000030193 001__ 30193
000030193 005__ 20201217130604.0
000030193 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org
000030193 0247_ $$2DOI$$a10.1103/PhysRevLett.90.105901
000030193 0247_ $$2WOS$$aWOS:000181597500028
000030193 0247_ $$2Handle$$a2128/1235
000030193 0247_ $$2altmetric$$aaltmetric:21810065
000030193 0247_ $$2pmid$$apmid:12689009
000030193 037__ $$aPreJuSER-30193
000030193 041__ $$aeng
000030193 082__ $$a550
000030193 084__ $$2WoS$$aPhysics, Multidisciplinary
000030193 1001_ $$0P:(DE-HGF)0$$aMeyer, R.$$b0
000030193 245__ $$aObservation of vacancy defect migration in the cation sublattice of complex oxides by 18O tracer experiments
000030193 260__ $$aCollege Park, Md.$$bAPS$$c2003
000030193 300__ $$a105901-1 - 105901-4
000030193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000030193 3367_ $$2DataCite$$aOutput Types/Journal article
000030193 3367_ $$00$$2EndNote$$aJournal Article
000030193 3367_ $$2BibTeX$$aARTICLE
000030193 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000030193 3367_ $$2DRIVER$$aarticle
000030193 440_0 $$04925$$aPhysical Review Letters$$v90$$x0031-9007
000030193 500__ $$aRecord converted from VDB: 12.11.2012
000030193 520__ $$aWe report on O-18 tracer diffusion experiments and model calculations for the study of cation vacancy migration in oxide crystals. The model takes advantage of the electrostatic coupling forces between anion and cation defects that allow the evolution of the cation vacancy profile to be observed by anion tracer experiments. Applied to SrTiO3, the ambipolar diffusion of strontium vacancies with H-A = 3.5 eV was found to be the dominant reequilibration mechanism of the cation sublattice. This result is in contrast to earlier studies proposing the formation of SrO intergrowth phases.
000030193 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000030193 588__ $$aDataset connected to Web of Science
000030193 650_7 $$2WoSType$$aJ
000030193 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$uFZJ
000030193 7001_ $$0P:(DE-HGF)0$$aHelmbold, A. W.$$b2
000030193 7001_ $$0P:(DE-HGF)0$$aBorchardt, G.$$b3
000030193 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.90.105901$$gVol. 90, p. 105901-1 - 105901-4$$p105901-1 - 105901-4$$q90<105901-1 - 105901-4$$tPhysical review letters$$v90$$x0031-9007$$y2003
000030193 8567_ $$uhttp://hdl.handle.net/2128/1235$$uhttp://dx.doi.org/10.1103/PhysRevLett.90.105901
000030193 8564_ $$uhttps://juser.fz-juelich.de/record/30193/files/27679.pdf$$yOpenAccess
000030193 8564_ $$uhttps://juser.fz-juelich.de/record/30193/files/27679.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000030193 8564_ $$uhttps://juser.fz-juelich.de/record/30193/files/27679.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000030193 8564_ $$uhttps://juser.fz-juelich.de/record/30193/files/27679.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000030193 909CO $$ooai:juser.fz-juelich.de:30193$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000030193 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000030193 9141_ $$y2003
000030193 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000030193 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000030193 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x0
000030193 970__ $$aVDB:(DE-Juel1)27679
000030193 980__ $$aVDB
000030193 980__ $$aJUWEL
000030193 980__ $$aConvertedRecord
000030193 980__ $$ajournal
000030193 980__ $$aI:(DE-Juel1)PGI-7-20110106
000030193 980__ $$aUNRESTRICTED
000030193 980__ $$aFullTexts
000030193 9801_ $$aFullTexts
000030193 981__ $$aI:(DE-Juel1)PGI-7-20110106