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The bending elasticity of a fluid membrane is characterized by its modulus and spontaneous
curvature. We present a new method, advanced flicker spectroscopy of giant nonspherical vesicles,
which makes it possible to simultaneously measure both parameters for the first time. Our analysis is
based on the generation of a large set of reference data from Monte Carlo simulations of randomly
triangulated surfaces. As an example of the potential of the procedure, we monitor thermal trajectories
of vesicle shapes and discuss the elastic response of zwitterionic membranes to transmembrane pH
gradients. Our technique makes it possible to easily characterize membrane curvature as a function of

environmental conditions.
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The bending elasticity of amphiphilic interfaces is a
fundamental concept introduced more than 30 years ago
by Helfrich [1] to describe the morphology of biomem-
branes. Subsequently, it has been extensively applied to
model the elastic behavior of soft interfaces [2—4]. The
principal parameters characterizing the elastic energy of
an amphiphilic interface are the bending modulus «,
which sets the energy scale, and the effective spontaneous
curvature C,, which describes the preferred curvature of
the interface. In this Letter we describe a new procedure
which makes it possible, for the first time, to simultane-
ously determine both the bending modulus and the spon-
taneous curvature of a membrane in a single experiment.

There exist several techniques for measuring the bend-
ing modulus [5-7]. The method most widely used for
membranes of higher bending rigidity is the flicker spec-
troscopy of giant, quasispherical vesicles [5,7]. Although
this technique can be used to determine precise values of
K, it has the disadvantage that analytical results required
for extracting « from experimental data are only available
in the spherical limit. In this limit, the membrane is under
a lateral tension which dominates the long-wavelength
part of the spectrum. To determine « it is therefore
necessary to measure the spectrum up to high mode
number, which in turn requires very large vesicles. In
addition, since the volume-to-area ratio changes with
temperature, a vesicle which is quasispherical at one
temperature is not quasispherical at another, so that the
bending modulus of a single vesicle cannot be determined
as a function of temperature. Finally, membrane fluctua-
tions are insensitive to the effective spontaneous curva-
ture in this limit, so that C, cannot be determined.

Although values for the spontaneous curvature of vari-
ous lipid molecules forming an inverted hexagonal phase
[8] have been inferred, there is little experimental litera-
ture dealing with bilayer spontaneous curvature [9,10].
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This is somewhat surprising since spontaneous curvature
plays the key role in determining the morphology of
biomembranes [2], lipid vesicles [3], and polymersomes
[11]. Spontaneous curvature is crucial for maintaining the
spatial organization of, and traffic between, cellular or-
ganelles and the plasma membrane; e.g., there is growing
evidence for a coupling between cell signaling and endo-
cytosis [12]. Further, the functional state of certain in-
tegral membrane proteins [13,14] and membrane fusion
competence [15] is thought to be controlled by monolayer
spontaneous curvature. More generally, control of inter-
facial curvature is required to tune the structure of mate-
rials on the nanoscale [16]. It is therefore important to
develop a simple, straightforward procedure for the di-
rect determination of the spontaneous curvature and
bending modulus. The technique we have developed —
flicker spectroscopy of nonspherical vesicles — avoids the
shortcomings of traditional spectroscopy techniques by
utilizing extensive Monte Carlo simulations of dynami-
cally triangulated vesicles to generate data for a wide
range of reduced volumes and spontaneous curvatures,
which can then be used to extract the elastic parameters of
the membrane from flicker spectroscopy data (see Fig. 1).

vesicle

FIG. 1. Experimental and theoretical shapes.
(A) Phase contrast micrograph (v = 0.828). The scale bar
corresponds to 5 um, (B) simulation snapshot. The parameters
in the simulations are v = 0.825, x/kzT = 25, @ = 0.90, ¢, =
—0.28, and g = 0.37.
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The fluctuation spectra contain information on both the
bending modulus and the spontaneous curvature. Using
this technique it is therefore possible to determine both
elastic constants simultaneously from one experiment
and to study their dependence on environmental condi-
tions, such as temperature and solvent pH.

Experimentally, thermal shape fluctuations of giant
fluid vesicles are well characterized using light micros-
copy [5,10,17]. In these experiments, fluctuating prolate
vesicles are stabilized by gravity — due to a small density
difference of the solvent inside and outside the vesicle —
on the bottom of a temperature-controlled microcham-
ber. The focal plane of a phase contrast microscope is
adjusted to include the long axis of the vesicle, and shape
contours are obtained by real time video image analysis;
for details see Ref. [17]. The raw data therefore consist of a
time sequence of closed 2D loops. Choosing a coordinate
system in which the x coordinate lies along the long axis
of the vesicle, the contours are then represented in po-
lar coordinates (r, ¢) as r(¢) = ro[l + > ,a, cos(ng) +
> b, sin(ne)], where the angle ¢ is measured from the
positive x axis. The time-dependent amplitudes {a,, b, }
encode the full experimental information. The mean val-
ues (a,) describe the mean vesicle shape; for the oriented
contours used here, (b,) = 0. The mean-square ampli-
tudes (Aa2) = ((a, — {a,))?) measure the thermal fluc-
tuations of the vesicles about their mean shape.

