000030216 001__ 30216
000030216 005__ 20200423203517.0
000030216 0247_ $$2pmid$$apmid:12693957
000030216 0247_ $$2DOI$$a10.1021/bi027276z
000030216 0247_ $$2WOS$$aWOS:000182420000031
000030216 0247_ $$2Handle$$a2128/671
000030216 0247_ $$2altmetric$$aaltmetric:3547932
000030216 037__ $$aPreJuSER-30216
000030216 041__ $$aeng
000030216 082__ $$a570
000030216 084__ $$2WoS$$aBiochemistry & Molecular Biology
000030216 1001_ $$0P:(DE-HGF)0$$aKang, K.$$b0
000030216 245__ $$aAssembly of retinal rod or cone Na+/Ca2+/K+-exchanger oligomers with cGMP-gated channel subunits as probed with heterologously expressed cDNAs
000030216 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2003
000030216 300__ $$a4593 - 4600
000030216 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000030216 3367_ $$2DataCite$$aOutput Types/Journal article
000030216 3367_ $$00$$2EndNote$$aJournal Article
000030216 3367_ $$2BibTeX$$aARTICLE
000030216 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000030216 3367_ $$2DRIVER$$aarticle
000030216 440_0 $$0798$$aBiochemistry$$v42$$x0006-2960
000030216 500__ $$aRecord converted from VDB: 12.11.2012
000030216 520__ $$aProper control of intracellular free Ca(2+) is thought to involve subsets of proteins that co-localize to mediate coordinated Ca(2+) entry and Ca(2+) extrusion. The outer segments of vertebrate rod and cone photoreceptors present one example: Ca(2+) influx is exclusively mediated via cGMP-gated channels (CNG), whereas the Na(+)/Ca(2+)-K(+) exchanger (NCKX) is the only Ca(2+) extrusion protein present. In situ, a rod NCKX homodimer and a CNG heterotetramer are thought to be part of a single protein complex. However, NCKX-NCKX and NCKX-CNG interactions have been described so far only in bovine rod outer segment membranes. We have used thiol-specific cross-linking and co-immunoprecipitation to examine NCKX self-assembly and CNG-NCKX co-assembly after heterologous expression of either the rod or cone NCKX/CNG isoforms. Co-immunoprecipitation clearly demonstrated both NCKX homooligomerization and interactions between NCKX and CNG. The NCKX-NCKX and NCKX-CNG interactions were observed for both the rod and the cone isoforms. Thiol-specific cross-linking led to rod NCKX1 dimers and to cone NCKX2 adducts of an apparent molecular weight higher than that predicted for a NCKX2 dimer. The mass of the cross-link product critically depended on the location of the particular cysteine residue used by the cross-linker, and we cannot exclude that NCKX forms a higher oligomer. The NCKX-NCKX and NCKX-CNG interactions were not isoform-specific (i.e., rod NCKX could interact with cone NCKX, rod NCKX could interact with cone CNGA, and vice versa). Deletion of the two large hydrophilic loops from the NCKX protein did not abolish the NCKX oligomerization, suggesting that it is mediated by the highly conserved transmembrane spanning segments.
000030216 536__ $$0G:(DE-Juel1)FUEK255$$2G:(DE-HGF)$$aNeurowissenschaften$$cL01$$x0
000030216 588__ $$aDataset connected to Web of Science, Pubmed
000030216 650_2 $$2MeSH$$aAnimals
000030216 650_2 $$2MeSH$$aCalcium: metabolism
000030216 650_2 $$2MeSH$$aCell Line
000030216 650_2 $$2MeSH$$aChickens: metabolism
000030216 650_2 $$2MeSH$$aCyclic GMP: metabolism
000030216 650_2 $$2MeSH$$aCyclic Nucleotide-Gated Cation Channels
000030216 650_2 $$2MeSH$$aHumans
000030216 650_2 $$2MeSH$$aInsects
000030216 650_2 $$2MeSH$$aIon Channels: metabolism
000030216 650_2 $$2MeSH$$aPhotoreceptor Cells, Vertebrate: metabolism
000030216 650_2 $$2MeSH$$aPrecipitin Tests
000030216 650_2 $$2MeSH$$aSodium-Calcium Exchanger: biosynthesis
000030216 650_2 $$2MeSH$$aSodium-Calcium Exchanger: metabolism
000030216 650_7 $$00$$2NLM Chemicals$$aCyclic Nucleotide-Gated Cation Channels
000030216 650_7 $$00$$2NLM Chemicals$$aIon Channels
000030216 650_7 $$00$$2NLM Chemicals$$aSodium-Calcium Exchanger
000030216 650_7 $$0147478-17-9$$2NLM Chemicals$$apotassium-dependent sodium-calcium exchanger
000030216 650_7 $$07440-70-2$$2NLM Chemicals$$aCalcium
000030216 650_7 $$07665-99-8$$2NLM Chemicals$$aCyclic GMP
000030216 650_7 $$2WoSType$$aJ
000030216 7001_ $$0P:(DE-Juel1)VDB4672$$aBauer, P. J.$$b1$$uFZJ
000030216 7001_ $$0P:(DE-HGF)0$$aKinjo, T. G.$$b2
000030216 7001_ $$0P:(DE-HGF)0$$aSzerencsei, R. T.$$b3
000030216 7001_ $$0P:(DE-Juel1)VDB22199$$aBönigk, W.$$b4$$uFZJ
000030216 7001_ $$0P:(DE-HGF)0$$aWinkfein, R. J.$$b5
000030216 7001_ $$0P:(DE-HGF)0$$aSchnetkamp, P. P. M.$$b6
000030216 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/bi027276z$$gVol. 42, p. 4593 - 4600$$p4593 - 4600$$q42<4593 - 4600$$tBiochemistry$$v42$$x0006-2960$$y2003
000030216 8567_ $$uhttp://hdl.handle.net/2128/671$$uhttp://dx.doi.org/10.1021/bi027276z
000030216 8564_ $$uhttps://juser.fz-juelich.de/record/30216/files/27726.pdf$$yOpenAccess
000030216 8564_ $$uhttps://juser.fz-juelich.de/record/30216/files/27726.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000030216 8564_ $$uhttps://juser.fz-juelich.de/record/30216/files/27726.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000030216 8564_ $$uhttps://juser.fz-juelich.de/record/30216/files/27726.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000030216 909CO $$ooai:juser.fz-juelich.de:30216$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000030216 9131_ $$0G:(DE-Juel1)FUEK255$$bLeben$$kL01$$lFunktion und Dysfunktion des Nervensystems$$vNeurowissenschaften$$x0
000030216 9141_ $$y2003
000030216 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000030216 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000030216 9201_ $$0I:(DE-Juel1)VDB57$$d31.12.2006$$gIBI$$kIBI-1$$lZelluläre Signalverarbeitung$$x0
000030216 970__ $$aVDB:(DE-Juel1)27726
000030216 9801_ $$aFullTexts
000030216 980__ $$aVDB
000030216 980__ $$aJUWEL
000030216 980__ $$aConvertedRecord
000030216 980__ $$ajournal
000030216 980__ $$aI:(DE-Juel1)ICS-4-20110106
000030216 980__ $$aUNRESTRICTED
000030216 980__ $$aFullTexts
000030216 981__ $$aI:(DE-Juel1)IBI-1-20200312
000030216 981__ $$aI:(DE-Juel1)ICS-4-20110106