large scales and accurate enough to predict the

long-range effects of potential optimizations on the formation of wait states later in the program.

Since no source code modification is required, we hope that it will become possible to automat-

ically test a larger number of optimization hypotheses derived from the original trace data and

rank them according to the expected performance benefit to identify the most promising ones.

Figure 1 illustrates the role of the simulator in the procedure of verifying hypotheses on
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Figure 1: Workflow for verifying optimization hypotheses. Grey rectangles denote pro-
grams, white rectangles with the upper right corner turned down denote files, and white
rectangles with rounded corners denote data objects residing in memory. Stacked symbols
indicate multiple instances of programs, files, or data objects running or being processed
in parallel. The target application generating the event trace is the entry stage of the work-
flow. Judging the difference between normal execution and the predicted outcome of the
optimization displayed in the report explorer is the final stage.

causal connections between temporally or spatially distant performance phenomena. The gen-

eral objective of the process is to generate pattern reports from both the measured and the pre-

dicted behavior and compare the results to allow conclusions on the effects of hypothetical pro-

gram modifications with respect to wait states and other performance metrics. The workflow

starts with running the instrumented target application in the execution configuration we want

to make predictions for and generating an event trace consisting of one trace file per applica-

tion process. During all subsequent steps, access to the event trace occurs through a parallel

object-oriented high-level API [5]. The primary usage model of the API assumes a one-to-one

mapping between application and tool processes, that is, for every process of the target applica-

tion, one tool process is created that loads the corresponding trace data into main memory and

offers random access to individual events. In addition, the API provides abstractions allowing

the convenient exchange of event objects. At a lower level, data exchange among tool processes

is accomplished via MPI communication.

A hypothesis includes the specification of a trace transformation, which may prescribe the

adjustment of event timestamps, the deletion of existing events, or the insertion of new events to

model changes in the application’s source code. As already pointed out, our ultimate objective

is the automatic derivation of suitable hypotheses from the original trace data, for example, af-

ter identifying local or global load imbalances or other disparities among application processes

(shown in Fig. 1 using dashed lines). Currently, a set of parameterized standard transformations

including the scaling of functions or the elimination of messages can be specified via a configu-

ration file and provided as input to the trace-transformation stage. Arbitrary transformations can

be implemented as hand-written programs utilizing the aforementioned trace-access API, which
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has been extended for this purpose by adding an interface to modify the trace data.

After the transformation has been applied, the simulator performs a parallel real-time replay

of the events stored in the trace. Computation intervals are simulated simply by elapsing the

time in between using busy wait, whereas communications are simulated by reenacting the com-

munication operations recorded in the trace. Thus, the time of a communication is determined

by the time needed to execute the corresponding MPI call under modified conditions. As the

simulation progresses, event timestamps are adjusted to reflect the time elapsed since simulation

start. Obviously, keeping all the trace data in memory is an essential prerequisite for performing

the simulation in real time because reading the trace data from file in the course of the replay can

severely compromise simulation accuracy unless such interruptions are appropriately accounted

for.

Finally, a pattern search is performed on both the original and the simulated event trace.

The main target of the search is the classification of wait states and their quantification broken

down by call path and process. The results of the two analyses are subtracted using a difference

operator [12] defined over the set of potential search outputs. For every type of wait state, the

operator essentially calculates the element-wise difference between corresponding (call path,

process) matrices, taking into account that the simulated run may exhibit call paths not present

in the original run and vice versa. The difference data set can be visually explored to assess the

changes the modified behavior has brought about, in particular with respect to the reduction or

migration of wait states (Figure 4). Propagating the effects of changes starting from the point of

their injection onwards through the entire execution and also carrying influences over to remote

processes, our simulator allows the verification of causal connections between temporally or

spatially distant performance phenomena within the confidence limits our simulator offers.

4 Replay-based Simulation

In this section, we examine the core simulation workflow (shaded area in Fig. 1) in more detail.

Using the simple example depicted in Figure 2, we illustrate the two elementary steps of trace

transformation and simulation. We explain fundamental design principles of the simulator and

discuss techniques applied to ensure satisfactory simulation accuracy.

4.1 Trace Transformation

An event trace is an abstract representation of execution behavior codified in terms of events.

Every event includes a timestamp and additional information related to the action it describes.

The event model underlying our approach [14] specifies the following event types:

• Entering and exiting code regions. The region and the call path are specified as event

attributes.

• Sending and receiving messages. Message tag, communicator, and size are specified as

event attributes.
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• Exiting collective communication operations. This special exit event carries event at-

tributes specifying the communicator, the amount of data sent and received, and the root

process if applicable.

