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Abstract
A full-potential linearized augmented plane-wave (FLAPW) electronic structure

method was developed to investigate non-collinear magnetism in bulk systems, sur-
faces, and thin films on the basis of the vector spin-density formulation of the local
density approximation (LDA) and the generalized gradient approximation (GGA)
to the density functional theory (DFT) . To allow the investigation of a large set of
relevant magnetic spin-structures, two extensions that go beyond the treatment of pe-
riodic and stationary magnetic states were implemented : (i) Arbitrary non-collinear
periodic magnetic configurations, which are not the magnetic ground state or a sta-
tionary state of the system under consideration, can be treated due to the extension
of the density functional equations to constrain the local magnetic moments to any
given direction. (ii) Commensurate and incommensurate spiral (or helical) spin-
density waves can be treated due the extension of the vector spin-density FLAPW
method on the basis of a generalized Bloch theorem . A detailed account of the imple-
mentation is given and the importance of various approximations used are discussed .

This method was applied to the problem of topological frustration of a two-
dimensional antiferromagnet on a triangular lattice. We performed self-consistent
calculations for the 3d transition-metal monolayers V, Cr, Mn, and Fe on the (111)
oriented surfaces of Cu and Ag, investigating the magnetism, the interlayer relaxation,
and the energetics of a nearly complete set of magnetic states. We found an amaz-
ing variety of different magnetic ground states : ferromagnetism for Fe/Cu(111) and
Fe/Ag(111) ; row-wise antiferromagnetism for Mn/Ag(111) ; a coplanar non-collinear
periodic 120° Neel structure for V/Ag(111), Cr/Cu(111) and Cr/Ag(111) ; and for
Mn/Cu(111) a new complex three-dimensional non-collinear spin structure, a so-
called 3Q state, shown on the next page . By comparison with model Hamiltonians
we conclude that any realistic description of two-dimensional itinerant antiferromag-
nets on a triangular lattice requires exchange interactions beyond the nearest neigh-
bors and also exchange interactions beyond the Heisenberg model (i.e . 4-spin and
biquadratic interactions) .

Bulk and surface calculations for hcp Gd and the Gd(0001) surface were per-
formed . Comparing different methods to treat the localized 4f states, which represent
a challenge for first-principle theory, we show that it is crucial to remove the unphys
ical density of states due to the minority 4f electrons at the Fermi energy obtained
in both LDA and GGA, in order to predict the magnetic ground state correctly. We
carried out spin-spiral calculations to model the effect of magnetic excitations, i.e .
temperature, on the electronic structure of the Gd(0001) surface . In the ferromag-
netic ground state we found a double peak structure in the local density of states,
due to the spin-split dz2 surface state of Gd, which is probed by scanning tunneling
spectroscopy (STS) experiments. With increasing spin-spiral q-vector, correspond-
ing to increasing temperature, the splitting of the two peaks decreases and finally
vanishes, while the valence magnetic moment remains finite . Hence, the vanishing
splitting cannot be taken as support for the applicability of a pure Stoner model.
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Chapter 1

Introduction

The recent years have witnessed a renaissance in the field of magnetism. Magnetism,
in particular surface and interface magnetism, magnetism of layered structures and
ultrathin films, has become one of the most active and rapidly growing areas in solid
state physics. The increasing interest in magnetism and new magnetic materials is
driven by the discovery of new quantum effects like interlayer exchange coupling, the
giant magnetoresistance (GMR) and tunnel magnetoresistance (TMR) . These new
effects have undergone an extremely rapid transition from discovery to commercial-
ization, a success story comparable that of the transistor effect, which was discovered
in 1947 in the Bell Laboratories, and became the starting point for the development
of the modern solid state electronics industry. Only six years after the discovery of
the GMR [GSP+86] effect the first commercial magnetic sensor devices that were
based on the effect became available. Another three years later the application in
read heads of computer hard drives by IBM represented the commercial breakthrough
of GMR technology in a billion dollar market. An even larger industrial impact is ex-
pected from the development of magnetic random access memory (MRAM), which is
currently being developed with enormous effort . MRAM has several advantages over
conventional semiconductor based RAM, the most important being that it is non-
volatile, i .e . no permanent supply of power is needed to retain the stored information,
which makes it ideal for mobile devices. It is the immense commercial potential of
devices based on both the TMR and the GMR effect, that made magnetoelectronics
become one of the most rapidly growing fields in solid state physics.

