001     30299
005     20200402210518.0
024 7 _ |2 DOI
|a 10.1016/S0022-2836(03)00581-3
024 7 _ |2 WOS
|a WOS:000183824900020
037 _ _ |a PreJuSER-30299
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Senin, I. I.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Functional restoration of the Ca2 -myristoyl switch in a recoverin mutant
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2003
300 _ _ |a 409 - 418
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Molecular Biology
|x 0022-2836
|0 3552
|v 330
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Recoverin is a neuronal calcium sensor protein that plays a crucial role in vertebrate phototransduction. It undergoes a Ca2+-myristoyl switch when Ca2+ binds to its two functional EF-hand motifs (EF-hands 2 and 3), each present in one of recoverin's two domains. Impairment of Ca2+-binding in recoverin leads to a disturbance of the Ca2+-myristoyl switch and loss of its regulatory properties, i.e. inhibiton of rhodopsin kinase. We have engineered recoverin mutants with either of the two functional EF-hands disabled, but with a functional Ca2+-binding site in EF-hand 4. While a defect in EF-hand 2 could not be rescued by the additional EF-hand 4, the impairment of EF-hand 3 was powerfully compensated by Ca2+-binding to EF-hand 4. For example, the myristoylated form of the latter mutant bound to membranes in a Ca2+-dependent way and was able to inhibit rhodopsin kinase in a way similar to that of the wild-type protein. Thus, for recoverin to undergo a Ca2+-myristoyl switch, it is necessary and sufficient to have either of the two EF-hands in the second domain in a functional state. On the basis of these results and inspection of published three-dimensional structures of recoverin, we propose a model highlighting the mutual interdependence of sterical configurations in EF-hands 3 and 4 of recoverin. (C) 2003 Elsevier Science Ltd. All rights reserved.
536 _ _ |a Neurowissenschaften
|c L01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK255
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a calcium sensor
653 2 0 |2 Author
|a EF-hand protein
653 2 0 |2 Author
|a myristoyl switch
653 2 0 |2 Author
|a rhodopsin kinase
653 2 0 |2 Author
|a phototransduction
700 1 _ |a Vaganova, S. A.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Weiergräber, O. H.
|b 2
|u FZJ
|0 P:(DE-Juel1)131988
700 1 _ |a Ergorov, N. S.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Philippov, P. P.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Koch, K.-W.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB789
773 _ _ |a 10.1016/S0022-2836(03)00581-3
|g Vol. 330, p. 409 - 418
|p 409 - 418
|q 330<409 - 418
|0 PERI:(DE-600)1355192-9
|t Journal of molecular biology
|v 330
|y 2003
|x 0022-2836
856 7 _ |u http://dx.doi.org/10.1016/S0022-2836(03)00581-3
909 C O |o oai:juser.fz-juelich.de:30299
|p VDB
913 1 _ |k L01
|v Neurowissenschaften
|l Funktion und Dysfunktion des Nervensystems
|b Leben
|0 G:(DE-Juel1)FUEK255
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBI-1
|l Zelluläre Signalverarbeitung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB57
|x 0
920 1 _ |k IBI-2
|l Biologische Strukturforschung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB58
|x 1
970 _ _ |a VDB:(DE-Juel1)28047
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-1-20200312
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21