MPI point-to-point operations appear as either a send or a receive event enclosed by enter

and exit events marking begin and end of the MPI call, whereas MPI collective operations appear

as a set of enter / collective exit pairs (one pair for each participating process). Our event model

currently ignores other types of communication, such as RMA, and file I/O.

At a lower level, the event trace can be modified by altering event timings, deleting exist-

ing events, inserting new events, and otherwise changing arbitrary event attributes relevant to the

replay. Since all events carry absolute timestamps, the modification of a timestamp may necessi-

tate modifying the timestamps of subsequent events. Modifying the end times of communication

operations is not necessary because these times will be “measured” during the simulation, as we

will see in Section 4.2. As preliminary model of a higher-level mechanism, we have imple-

mented a few sample hypotheses, such as scaling regions or balancing regions among processes

both globally and on a per-instance basis. Moreover, messages can be removed depending on

their tag and whether their size exceeds or falls below a certain threshold. Further hypotheses,

such as substituting communication operations or modifying message parameters, will be added

as we gain more experience with application test cases. The use of a higher-level mechanism,

which is currently accessible via a configuration file supplied as input to the simulator, has the

advantage that consistency constraints ensuring the logical integrity of the trace (e.g., avoiding

dangling messages sent without matching receive event) can be more easily enforced.

Figure 2(a) shows an event trace generated from two MPI processes. After executing the

functions foo() and bar() in a row, both processes engage in two message communications

via matching pairs of MPI Send() and MPI Recv(). Whereas the first time the message is sent

from A to B, the second time the message is sent in the opposite direction. Apparently, function

foo() exhibits an imbalance because process B spends less time in foo() than process A does.

Function bar(), in contrast, is entirely balanced. The imbalance in foo() indirectly causes

process B to wait for the message sent by A during the first communication, a situation also

known as Late Sender. No wait state can be observed during the the second communication.

Our obvious hypothesis is that the wait state in the first MPI Recv() can be removed by

balancing function foo() with expected benefits for the overall performance. Balancing foo()

during trace transformation yields the trace shown in Figure 2(b), with the timestamps of events

e2 and e12 being modified and the timestamps of all subsequent events adjusted accordingly. Of

course, the lengths of the communication intervals now seem distorted because the MPI calls are

simply shifted to the left or to the right without accounting for changes that would occur if the

MPI calls were carried out under these new conditions. Note that the receive event of process

A (e9) now happens before the matching send event (e19), violating the causal event order. The

task of rectifying this distortion is left to the actual simulation.

4.2 Simulation

As event traces model only a very restricted view of the application behavior, the simulator faces

the challenge of having to approximate both computation and communication accurately enough
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Figure 2: Original event trace (a), event trace after trace transformation (b), and simulated
event trace (c). Circles denote enter and exit events, squares denote send and receive events.

to produce realistic events timings in the output trace. Because input and output of the simulator

are on the same abstraction level, our primary focus is the length of intervals between events but

not necessarily what happens inside.

The general principle of the simulation is to traverse the event trace in parallel, each simula-

tion process being responsible for a different application process, whose trace data resides in the

memory of the simulation process. During the traversal, each simulation process examines the

events assigned to it in chronological order and takes different actions depending on the type of

the event and its associated interval. The traversal is performed in real time, that is, an event is

reached at the time it is supposed to occur during the simulated run. For the purpose of the simu-

lation, we regard everything that occurs outside a communication operation as computation. As

a general rule, computation intervals are simply elapsed, whereas communication intervals are

filled by reenacting the corresponding communication operation. In the course of the simulation,

timestamps are successively changed to simulated time.
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Start up. The MPI standard neither specifies a certain order in which individual MPI processes
must be initialized, nor can we assume that the relative times at which MPI processes leave

MPI Init() remain stable across runs. Although it is hard to assess the significance of this

effect on the performance behavior on a general level, we have decided to recreate the orig-

inal conditions for our simulated run. Initially, all processes wait in a barrier. The earliest

timestamp recorded in the event trace, which is collectively identified via a minimum reduction,

defines the starting point. At the beginning, all processes wait until the time difference between

their own local and the global minimum timestamp has expired. The initial temporal offset is

thus treated like a computation interval, as explained below. This procedure ensures that the

simulated trace will show process initialization in the order of the original trace, keeping the

perturbation caused by non-deterministic startup as small as possible. Likewise, the original

time spent in MPI Init() along with any overhead introduced by the tracing library is retained.

The influence of the overhead, however, is later removed from the pattern-search output.

Computation. A computation interval is simulated by elapsing the corresponding time span,
whether it is still the original one or whether it has been modified during trace transformation.