These enormous technological advances have only become possible after the devel-
opment of new scientific tools that allow the preparation and characterization of new
"artificial" magnetic materials, like layered systems and ultrathin films which, under
normal conditions do not exist in nature . The preparation of such specimen has be-
come feasible with state of the art epitaxy in combination with sophisticated vacuum
technology. With molecular beam epitaxy (MBE), for example, layered structures
and thin films can be grown in a precise and controlled way on an atomic scale. Sput-
ter techniques have been exploited to compromise on the speed of the preparation,
the cost and the quality of the sample to show the same effects in less well charac-
terized samples . The simultaneous development techniques like photoemission (PE),



1 . Introduction

low energy electron diffraction (LEED) and Helium scattering allowed us to monitor

the growth and to characterize materials chemically, structurally and electronically.

With new techniques like photoelectron emission microscopy (PEEM) the magnetic

properties can be investigated at the surface and at interfaces . This technique is

element specific and allows not only the mapping of ferromagnetic, but also the anti-
ferromagnetic domain structure with resolution of up to 20 nm . With the invention
of the scanning tunneling microscope by Binnig and Rohrer [BR82] in 1982, who
where awarded the Nobel Prize in 1986, a new tool has become available that, for the
first time, allows the imaging of surfaces in real space with atomic resolution . Very
recently it has been shown [HBK+00] that, with a magnetic STM tip, it is possible
to resolve the magnetic structure of an antiferromagnetic surface on the atomic scale.
The spin-polarized STM (SP-STM) can distinguish single atoms with a different spin
orientation . The magnetic super-cell of a surface with chemically equivalent atoms
can be observed directly.

In addition to the experimental progress, theory has made an important contri-
bution to the understanding of the properties of the new materials . State of the art
ab-initio methods have become powerful tools that, on one hand, help us to under
stand and interpret experimental results, and on the other hand, explore new mate-
rials and predict their properties prior to performing experiments . Their application
to a sequence of different materials or elements of the periodic table can establish
chemical trends, thus enabling the development of the ideal material for a particular
purpose, without the need for a large number of experiments . The prerequisite condi-
tion for the predictive power of ab-initio methods is the fact that they are parameter
free . Hence, no additional external information is needed except the charge of the
nuclei . The basis of ab-initio calculations is the density functional theory (DFT) by
Hohenberg and Kohn [HK64] and Kohn and Sham [KS65], which states, that the
ground state properties of a many electron system are completely determined by the
electronic (charge) density and that the quantum mechanical many particle problem,
which cannot be solved for large systems, can be replaced by a much simpler effective
single particle problem. Due to the enormous progress of the numerical methods that
are applied when solving the single particle (Kohn-Sham) equations, and due to the
availability of powerful supercomputers and modern workstations, it has become pos-
sible to apply ab-initio methods to larger complex systems with reduced symmetry
like surfaces, large molecules and even clusters deposited on a surface or step edges.
The large success of the density functional theory was acknowledged with the Nobel
Prize for Walter Kohn in 1998 .

