001     30038
005     20180210134034.0
024 7 _ |2 DOI
|a 10.1016/S0039-6028(03)00516-8
024 7 _ |2 WOS
|a WOS:000183254900013
037 _ _ |a PreJuSER-30038
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Wehner, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB14462
245 _ _ |a Growth and oxidation of a Ni3Al alloy on Ni(100)
260 _ _ |a Amsterdam
|b Elsevier
|c 2003
300 _ _ |a 287 - 294
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface Science
|x 0039-6028
|0 5673
|v 531
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The growth and oxidation of a thin film of Ni3Al grown on Ni(1 0 0) were studied using Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and high resolution electron energy loss spectroscopy (EELS). At 300 K. a 12 Angstrom thick layer of aluminium was deposited on a Ni(1 0 0) surface and subsequently annealed to 1150 K resulting in a thin film of Ni3Al which grows with the (10 0) plane parallel to the (10 0) surface of the substrate. Oxidation at 300 K of Ni3Al/Ni(1 0 0) until saturation leads to the growth of an aluminium oxide layer consisting of different alumina phases. By annealing up to 1000 K, a well ordered film of the Al2O3 film is formed which exhibits in the EEL spectra Fuchs-Kliewer phonons at 420, 640 and 880 cm(-1). The LEED pattern of the oxide shows a twelvefold ring structure. This LEED pattern is explained by two domains with hexagonal structure which are rotated by 90degrees with respect to each other. The lattice constant of the hexagonal structure amounts to similar to2.87 Angstrom. The EELS data and the LEED pattern suggest that the gamma'-Al2O3 phase is formed which grows with the (1 1 1) plane parallel to the Ni(1 0 0) surface. (C) 2003 Elsevier Science B.V. All rights reserved.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a nickel
653 2 0 |2 Author
|a aluminum oxide
653 2 0 |2 Author
|a alloys
653 2 0 |2 Author
|a oxidation
653 2 0 |2 Author
|a growth
653 2 0 |2 Author
|a low energy electron diffraction (LEED)
700 1 _ |a Jeliazova, Y.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5526
700 1 _ |a Franchy, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5400
773 _ _ |a 10.1016/S0039-6028(03)00516-8
|g Vol. 531, p. 287 - 294
|p 287 - 294
|q 531<287 - 294
|0 PERI:(DE-600)1479030-0
|t Surface science
|v 531
|y 2003
|x 0039-6028
856 7 _ |u http://dx.doi.org/10.1016/S0039-6028(03)00516-8
909 C O |o oai:juser.fz-juelich.de:30038
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)27409
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21