000030192 001__ 30192
000030192 005__ 20200423203517.0
000030192 017__ $$aThis version is available at the following Publisher URL: http://stacks.iop.org/0957-4484/14/250
000030192 0247_ $$2DOI$$a10.1088/0957-4484/14/2/328
000030192 0247_ $$2WOS$$aWOS:000181624100029
000030192 0247_ $$2Handle$$a2128/1234
000030192 0247_ $$2altmetric$$aaltmetric:21810064
000030192 037__ $$aPreJuSER-30192
000030192 041__ $$aeng
000030192 082__ $$a530
000030192 084__ $$2WoS$$aNanoscience & Nanotechnology
000030192 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000030192 084__ $$2WoS$$aPhysics, Applied
000030192 1001_ $$0P:(DE-HGF)0$$aRoelofs, A.$$b0
000030192 245__ $$aTowards the limit of ferroelectric nanosized grains
000030192 260__ $$aBristol$$bIOP Publ.$$c2003
000030192 300__ $$a250 - 253
000030192 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000030192 3367_ $$2DataCite$$aOutput Types/Journal article
000030192 3367_ $$00$$2EndNote$$aJournal Article
000030192 3367_ $$2BibTeX$$aARTICLE
000030192 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000030192 3367_ $$2DRIVER$$aarticle
000030192 440_0 $$04475$$aNanotechnology$$v14$$x0957-4484
000030192 500__ $$aRecord converted from VDB: 12.11.2012
000030192 520__ $$aFerroelectric random access memories are non-volatile, low voltage, high read/write speed devices which have been introduced into the market in recent years and which show the clear potential of future gigabit scale universal non-volatile memories. The ultimate limit of this concept will depend on the ferroelectric limit (synonymous superparaelectric limit), i.e. the size limit below which the ferroelectricity is quenched. While there are clear indications that 2D ferroelectric oxide films may sustain their ferroelectric polarization below 4 nm in thickness (Tybell T, Ahn C H and Triscone J M 1999 Appl. Phys. Lett. 75 856), the limit will be quite different for isolated 3D nanostructures (nanograins, nanoclusters).To investigate scaling effects of ferroelectric nanograins on Si wafers, we studied PbTiO3 (PTO) and Pb(ZrxTi1-x)O-3 grown by a self-assembly chemical solution deposition method. Preparing highly diluted precursor solutions we achieved single separated ferroelectric grains with grain sizes ranging from 200 nm down to less than 20 nm.For grains smaller than 20 nm, no piezoresponse was observed and we suppose this could be due to the transition from the ferroelectric to the paraelectric phase which has no spontaneous polarization. Recent calculations (Zhong W L, Wang Y G, Zhang P L and Qu B D 1994 Phys. Rev. B 50 698) and experiments (Jiang B, Peng J L, Zhong W L and Bursill L A 2000 J. Appl. Phys. 87 3462) showed that the ferroelectricity of fine ferroelectric particles decrease with decreasing particle size. From these experiments the extrapolated critical size of PTO particles was found to be around 4.2-20 nm.
000030192 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000030192 588__ $$aDataset connected to Web of Science
000030192 650_7 $$2WoSType$$aJ
000030192 7001_ $$0P:(DE-HGF)0$$aSchneller, T.$$b1
000030192 7001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b2$$uFZJ
000030192 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000030192 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/14/2/328$$gVol. 14, p. 250 - 253$$p250 - 253$$q14<250 - 253$$tNanotechnology$$v14$$x0957-4484$$y2003
000030192 8567_ $$uhttp://hdl.handle.net/2128/1234$$uhttp://dx.doi.org/10.1088/0957-4484/14/2/328
000030192 8564_ $$uhttps://juser.fz-juelich.de/record/30192/files/27678.pdf$$yOpenAccess
000030192 8564_ $$uhttps://juser.fz-juelich.de/record/30192/files/27678.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000030192 8564_ $$uhttps://juser.fz-juelich.de/record/30192/files/27678.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000030192 8564_ $$uhttps://juser.fz-juelich.de/record/30192/files/27678.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000030192 909CO $$ooai:juser.fz-juelich.de:30192$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000030192 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000030192 9141_ $$y2003
000030192 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000030192 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000030192 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x0
000030192 970__ $$aVDB:(DE-Juel1)27678
000030192 980__ $$aVDB
000030192 980__ $$aJUWEL
000030192 980__ $$aConvertedRecord
000030192 980__ $$ajournal
000030192 980__ $$aI:(DE-Juel1)PGI-7-20110106
000030192 980__ $$aUNRESTRICTED
000030192 980__ $$aFullTexts
000030192 9801_ $$aFullTexts
000030192 981__ $$aI:(DE-Juel1)PGI-7-20110106