Among the different numerical methods used to solve the Kohn-Sham equations,
the full-potential linearized augmented planewave method (FLAPW) is one of the
most accurate . It is an all-electron method that does not rely on any shape approx-
imations to the potential or the charge density and is therefore well suited to open
structures with low symmetry, such as surfaces and thin films . Due to its elaborate
expansion of the wave functions, including radial functions in spheres around the
atomic nuclei, the FLAPW method can be applied to systems with localized states



like the 3d or 4f electrons. The FLEUR code, the FLAPW program that has been
used throughout this thesis, is both a bulk and film program . Used as a film code
the surfaces are not modeled by a super-cell, but rather by a finite slab . This means
that in this case the program is truly two-dimensional . The vacuum is treated semi-
infinitely. This, together with the specially adopted expansion of the wave functions
in the vacuum region, allows a very accurate description of the wave functions in
that region, which is a major advantage, in particular for the simulation of STM
experiments. With its high accuracy the FLAPW method is ideal for total energy
calculations . Thus, it is optimally suited for the determination of the magnetic, and
in combination with the calculation of forces exerted on the atoms, the structural
ground state of complex systems.

When we hear the word magnetism, most of us will think of ferromagnetic ma-
terials which have the local magnetic moments of all atoms aligned in parallel or, at
least have domains of thousands or tens of thousands of atoms with their moments
aligned parallel . Some might also think of antiferromagnetism like in bcc Cr, where
the local moments are aligned anti-parallel . However, magnetic structures can be
more complex than just parallel or anti-parallel. In the most general case the local
moments of the single atoms in a solid can point in arbitrary directions . Such com-
plex magnetic states are called non-collinear . One possible reason for the formation
of non-collinear magnetic states is frustration, i.e . the inability to satisfy the compet-
ing magnetic interactions in a magnetic material . A classical example of magnetic
frustration are step edges at the interface between ferromagnetic and antiferromag-
netic materials. Such interfaces are the origin of the exchange bias effect, which is
a technologically important effect in the magnetic recording industry and magne-
toelectronics. In fact, non-collinear (perpendicular) coupling has been observed in
exchange bias systems. Very recently a first-principle study [TNJ+00] investigated
the possibility of non-collinear coupling in layered magnetic systems. The authors
showed that by a sophisticated choice of materials that leads to perpendicular cou-
pling between the magnetic layers, the sensitivity of GMR sensors can be improved .
Other examples of frustration are small antiferromagnetic clusters in the gas phase,
deposited on a surface or the tip of an STM. In particular, in situations with little
symmetry or for systems in low dimensions magnetic frustration becomes more likely.
With decreasing size of the structures of magnetoelectronic devices or in the context
of nano-magnetism, magnetic clusters and molecules the effects of non-collinearity
will become more important and the need for a quantum-mechanical first-principles
description of non-collinear magnetism will grow. But frustration can also occur in
a highly symmetric environment. In fcc iron, for example, it is the competition be-
tween ferromagnetic and antiferromagnetic interactions of the different nearest neigh-
bor shells that causes the frustration and leads to the famous spiral magnetic ground
state . Also domain walls between the domains of a ferromagnetic material repre-
sent a magnetic frustration, where the material tries to rotate the moment relatively
slowly from the direction of one domain to another at the lowest energetical expense.
But systems that possess a non-collinear ground state are not the only motivation
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to study non-collinear magnetism. Magnetic excitations, magnons, also represent a
non-collinear configuration. Hence, non-collinear ab-initio methods can be used to
calculate, for example, magnon dispersion curves, and thus the effect of temperature
in magnetic materials.

By far the majority of the ab-initio programs available today are restricted to
collinear magnetic structures, although already in their original publication on spin-
polarized DFT von Barth and Hedin [vBH72] treated the magnetization as a vector
field without any limitation to its direction . However, the restriction to collinear
magnetism leads to a Hamiltonian that is diagonal in the two spin directions . This
does not only save a large amount of computer time, but it also greatly simplifies the
implementation of magnetism into anon-spin-polarized program, because the spin-up
and spin-down problem can be treated independently, almost like two non-magnetic
calculations . The aim of the present work was to develop and apply a non-collinear
ab-initio method on the basis of the FLAPW method.

