000003023 001__ 3023
000003023 005__ 20200423202434.0
000003023 0247_ $$2DOI$$a10.1103/PhysRevLett.101.266802
000003023 0247_ $$2WOS$$aWOS:000262247100060
000003023 0247_ $$2Handle$$a2128/7188
000003023 037__ $$aPreJuSER-3023
000003023 041__ $$aeng
000003023 082__ $$a550
000003023 084__ $$2WoS$$aPhysics, Multidisciplinary
000003023 1001_ $$0P:(DE-HGF)0$$aDil, H.$$b0
000003023 245__ $$aRashba-Type Spin-Orbit Splitting of Quantum Well States in Ultrathin Pb Films
000003023 260__ $$aCollege Park, Md.$$bAPS$$c2008
000003023 300__ $$a
000003023 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000003023 3367_ $$2DataCite$$aOutput Types/Journal article
000003023 3367_ $$00$$2EndNote$$aJournal Article
000003023 3367_ $$2BibTeX$$aARTICLE
000003023 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000003023 3367_ $$2DRIVER$$aarticle
000003023 440_0 $$04925$$aPhysical Review Letters$$v101$$x0031-9007$$y26
000003023 500__ $$aRecord converted from VDB: 12.11.2012
000003023 520__ $$aA Rashba-type spin-orbit splitting is found for quantum well states formed in ultrathin Pb films on Si(111). The resulting momentum splitting is comparable to what is found for semiconductor heterostructures. The splitting shows no coverage dependency and the sign of the spin polarization is reversed compared to Rashba splitting in the Au(111) surface state. We explain our results by competing effects at the two boundaries of the Pb layer.
000003023 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000003023 588__ $$aDataset connected to Web of Science
000003023 650_7 $$2WoSType$$aJ
000003023 7001_ $$0P:(DE-HGF)0$$aMeier, F.$$b1
000003023 7001_ $$0P:(DE-HGF)0$$aLobo-Checa, J.$$b2
000003023 7001_ $$0P:(DE-HGF)0$$aPatthey, L.$$b3
000003023 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b4$$uFZJ
000003023 7001_ $$0P:(DE-HGF)0$$aOsterwalder, J.$$b5
000003023 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.101.266802$$gVol. 101$$q101$$tPhysical review letters$$v101$$x0031-9007$$y2008
000003023 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevLett.101.266802
000003023 8564_ $$uhttps://juser.fz-juelich.de/record/3023/files/FZJ-3023.pdf$$yOpenAccess$$zPublished final document.
000003023 8564_ $$uhttps://juser.fz-juelich.de/record/3023/files/FZJ-3023.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000003023 8564_ $$uhttps://juser.fz-juelich.de/record/3023/files/FZJ-3023.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000003023 8564_ $$uhttps://juser.fz-juelich.de/record/3023/files/FZJ-3023.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000003023 909CO $$ooai:juser.fz-juelich.de:3023$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000003023 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000003023 9141_ $$y2008
000003023 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000003023 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000003023 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000003023 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000003023 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000003023 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000003023 970__ $$aVDB:(DE-Juel1)108460
000003023 9801_ $$aFullTexts
000003023 980__ $$aVDB
000003023 980__ $$aConvertedRecord
000003023 980__ $$ajournal
000003023 980__ $$aI:(DE-Juel1)PGI-1-20110106
000003023 980__ $$aI:(DE-Juel1)IAS-1-20090406
000003023 980__ $$aI:(DE-82)080009_20140620
000003023 980__ $$aUNRESTRICTED
000003023 980__ $$aFullTexts
000003023 981__ $$aI:(DE-Juel1)PGI-1-20110106
000003023 981__ $$aI:(DE-Juel1)IAS-1-20090406
000003023 981__ $$aI:(DE-Juel1)VDB881