001     30298
005     20200423203519.0
024 7 _ |a pmid:12686556
|2 pmid
024 7 _ |a 10.1074/jbc.M300447200
|2 DOI
024 7 _ |a WOS:000183503900104
|2 WOS
024 7 _ |a 2128/2643
|2 Handle
037 _ _ |a PreJuSER-30298
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Weiergräber, O. H.
|b 0
|u FZJ
|0 P:(DE-Juel1)131988
245 _ _ |a Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin
260 _ _ |a Bethesda, Md.
|b Soc.
|c 2003
300 _ _ |a 22972 - 22979
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Biological Chemistry
|x 0021-9258
|0 3091
|y 25
|v 278
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Recoverin is a Ca2+-regulated signal transduction modulator found in vertebrate retina that has been shown to undergo dramatic conformational changes upon Ca2+ binding to its two functional EF-hand motifs. To elucidate the differential impact of the N-terminal myristoylation as well as occupation of the two Ca2+ binding sites on recoverin structure and function, we have investigated a non-myristoylated E85Q mutant exhibiting virtually no Ca2+ binding to EF-2. Crystal structures of the mutant protein as well as the non-myristoylated wild-type have been determined. Although the non-myristoylated E85Q mutant does not display any functional activity, its three-dimensional structure in the presence of Ca2+ resembles the myristoylated wild-type with two Ca2+ but is quite dissimilar from the myristoylated E85Q mutant. We conclude that the N-terminal myristoyl modification significantly stabilizes the conformation of the Ca2+-free protein (i.e. the T conformation) during the stepwise transition toward the fully Ca2+-occupied state. On the basis of these observations, a refined model for the role of the myristoyl group as an intrinsic allosteric modulator is proposed.
536 _ _ |a Neurowissenschaften
|c L01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK255
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Amino Acid Substitution
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Calcium: metabolism
650 _ 2 |2 MeSH
|a Calcium-Binding Proteins: chemistry
650 _ 2 |2 MeSH
|a Calcium-Binding Proteins: metabolism
650 _ 2 |2 MeSH
|a Cattle
650 _ 2 |2 MeSH
|a Crystallography, X-Ray
650 _ 2 |2 MeSH
|a Eye Proteins
650 _ 2 |2 MeSH
|a G-Protein-Coupled Receptor Kinase 1
650 _ 2 |2 MeSH
|a Hippocalcin
650 _ 2 |2 MeSH
|a Kinetics
650 _ 2 |2 MeSH
|a Lipoproteins
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Mutagenesis, Site-Directed
650 _ 2 |2 MeSH
|a Myristic Acid: metabolism
650 _ 2 |2 MeSH
|a Nerve Tissue Proteins
650 _ 2 |2 MeSH
|a Protein Binding
650 _ 2 |2 MeSH
|a Protein Conformation
650 _ 2 |2 MeSH
|a Protein Kinases: metabolism
650 _ 2 |2 MeSH
|a Protein Structure, Secondary
650 _ 2 |2 MeSH
|a Recombinant Proteins: chemistry
650 _ 2 |2 MeSH
|a Recombinant Proteins: metabolism
650 _ 2 |2 MeSH
|a Recoverin
650 _ 2 |2 MeSH
|a Rod Cell Outer Segment: metabolism
650 _ 2 |2 MeSH
|a Tumor Markers, Biological: chemistry
650 _ 2 |2 MeSH
|a Tumor Markers, Biological: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Calcium-Binding Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Eye Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Lipoproteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Nerve Tissue Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Recombinant Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Tumor Markers, Biological
650 _ 7 |0 135844-11-0
|2 NLM Chemicals
|a Recoverin
650 _ 7 |0 149223-81-4
|2 NLM Chemicals
|a Hippocalcin
650 _ 7 |0 544-63-8
|2 NLM Chemicals
|a Myristic Acid
650 _ 7 |0 7440-70-2
|2 NLM Chemicals
|a Calcium
650 _ 7 |0 EC 2.7.-
|2 NLM Chemicals
|a Protein Kinases
650 _ 7 |0 EC 2.7.11.14
|2 NLM Chemicals
|a G-Protein-Coupled Receptor Kinase 1
650 _ 7 |a J
|2 WoSType
700 1 _ |a Senin, I. I.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Philippov, P. P.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Granzin, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)131965
700 1 _ |a Koch, K.-W.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB789
773 _ _ |a 10.1074/jbc.M300447200
|g Vol. 278, p. 22972 - 22979
|p 22972 - 22979
|q 278<22972 - 22979
|0 PERI:(DE-600)1474604-9
|t The @journal of biological chemistry
|v 278
|y 2003
|x 0021-9258
856 7 _ |u http://dx.doi.org/10.1074/jbc.M300447200
|u http://hdl.handle.net/2128/2643
856 4 _ |u https://juser.fz-juelich.de/record/30298/files/28046.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30298/files/28046.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30298/files/28046.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/30298/files/28046.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:30298
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k L01
|v Neurowissenschaften
|l Funktion und Dysfunktion des Nervensystems
|b Leben
|0 G:(DE-Juel1)FUEK255
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IBI-1
|l Zelluläre Signalverarbeitung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB57
|x 0
920 1 _ |k IBI-2
|l Biologische Strukturforschung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB58
|x 1
970 _ _ |a VDB:(DE-Juel1)28046
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-1-20200312
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21