The first self-consistent non-collinear ab-initio calculations for periodic solids, e.g .
[SG86, KHSW88a, MLSG91], applied the so-called atomic sphere approximation for
the magnetization direction, i.e . the magnetization direction is held fixed (collinear)
within each Wigner-Seitz sphere. Only inter-atomic non-collinearity between the
magnetic moments of different atomic sites was allowed in these calculations . The
neglect of intea-atomic non-collinearity, i.e . the change of the magnetization direc-
tion within one Wigner-Seitz sphere, can lead to problems . This occurs, for ex-
ample, for systems where relativistic effects are very important the interplay of the
local exchange and spin-orbit coupling can result in intea-atomic non-collinearity .
Very recently several groups [NS96, OPC98, BK98, IA99, HKH00] developed fully
unconstrained non-collinear ab-initio programs, that treat the magnetization as a
continuous vector field. We adopted a "hybrid" approach, treating the magnetiza-
tion density as a continuous vector field everywhere, except within non-overlapping
spheres around each atomic site . For transition metals the non-collinearity in these
spheres is expected to be small, and we show that this is a very good approximation
for these systems .

An arbitrary magnetic configuration is in general not a . stationary state of the
magnetic system. Requiring that the magnetic moments assemble a prescribed con-
figuration means to constrain the phase space of possible solutions . Within the frame
work of DFT such a constraint is taken into account by a Lagrange parameter. The
Lagrange parameter represents a "constraining force" or magnetic field applied to the
magnetic moments of the atoms to keep the system in the desired magnetic configu-
ration, i.e . to make that configuration stationary. We have implemented for the first
time the constrained local moment method in a "full-potential" program that works
with the vector magnetization density. We will show in chapter 5 and 6 that this
implementation allows us to test the functional form of the energy and magnetization
with respect to external parameters, i.e . the angles of the local atomic magnetic mo-ments, and compare the results with model Hamiltonians . We demonstrate that this
approach is very powerful, as deviations from the anticipated forms lead to important



and far-reaching conclusions .
An important class of non-collinear configurations are spiral magnetic states or

spin-spirals . These are configurations, where the local moment is rotated by a con-
stant angle from atom to atom along a certain direction through the crystal. Spin
spiral states occur as ground states in nature, e.g . in fcc Fe and in rare earth metals.
Spin-spirals can also be understood as a model for magnons or domain walls. When
spin-orbit coupling is neglected, a generalization of the Bloch theorem for spiral mag-
netic configurations can be derived. On the basis of this generalized Bloch theorem,
we have implemented a method that allows us to deal with spin-spiral states using
only the chemical unit cell of the crystal without the need for large super-cells. With
the implementation of non-collinear magnetism, spin-spirals and the constrained local
moment method, into a bulk and film FLAPW program, we have developed a unique
tool to investigate non-collinearity in bulk and in particular at magnetic surfaces, in
thin films and low dimensional magnets in general.

Compared with non-magnetic or collinear magnetic calculations the computa-
tional effort of non-collinear calculations is enormous. Since the spin-up and spin-
down problem cannot be solved separately anymore the size of the Hamiltonian matrix
that has to be diagonalized doubles. In addition, the matrix becomes complex hermi-
tian, rather than real symmetric. In most cases the non-collinear magnetic structures
have a lower symmetry and often have also a larger unit cell than, for example, the
ferromagnetic configuration . Therefore, non-collinear ab-initio calculations represent
a cutting edge problem in super-computing . Parallel to my project, the FLAPW
program was parallelized . Without this parallelized version of the program and the
access to massively parallel supercomputers most of the calculations presented in this
thesis would not have been possible .

The principles of non-collinear magnetism, the constrained local moment method
and spin-spiral calculations, including the generalization of the Bloch theorem, are de-
scribed in chapter 4 . Before we start with the discussion of non-collinear magnetism,
we explain the basics of the density functional theory and the local spin-density ap-
proximation in chapter 2, and present a detailed review of the FLAPW method in
chapter 3, where we emphasize those aspects which are altered by the implementation
of non-collinear magnetism. A very detailed description of the actual implementation
is then given in chapter 5, which also includes tests of the constrained local moment
and the spin-spiral method .

