000030244 001__ 30244
000030244 005__ 20180209102025.0
000030244 0247_ $$2DOI$$a10.1007/s00339-003-2314-2
000030244 0247_ $$2WOS$$aWOS:000186497500010
000030244 0247_ $$2ISSN$$a0947-8396
000030244 037__ $$aPreJuSER-30244
000030244 041__ $$aeng
000030244 082__ $$a530
000030244 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000030244 084__ $$2WoS$$aPhysics, Applied
000030244 1001_ $$0P:(DE-HGF)0$$aThon, A.$$b0
000030244 245__ $$aPhoton-assisted tunneling versus tunneling of excited electrons in metal-insulator-metal junctions
000030244 260__ $$aBerlin$$bSpringer$$c2003
000030244 300__ $$a189 - 199
000030244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000030244 3367_ $$2DataCite$$aOutput Types/Journal article
000030244 3367_ $$00$$2EndNote$$aJournal Article
000030244 3367_ $$2BibTeX$$aARTICLE
000030244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000030244 3367_ $$2DRIVER$$aarticle
000030244 440_0 $$0560$$aApplied Physics A$$v78$$x0947-8396$$y2
000030244 500__ $$aRecord converted from VDB: 12.11.2012
000030244 520__ $$aPhotocurrent measurements in Ag-Al2O3-Al metal-insulator-metal junctions under illumination with ultra-short laser pulses reveal that tunneling and internal photoemission of excited electrons are the dominating transport mechanisms. Photon-assisted tunneling is observed under rare conditions that depend critically on the preparation of the interface. The comparison of time-resolved two-pulse correlation measurements with model calculations shows that the photon-induced transport of excited electrons is well described using a one-dimensional many-particle model for two coupled metallic leads, whereas a single-particle model for nonresonant excitation in a rectangular double-minimum potential reveals the signature of photon-assisted tunneling.
000030244 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000030244 588__ $$aDataset connected to Web of Science
000030244 650_7 $$2WoSType$$aJ
000030244 7001_ $$0P:(DE-HGF)0$$aMerschdorf, M.$$b1
000030244 7001_ $$0P:(DE-HGF)0$$aPfeiffer, W.$$b2
000030244 7001_ $$0P:(DE-HGF)0$$aKlamroth, T.$$b3
000030244 7001_ $$0P:(DE-HGF)0$$aSaalfrank, P.$$b4
000030244 7001_ $$0P:(DE-Juel1)VDB14258$$aDiesing, D.$$b5$$uFZJ
000030244 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-003-2314-2$$gVol. 78, p. 189 - 199$$p189 - 199$$q78<189 - 199$$tApplied physics / A$$v78$$x0947-8396$$y2003
000030244 8567_ $$uhttp://dx.doi.org/10.1007/s00339-003-2314-2
000030244 909CO $$ooai:juser.fz-juelich.de:30244$$pVDB
000030244 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000030244 9141_ $$y2003
000030244 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000030244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000030244 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000030244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000030244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000030244 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000030244 970__ $$aVDB:(DE-Juel1)27824
000030244 980__ $$aVDB
000030244 980__ $$aConvertedRecord
000030244 980__ $$ajournal
000030244 980__ $$aI:(DE-Juel1)PGI-3-20110106
000030244 980__ $$aUNRESTRICTED
000030244 981__ $$aI:(DE-Juel1)PGI-3-20110106