This is accomplished by calling a wait function, supplying the requested time interval as an

argument to a simple busy wait, implemented using highly-accurate timers available on the

target system. We have found this to be a portable solution, as the timer functionality is already

provided by the SCALASCA infrastructure in a platform-independent way.

Communication. To accurately replay the communication, we use the communication oper-
ations specified in the modified event trace with identical send and receive buffer sizes. Since

the data type is not recorded in the trace, we always transfer arrays of type MPI BYTE. The cur-

rent event model used by SCALASCA already provides enough information to simulate most

synchronous MPI point-to-point and collective operations. Since the actual contents transferred

during the simulation has generally no direct influence on the performance behavior, reusable

message buffers can be allocated in advance after determining the buffer requirements of each

process, eliminating the allocation overhead at runtime. Extensions to cover a wider range of

operations including non-blocking communications that will be sufficient to support most of to-

day’s MPI codes are straightforward and already in progress. Emulating the way typical PMPI

wrapper functions are implemented, the clock value before or after performing the communi-

cation determine a send operation’s send and exit timestamps or a receive operation’s enter and

receive timestamps, respectively. The remaining events of entering the send operation or leaving

the receive operation are processed as part of the preceding or the following computation phase.

Figure 2(c) shows the simulated trace based on the assumption that function foo() can

be perfectly balanced. Since events e5 and e15 now occur simultaneously, the waiting time

inside the first receive operations disappears, leaving events e7 and e17 at the same position on

the time axis. As a consequence, both processes enter the second communication at the same

time (e8 and e18), correcting the causality violation still visible in 2(b). As a net result, our

simulation predicts that balancing function foo() reduces the overall execution time by the time

indicated in the diagram. Note that the simultaneous completion of matching communication

operations has only been chosen to keep the example simple and does not represent an inherent
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assumption of our simulator. Of course, the communication reenactment would account for

potential completion offsets occurring under real conditions.

4.3 Small Intervals

One potential source of inaccuracy in our approach is the simulation of small intervals – espe-

cially of those that are smaller than the resolution of our wait function. Every call to this routine

incurs a certain overhead, as it requires querying the system timer at least once. In general, the

relative error introduced by this function is indirectly proportional to the length of the interval to

be simulated. It is therefore preferable to reduce the granularity of the time measurements and

make the time spans spent waiting as long as possible.

For this reason, adjacent computation intervals are grouped together in a preprocessing step

and later simulated in one chunk. After the replay, the timestamps of events delimiting indi-

vidual parts of this super-interval are readjusted according to their relative distance. While this

technique works well for consecutive computation intervals, communication intervals imme-

diately following each other (e.g., MPI calls in a tight loop) still pose a challenge. The time

interval between individual MPI calls can be smaller than the minimum time interval that can

be simulated by our wait function. As a remedy, such intervals are approximated without call-

ing the timer. To further reduce the per-event replay overhead, the decision whether an interval

qualifies for approximation is made in advance. Currently, the approximation is based on con-

figurable thresholds, but a more automated calibration mechanism that calculates the thresholds

at simulator startup is already under development.

4.4 Limitations

Below we discuss limitations of our approach, distinguishing temporary ones that can be re-

solved in the future by extending our event model from fundamental and ones that are inherent

to the approach itself.

Currently, our simulator is not capable of correctly replaying asynchronous MPI point-to-

point communication, as information on communication requests is not yet properly recorded

in the trace data. Likewise, the non-determinism expressed in wildcard receives using

MPI ANY SOURCE and/or MPI ANY TAG is not retained. Instead, the replay uses source and tag

information identified during trace acquisition, thus, restricting the order in which messages are

received during the simulation to the order previously observed. However, the required infor-

mation can in principle be recorded in event traces to correctly model these two aspects. An

appropriate extension of the event model is currently being pursued.

Furthermore, MPI collective operations transferring a different amount of data per process,

such as MPI Gatherv() or MPI Alltoallv(), can only be approximated using their less specific

counterparts, as only the aggregate amount of data sent and received is currently recorded for

these routines. The additional space requirement of storing data sizes broken down by source

or destination process would have to be weighed against expected accuracy benefits. Also, our

current approach is oblivious of data types, which may misrepresent the computational overhead

associated with reduction operations. Especially processing and transferring user-defined data

types would be hard – and in some instances even impossible – to simulate exactly.
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Moreover, file I/O is currently not distinguished as such and treated in the same manner as

computation intervals are, that is, it is simulated using the busy wait function. Although in theory

it would be feasible to replay this as well by tracing the type of file operation and the amount of

data read or written, the large variations in I/O performance usually observed (e.g., in response

to the overall load of the file system) render this option an uncertain alternative. Finally, we

are aware that just spinning during computation intervals ignores potential interactions between

processes through the memory subsystem. By shifting the relative time at which concurrent

memory accesses of processes co-located on the same SMP node take place, the overall memory

bandwidth requirements may change. Please note, however, that most of these issues reach far

beyond the fidelity of analytical approaches our method can be compared to.

