000030049 001__ 30049
000030049 005__ 20200423203514.0
000030049 017__ $$aThis version is available at the following Publisher URL: http://apl.aip.org
000030049 0247_ $$2DOI$$a10.1063/1.1534412
000030049 0247_ $$2WOS$$aWOS:000180160800045
000030049 0247_ $$2Handle$$a2128/1227
000030049 037__ $$aPreJuSER-30049
000030049 041__ $$aeng
000030049 082__ $$a530
000030049 084__ $$2WoS$$aPhysics, Applied
000030049 1001_ $$0P:(DE-HGF)0$$aRoelofs, A.$$b0
000030049 245__ $$aPiezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity
000030049 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2002
000030049 300__ $$a5231 - 5233
000030049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000030049 3367_ $$2DataCite$$aOutput Types/Journal article
000030049 3367_ $$00$$2EndNote$$aJournal Article
000030049 3367_ $$2BibTeX$$aARTICLE
000030049 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000030049 3367_ $$2DRIVER$$aarticle
000030049 440_0 $$0562$$aApplied Physics Letters$$v81$$x0003-6951
000030049 500__ $$aRecord converted from VDB: 12.11.2012
000030049 520__ $$aSingle ferroelectric lead titanate (PTO) grains down to 15 nm were fabricated by chemical solution deposition. Varying the dilution of the precursor solution leads to different grain sizes between 15 and 200 nm. The grain-size-dependent domain configuration was studied using three-dimensional piezoresponse force microscopy (PFM). It is found that the PTO. grains in a dense film contain laminar 90degrees domain walls, whereas separated PTO grains show more complicated structures of mainly 180degrees domain walls. For grains smaller than 20 rim, no piezoresponse was observed and we suppose this could be due to the transition from the ferroelectric to the superparaelectric phase which has no spontaneous polarization. Recent calculations showed that the ferroelectricity of fine ferroelectric particles decrease with decreasing particle size. From these experiments the extrapolated critical size of PTO. particles was found to be around 4-14 nm. (C) 2002 American Institute of-Physics.
000030049 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000030049 588__ $$aDataset connected to Web of Science
000030049 650_7 $$2WoSType$$aJ
000030049 7001_ $$0P:(DE-HGF)0$$aSchneller, T.$$b1
000030049 7001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b2$$uFZJ
000030049 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000030049 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.1534412$$gVol. 81, p. 5231 - 5233$$p5231 - 5233$$q81<5231 - 5233$$tApplied physics letters$$v81$$x0003-6951$$y2002
000030049 8564_ $$uhttps://juser.fz-juelich.de/record/30049/files/27452.pdf$$yOpenAccess
000030049 8564_ $$uhttps://juser.fz-juelich.de/record/30049/files/27452.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000030049 8564_ $$uhttps://juser.fz-juelich.de/record/30049/files/27452.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000030049 8564_ $$uhttps://juser.fz-juelich.de/record/30049/files/27452.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000030049 909CO $$ooai:juser.fz-juelich.de:30049$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000030049 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000030049 9141_ $$aNachtrag$$y2002
000030049 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000030049 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000030049 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x0
000030049 970__ $$aVDB:(DE-Juel1)27452
000030049 980__ $$aVDB
000030049 980__ $$aJUWEL
000030049 980__ $$aConvertedRecord
000030049 980__ $$ajournal
000030049 980__ $$aI:(DE-Juel1)PGI-7-20110106
000030049 980__ $$aUNRESTRICTED
000030049 980__ $$aFullTexts
000030049 9801_ $$aFullTexts
000030049 981__ $$aI:(DE-Juel1)PGI-7-20110106