001     30193
005     20201217130604.0
017 _ _ |a This version is available at the following Publisher URL: http://prl.aps.org
024 7 _ |a 10.1103/PhysRevLett.90.105901
|2 DOI
024 7 _ |a WOS:000181597500028
|2 WOS
024 7 _ |a 2128/1235
|2 Handle
024 7 _ |a altmetric:21810065
|2 altmetric
024 7 _ |a pmid:12689009
|2 pmid
037 _ _ |a PreJuSER-30193
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Meyer, R.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Observation of vacancy defect migration in the cation sublattice of complex oxides by 18O tracer experiments
260 _ _ |a College Park, Md.
|b APS
|c 2003
300 _ _ |a 105901-1 - 105901-4
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review Letters
|x 0031-9007
|0 4925
|v 90
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We report on O-18 tracer diffusion experiments and model calculations for the study of cation vacancy migration in oxide crystals. The model takes advantage of the electrostatic coupling forces between anion and cation defects that allow the evolution of the cation vacancy profile to be observed by anion tracer experiments. Applied to SrTiO3, the ambipolar diffusion of strontium vacancies with H-A = 3.5 eV was found to be the dominant reequilibration mechanism of the cation sublattice. This result is in contrast to earlier studies proposing the formation of SrO intergrowth phases.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Waser, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)131022
700 1 _ |a Helmbold, A. W.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Borchardt, G.
|b 3
|0 P:(DE-HGF)0
773 _ _ |a 10.1103/PhysRevLett.90.105901
|g Vol. 90, p. 105901-1 - 105901-4
|p 105901-1 - 105901-4
|q 90<105901-1 - 105901-4
|0 PERI:(DE-600)1472655-5
|t Physical review letters
|v 90
|y 2003
|x 0031-9007
856 7 _ |u http://dx.doi.org/10.1103/PhysRevLett.90.105901
|u http://hdl.handle.net/2128/1235
856 4 _ |u https://juser.fz-juelich.de/record/30193/files/27679.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30193/files/27679.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30193/files/27679.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30193/files/27679.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:30193
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-EKM
|l Elektrokeramische Materialien
|d 31.12.2003
|g IFF
|0 I:(DE-Juel1)VDB35
|x 0
970 _ _ |a VDB:(DE-Juel1)27679
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21