Another fundamental issue touches the question to what extent the hypotheses expressible

within the limits of our event model can reflect real code changes. For example, redistributing

load in reality might also alter the communication requirements and influence number and size

of messages that must be sent and received. While such changes can in principle be addressed

by our simulation scheme, the challenge lies in managing the complexity of specifying these

dependencies when defining optimization hypotheses. We argue, however, that as a first hint

at potential optimizations, the simple hypotheses we currently support can already deliver a

sufficiently accurate picture.

5 Examples

In this section, we report on the experiences gained so far with our simulator using both syn-

thetic benchmarks, where the code can be more easily modified to reconstruct the hypothetical

behavior in reality, and more complex real-world applications. After validating the overall accu-

racy of the simulation using unmodified trace data, we verified optimization hypotheses related

to load balancing and improved communication behavior. All experiments were performed on

the 8-rack IBM Blue Gene/L system JUBL at Forschungszentrum Jülich in coprocessor mode.

5.1 Identity Simulation

One way of validating the overall simulation accuracy is to perform an identity simulation, that

is, replaying an recorded event trace without applying any prior transformation, and comparing

the predicted to the original behavior. For this purpose, we chose the ASC SWEEP3D benchmark

code [1], an MPI application which calculates the flux of neutrons through each cell of a three-

dimensional grid along several possible directions of travel. We conducted measurements at a

range of scales from 32 to 4,096 processes. The application was configured to run for a few

minutes, with the problem size per process being roughly constant (i.e., weak scaling).

In our experiments, the deviation of the overall execution time predicted by the simulator

from the execution time measured during an actual run was rather small, typically in the order of

less than 0.5 percent. As positive and negative errors occurring in different parts of the program

may compensate each other, we determined the aggregate absolute error across all (call path,

process) combinations. The deviation in relation to the total execution time was less than 0.8

percent in all configurations, demonstrating that a reasonable level of accuracy was sustained
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throughout the entire program. The instrumentation overhead created during trace acquisition

was negligible for all configurations.

5.2 Load Balancing

Load imbalance is a common source of wait states in message-passing applications. Here, we

present two synthetic benchmark programs with wait states being indirectly induced by load

imbalance, propagating to the affected communication across a longer range of execution time

through a phase of balanced behavior (Figure 3). Using these two examples, we demonstrate

our simulator’s ability to accurately predict the reduction of waiting time after removing the im-

balance, thus verifying a causal connection between these two distant performance phenomena.

The first example is called LB-COLL and generates aWait at N×N inefficiency pattern, where

a load imbalance induces waiting times at the next synchronizing collective communication.

Figure 3(a) shows one possible incarnation of this pattern, as it appears in our example. In this

program, a sequence of three function calls is executed inside a loop of 100 iterations. The first

routine is called foo(), emulating a load imbalance by making the execution time dependent

on the rank number. The last function call in each iteration is MPI Allreduce(), implicitly

synchronizing all processes involved due to the all-to-all character of the communication. To

show the long-range effects of the perturbation introduced by the imbalance, a routine bar() is

executed in between, taking the same amount of time for each process.

The second example is called LB-P2P and generates a Late Sender inefficiency pattern, as

depicted in Figure 3(b). Load imbalance between processes with odd and even rank numbers

causes processes A and C to wait in a later point-to-point receive operation. In this more complex

case, not only computational phases (i.e., calls to bar()) appear between cause and symptom of

the imbalance, but also additional communications involving other combinations of processes.

Again, 100 iterations of the illustrated behavior were performed.

In both cases, the simulator was used to verify the hypothesis that the imbalance in function

foo() is mainly responsible for the later occurrence of wait states and that balancing it would

substantially contribute to their reduction. To validate the accuracy of our prediction, the result

was compared to measurements with a version of the program that had been previously modified

according to our hypothesis. Like in the previous case, the experiments were performed on a

range of scales from 32 to 4,096 processes. In relation to the results obtained for the identity

simulation of SWEEP3D, the overall prediction accuracy was even better for both examples (in

the order of ±0.002%, i.e., showing only measurement noise). Contrasting the pattern search

results of the original runs with the results of the simulated optimized runs using the difference

operator introduced in Section 3 revealed that the simulated balancing of function foo() indeed

eliminated the majority of the Late Sender pattern instances, as was expected. This result was

also confirmed by the measured optimized runs.