Our Monte Carlo simulations are based on a model of
dynamically triangulated surfaces [18]. The bilayer mem-
brane is modeled by a single triangulated network of
spherical topology; see Fig. 1(B). In contrast to previous
simulations [19], we use the full Hamiltonian of the area-
difference-elasticity model [20] and include the contribu-
tion of a gravitational force acting on the vesicle interior
[21]. The discretization of the mean curvature is described
in Ref. [18]. The ratio of volume V and area A of the
vesicles is characterized by the reduced volume v =
(Ry/R,)?, where R, = (A/4m)'/? and Ry = 3V /4m)!/3
are effective vesicle radii. The influence of gravity is
measured via the dimensionless parameter g =
g0ApR% /K, where g is the local acceleration and Ap is
the excess mass density of the interior vesicle solution.

The membrane asymmetry is measured by the dimen-
sionless parameter ¢, = CyR,. The effective spontaneous
curvature CO has two contributions [17]: the first is due to
solution and/or bilayer asymmetry, the second — which
is weighted by the ratio a of the membrane stretching
modulus to the bending rigidity (a = 1.4 for phosphocho-
line bilayers [20]) —is due to the area difference in the
inner and outer monolayers. These two contributions can-
not be independently determined from a single vesicle
fluctuation spectrum [17].

The Monte Carlo simulations follow the procedure
described previously [18]. In order to extract the experi-
mentally relevant information, we first fit the simulated
three-dimensional shape data using an expansion in
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spherical harmonics. The Fourier expansion of the two-
dimensional contour in a plane through the center of
mass, parallel to the substrate, is easily obtained from
this fit. Most of our data are obtained for triangulated
surfaces of 407 vertices; the shapes are fitted with 196
spherical harmonics, which implies some smoothing of
the simulated shapes on the scale of the lattice constant.
The simulated vesicles are therefore analyzed in the same
way as real vesicles in experiment. We characterize the
mean vesicle shape by the first two amplitudes {(a,) and
(a4), which is known to be a very good approximation
[17]. With increasing ¢, a transition from an oblate to a
prolate shape is observed, which leads to a pronounced
increase of (a,) and {a4). The oblate-to-prolate transition
is reflected in a sharp peak of the fluctuations in a,; see
Fig. 2. Similarly, the budding transition of the prolate
shapes, which occurs at higher spontaneous curvature, is
signaled by a strong increase of the mean-square ampli-
tude (Aa3) as the budding spinodal is approached (data
not shown).

The fitting of the experimental spectra to the
Monte Carlo data sets proceeds as follows. We employ
the average amplitudes {a,), {a4), and the mean-square
fluctuation amplitudes (Aa3), (Aa3), (Aa?), and (Aa2).
The Monte Carlo data of all these quantities are first
interpolated linearly as a function of ¢,, then again
linearly as a function of the reduced volume v. A least-
square fit to the experimental data then determines «, ¢y,
and v simultaneously for a given vesicle.

The analysis of 14 prolate stearoyl-oleoyl-
phosphatidylcholine (SOPC) vesicles in sucrose/glucose
solution (100 mM) yielded results for the bending modu-
lus which clustered around two values, k = (35 * 3)kgT
and k = (75 = 7)kpT, corresponding to single and double
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FIG. 2. Simulated mean-square amplitude (Aa3) of shape
fluctuations as a function of the effective spontaneous cur-
vature c¢,. Note the peak at the prolate-to-oblate transition.
Three different values of the reduced volume are shown, as
indicated. The other parameters are «/kzT = 25, a = 0.90,
and g = 0.37.
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bilayer membranes, respectively. The measured bending
modulus is in good agreement with the value k = 32kgT
obtained from fluctuation spectroscopy of quasispherical
vesicles [7]. It is important to point out that we can
analyze vesicles as small as 3-4 um, which is much
smaller than those used in Ref. [7].

In order to test our ability to determine the sponta-
neous curvature, we explored thermal shape trajectories
of SOPC vesicles in parameter space (v, ¢y)(T). A suit-
able vesicle was selected and driven via temperature
across two shape transitions. We followed the vesicle
from an oblate shape at low temperatures (7' < 23.0 °C),
through an elongated prolate form at higher temperatures,
to the budding transition (7" = 44.0 °C). We obtain k =
(35 = 5)kgT for the mean bending modulus. The reduced
volume v and spontaneous curvature ¢, both vary ap-
proximately linearly with temperature. In the prolate
phase, we obtain a thermal expansion coefficient 8, =
(1.9 = 0.1) X 1073/K, consistent with the results of
Ref. [22]. In Fig. 3, the mapped (¢, v) trajectory is shown
together with the two (T" = 0) spinodal lines of the pro-
late phase. Linear extrapolation to obtain the crossing
points with the two spinodals gives v}, =0.777 and
v Jobl = 0.830. Comparison with the reduced volumes,
w%ere budding (vy,,q = 0.775) and the prolate-oblate tran-
sition (Vpr/op1 = 0.834) actually occurred, shows a nice
agreement. These results clearly demonstrate that we are
able to extract precise values for the elastic parameters of
the membrane using our technique.

