000003014 001__ 3014
000003014 005__ 20240709112133.0
000003014 0247_ $$2DOI$$a10.1016/j.nucengdes.2008.10.029
000003014 0247_ $$2WOS$$aWOS:000263458400010
000003014 037__ $$aPreJuSER-3014
000003014 041__ $$aeng
000003014 082__ $$a620
000003014 084__ $$2WoS$$aNuclear Science & Technology
000003014 1001_ $$0P:(DE-Juel1)VDB7886$$aKelm, S.$$b0$$uFZJ
000003014 245__ $$aEnsuring the long-term functionality of passive auto-catalytic recombiners under operational containment atmosphere conditions - An interdisciplinary investigation
000003014 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2009
000003014 300__ $$a274 - 280
000003014 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000003014 3367_ $$2DataCite$$aOutput Types/Journal article
000003014 3367_ $$00$$2EndNote$$aJournal Article
000003014 3367_ $$2BibTeX$$aARTICLE
000003014 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000003014 3367_ $$2DRIVER$$aarticle
000003014 440_0 $$04639$$aNuclear Engineering and Design$$v239$$x0029-5493$$y2
000003014 500__ $$aRecord converted from VDB: 12.11.2012
000003014 520__ $$aIn order to sustain the structural integrity of the containment and other safety relevant components i.e. to avoid a detonation of the hydrogen-air mixture generated during a severe accident in light water reactors, passive auto-catalytic recombiners (PAR) are used for hydrogen removal in many European nuclear power plants (NPP). In 1999, the German NPP Emsland (KKE) was equipped with 58 PAR of AREVA design as an internal accident management measure for a beyond-design accident. Since that time the recombiners are in a stand-by state. As the catalyst elements are exposed to various airborne substances during normal plant operation their function is controlled periodically by testing selected catalyst sheets in a specially designed device. Under the conservative test conditions during this procedure some catalyst sheets showed a delayed responding behavior. First internal analysis gave indication of a beginning fouling on the catalytic surface.The aim of a precautionary investigation performed in cooperation between KKE, Forschungszentrum Juelich and RWTH Aachen University was to characterize the composition of the fouling and to correlate it with potential sources within the containment.In the framework of the investigation the reports of the periodic inspections were analyzed and appropriate sample sheets were selected from the installation. These samples were subjected to a comprehensive chemical surface analysis in order to identify effects like thermal sintering, poisoning or a blocking of the catalytic surface (Baerns, M., 2004. Basic Principles in Applied Catalysis, Springer Verlag). Along with the chemical analysis the catalytic activity of the samples was assessed in several test series in order to correlate the chemically quantified deposition on the catalyst samples with the characteristics of the start-up and the steady-state performance of the recombination reaction. In a final step, possible sources of the fouling were analyzed with regard to their possible contribution to the phenomena. According to the results achieved, measures have been implemented at KKE in order to optimize procedures and to enhance the performance of the PARs. (C) 2008 Elsevier B.V. All rights reserved.
000003014 536__ $$0G:(DE-Juel1)FUEK404$$2G:(DE-HGF)$$aNukleare Sicherheitsforschung$$cP14$$x0
000003014 536__ $$0G:(DE-Juel1)FUEK406$$aAtmosphäre und Klima$$cP22$$x1
000003014 588__ $$aDataset connected to Web of Science
000003014 650_7 $$2WoSType$$aJ
000003014 7001_ $$0P:(DE-HGF)0$$aSchoppe, L.$$b1
000003014 7001_ $$0P:(DE-Juel1)129189$$aDornseiffer, J.$$b2$$uFZJ
000003014 7001_ $$0P:(DE-Juel1)129471$$aHofmann, D.$$b3$$uFZJ
000003014 7001_ $$0P:(DE-Juel1)130400$$aReinecke, E.-A.$$b4$$uFZJ
000003014 7001_ $$0P:(DE-Juel1)VDB917$$aLeistner, F.$$b5$$uFZJ
000003014 7001_ $$0P:(DE-HGF)0$$aJühe, S.$$b6
000003014 773__ $$0PERI:(DE-600)2001319-X$$a10.1016/j.nucengdes.2008.10.029$$gVol. 239, p. 274 - 280$$p274 - 280$$q239<274 - 280$$tNuclear engineering and design$$v239$$x0029-5493$$y2009
000003014 8567_ $$uhttp://dx.doi.org/10.1016/j.nucengdes.2008.10.029
000003014 909CO $$ooai:juser.fz-juelich.de:3014$$pVDB
000003014 9131_ $$0G:(DE-Juel1)FUEK404$$bEnergie$$kP14$$lNukleare Sicherheitsforschung$$vNukleare Sicherheitsforschung$$x0
000003014 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x1$$zfortgesetzt als P23
000003014 9141_ $$y2009
000003014 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000003014 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000003014 9201_ $$0I:(DE-Juel1)ICG-5-20090406$$gICG$$kICG-5$$lSedimentäre Systeme$$x2
000003014 9201_ $$0I:(DE-Juel1)VDB814$$d30.09.2010$$gIEF$$kIEF-6$$lSicherheitsforschung und Reaktortechnik$$x3
000003014 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x4
000003014 970__ $$aVDB:(DE-Juel1)108420
000003014 980__ $$aVDB
000003014 980__ $$aConvertedRecord
000003014 980__ $$ajournal
000003014 980__ $$aI:(DE-Juel1)IEK-8-20101013
000003014 980__ $$aI:(DE-Juel1)ICG-5-20090406
000003014 980__ $$aI:(DE-Juel1)IEK-6-20101013
000003014 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000003014 980__ $$aUNRESTRICTED
000003014 981__ $$aI:(DE-Juel1)ICE-3-20101013
000003014 981__ $$aI:(DE-Juel1)IFN-2-20101013
000003014 981__ $$aI:(DE-Juel1)ICE-3-20101013
000003014 981__ $$aI:(DE-Juel1)IEK-8-20101013
000003014 981__ $$aI:(DE-Juel1)ICG-5-20090406
000003014 981__ $$aI:(DE-Juel1)IEK-6-20101013
000003014 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000003014 981__ $$aI:(DE-Juel1)ZCH-20090406