5.3 Altering Communication Behavior

XNS [3], a computational fluid dynamics application based on finite-element techniques on ir-

regular three-dimensional meshes, serves as an example for a very substantial alteration of com-

munication behavior. The code consists of roughly 45,000 lines of mixed Fortran and C in more
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point-to-point communication operation between pairs of even and odd ranks.

Figure 3: One iteration of each of the two synthetic examples LB-COLL and LB-P2P,
illustrating the long-range effects of load imbalance in function foo().

than 100 files and has already been subject to performance analysis and subsequent optimization

using the SCALASCA toolset [15]. During this work, the unnecessary use of zero-sized point-to-

point message transfers has been identified as a major scalability bottleneck. With respect to our

simulation approach, this application example was especially interesting as it not only allowed

us to show the contribution of a single performance problem to the formation of wait states in

point-to-point communication, but also the accurate prediction of secondary effects, such as the

migration of wait states after eliminating the point of their initial materialization.

The basis of our investigation was an event trace acquired for one simulation time step

during a run with 1,024 processes using a version of the program where the MPI Sendrecv()

calls responsible for the zero-sized messages had already been replaced with pairs of individual

calls to MPI Send() and MPI Recv(). In future work, we plan to utilize the trace modification

API outlined in Section 4.1 to perform this step automatically during the trace-transformation

stage without touching the source code itself. According to pattern search results obtained for

the original trace, the application suffered from a high fraction of time spent in MPI (59.9%)

with roughly half of it attributable to Late Sender wait states.

Our transformation consisted of eliminating all transfers of zero-sized messages occurring
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(a) Difference between the original and the simulated optimized behavior.

(b) Difference between the original and the measured optimized behavior.

Figure 4: The SCALASCA report explorer displaying the distribution of execution-time
savings in XNS after removing zero-sized messages. All values are percentages of the orig-
inal total execution time. Positive values (icons with raised reliefs) denote savings whereas
negative values (icons with sunken reliefs) denote losses. Expanded nodes represent only
the fraction not already covered by their children.

inside two problematic routines identified during an earlier trace analysis to assess their contri-

bution to the wait states observed. Although conceptually simple, applying the transformation

meant eliminating more than 1.2 billion messages from the trace, which corresponds to more

than 90% of the total number of message transfers.
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Figure 4(a) shows the difference between the pattern search results for the original run and

the simulated optimized run. The predicted overall improvement (not shown) was 46.9% com-

pared to a measured improvement of 49.4%. The simulator predicts not only significant savings

with respect to Late Sender wait states (22.6% of the original execution time), but also the mi-

gration of a smaller amount of waiting time to barrier synchronizations (2.6%) as a secondary

effect. For comparison, Figure 4(b) depicts the equivalent output for the difference between the

original run and the measured optimized run. As can be seen, the obviously small deviations

mostly affect the Late Sender metric, with the actual saving exceeding the prediction by about

2% of the original execution time. On the other hand, the predicted extent even of the relatively

small secondary effect of wait state migration to barrier calls closely matches the measured ex-

tent. Thus, our simulator was able to establish a causal relationship between zero-sized messages

and Late Sender wait states as well as to foresee a small amount of wait-state migration after

their removal with reasonable accuracy.

6 Conclusion

We have presented a novel approach to verifying hypotheses on causal connections between dis-

tant performance phenomena in MPI message-passing applications without altering their source

code. Using trace-based simulation in the original execution configuration, we can accurately

assess long-range effects of a variety of behaviors related to computation and communication.

Since the simulation correctly propagates the influence expressed by an optimization transforma-

tion even across process boundaries via message communication, the initial cause and the final

symptom may also be separated along the space dimension. The methodological key difference

to earlier approaches is a parallel real-time reenactment of the simulated communication at the

original scale, allowing the efficient simulation of MPI applications with thousands of processes.

Moreover, since the reenactment eliminates the need to model the extremely complex commu-

nication infrastructures found on today’s large-scale machines, our approach is also platform

independent. Accurate predictions were shown for examples of increasing complexity with up

to 4,096 processes.

As a next step, we plan to incorporate support for asynchronous communication and wild-

card receive operations, as anticipated in Section 4.4, and evaluate our simulator with a broader

range of realistic codes. As our ultimate goal is automatically identifying suitable optimization

hypotheses, the simulator is intended to form the core component of a more universal tuning

framework, where it will be used to verify optimization hypotheses derived from the original

trace data. For this purpose, our future work will include the development of new trace-analysis

algorithms with emphasis on the characterization of load and communication imbalance.
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