We have also employed the method to measure electro-
statically induced spontaneous curvature. It has been
suggested that a change in pH induces membrane curva-
ture via association of hydroxyl ions with the trimethyl-
ammonium group of the phosphatidylcholine molecule
[23]. In order to quantify such an effect, we have swollen
giant SOPC vesicles in raffinose solution at neutral pH
and incubated them in an equiosmolar solution of glu-
cose and 50 uM potassium hexacyanoferrate, which is
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FIG. 3. Thermal trajectory of a prolate vesicle in (&, v)
parameter space with a radius Ry = 4.8 um and g = 0.21.
The experimental points correspond to temperatures 7 =
25.0°C, 29.4°C, 34.2°C, and 38.8 °C. The crossing points of
a linear fit to the trajectory with the upper (budding) and lower
spinodal (prolate-oblate transition) are indicated. For the bend-
ing modulus we find k = (35 = 5)k,T.
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therefore present only on the outside of the vesicle.
IMluminating the sample leads to an increase of pH in
the external solution due to photoaquation of the iron
complex, as well as a subsequent curvature change of
the vesicle membrane [24]. The magnitude of the pH
change depends on the illumination intensity. We have
calibrated the pH change in the external vesicle solution
using the fluorescent probe 4-methylumbelliferone.

Figure 4 contains normalized histograms of the ellip-
tical mode a, of a typical vesicle as a function of external
pH. At low pH, the vesicle is in a bistable state with a
predominantly oblate shape. It shows pronounced prolate-
oblate fluctuations due to the proximity of the weak first-
order prolate-oblate transition. At elevated pH values, the
prolate shape is stable. Note the strong fluctuations even at
this pH. Two effects are visible. First, the vesicle contour
becomes more elliptical with increasing pH. Second, the
fluctuations in the elliptical mode decrease. As we have
seen above (compare Fig. 2), the latter indicates that the
prolate vesicle is moving away from the prolate-oblate
transition; i.e., the spontaneous curvature increases. The
apparent elongation of the vesicle is due to competition
between bending elastic energy and gravity. The vesicle
becomes progressively less flattened by gravity with in-
creasing spontaneous curvature. This tends to drive the
vesicle towards the budding transition, where a small
satellite is expelled along the polar axis. Indeed, at suffi-
ciently high pH we observed, in general, budding of the
vesicle, signaled by an increase in pearlike vesicle fluc-
tuations near the budding instability. For the vesicle
shown in Fig. 4, we found (Aa?) = 0.0204 (pH 7.7),
0.0267 (pH 8.1), and 0.0288 (pH 8.5).

The results of the fitting procedure described above are
shown in Fig. 5. As already anticipated from the raw data,
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FIG. 4. Normalized histograms [fp(a)da = 1] of the ellip-
tical shape fluctuations of a prolate SOPC vesicle (R, =
5.2 um) with varying external pH of 7.7 (open circles), 8.1
(open squares), and 8.5 (open triangles) at constant internal
pH 7.7. Gaussian fits are shown. With increasing pH gradient
the vesicle develops a more elongated shape (larger a,) with
decreasing fluctuations.
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FIG. 5. Spontaneous curvature ¢ as a function of external pH
for g = 0.8. Note that the reduced volume and bending modu-
lus, which are given in brackets, (v, k), remain constant. v, ¢y,
and « are obtained simultaneously via comparison of the data
shown in Fig. 4 to Monte Carlo simulations.

we find a strong change in spontaneous curvature at a
constant bending modulus k = (32 = 1)kzT. Indeed, the
bending modulus of SOPC (see the measurement above)
should not change considerably since electrostatic contri-
butions to the elastic modulus are only on the order of
1kgT [25]. Note that the reduced volume of the vesicle,
v = 0.953 = 0.003, is also found to be constant, as it
should be. This is a nontrivial result of the fit consider-
ing the large changes in apparent area of the vesicle with
pH. The large increase in the spontaneous curvature can
be understood by considering the balance of the electro-
static free energy and the intrinsic bending energy of the
membrane.

In summary, we have developed a general technique
which makes it possible to determine simultaneously
both the bending modulus and the spontaneous curvature
of a fluid membrane. The general idea is to use a single
nonspherical vesicle as a morphological probe of the
(elastic) interactions of its membrane with the surround-
ing fluid. A large number of phenomena can be monitored
by analysis of the vesicle fluctuation spectrum. In addi-
tion to characterizing the static curvature response to en-
vironmental conditions, the dynamics of (bio-)chemical
reactions at interfaces can be monitored. This has impor-
tant consequences for future studies dealing with biologi-
cal or material aspects of interfacial elasticity.
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