As we have mentioned above spin frustration is one possible origin of non-collinear
magnetism . The classical example of a frustrated magnetic system is the topological
frustration of an antiferromagnet on the triangular lattice. Such a two-dimensional
magnetic system can be realized by a mono-atomic layer of an antiferromagnetic
material on a hexagonal surface of a non-magnetic substrate, e.g . the (111) surface
of an fcc noble metal. Such thin films, in particular transition metal films, have
attracted a lot of interest due to their special properties . Because of the filled d-
bands of the noble metals, the d-bands of the transition-metal monolayers hybridize
very little with the substrate. This leads to an enhancement of the magnetic moments
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in the overlayer . However, most work has been done on (100) oriented substrates,
where the atoms in the monolayer are arranged on a square lattice. Fe and Mn on the
Cu (100) surface belong to the most extensively investigated systems. Previous ab-
initio calculations [BWD88] show, that the early 3d-transition metals V, Cr and Mn
prefer a two-dimensional antiferromagnetic order on the (100) oriented substrates,
while monolayer films of Fe, Co and Ni are ferromagnetic. Little work has been done
on the (111) oriented substrates . So far, the antiferromagnetism on the triangular
lattice has almost exclusively been discussed within the Heisenberg model. However,
it is by no means clear how far the Heisenberg model can be applied to itinerant
magnets like the 3d-transition metals.

In chapter 6 we present an extensive study of the magnetism of V, Cr, Mn and
Fe monolayers on the Cu (111) and the Ag (111) surface . We cover a complete
set of relevant spin states, including non-collinear spin structures and, in particular,
incommensurate spin-spirals . In a detailed discussion of the Heisenberg model on the
triangular lattice we show that, in the nearest neighbor approximation, the ground
state of a Heisenberg antiferromagnet is the 120° Neel state, a coplanar non-collinear
magnetic configuration, where all magnetic moments lie in one plane and span 120°
angles . In fact, our ab-initio calculations show that this is the magnetic ground
state of Cr monolayers on Cu and Ag(111) substrates . When interactions beyond
the nearest neighbors are included other magnetic states, like spin-spiral states, can
become the ground state. The results of our calculations show that not only terms
that go beyond the nearest neighbor interaction, but also terms that go beyond the
Heisenberg model, like the biquadratic and 4-spin interaction, have to be included
to model the itinerant 3d-metals. In the case of a Mn monolayer on Cu (111) these
higher order terms lead to the stabilization of a very complex three-dimensional spin
structure, the so-called 3Q-state . A picture of this state is shown at the beginning
of this thesis . At the end of the chapter we discuss how these complex non-collinear
ground states can be identified with the spin-polarized STM.

The treatment of the localized 4f states of Gd represent a challenge for first-
principle theory. There has been an ongoing discussion for a long time about how
these states are best treated in ab-initio calculations . Including them into the valence
region in an LDA calculation leads to the prediction of the wrong antiferromagnetic
ground state for hcp Gd. We have performed calculations for hcp Gd that compare
different methods of dealing with the 4f states . The results show that the minority
4f bands, that lie too close to the Fermi energy in an LDA calculation, are the origin
of the antiferromagnetic coupling in such calculations .

On the basis of the knowledge gained from the Gd bulk calculations we investi-
gated the electronic structure of the Gd(0001) surface. The temperature dependence
of the electronic structure of the Gd(0001) surface has been a matter of extensive
debate . In particular, the change of the binding energy of both, the majority and
minority part of the dxz surface state, with temperature has been discussed contro-
versially in the literature . Some experimental studies found a collapse of the spin-splitting of the surface state at a temperature of 350 K, which is taken as support



for the applicability of the Stoner picture for the Gd surface, while others observed a
finite splitting of 400 meV at the same temperature. To reveal trends in the temper-
ature variation of the conduction electron states of the Gd(0001) surface we studied
non-collinear spin-spiral magnetic configurations . Such spin-spiral configurations can
be interpreted as a model for magnetic excitations. Therefore, they are frequently
referred to as "frozen magnons" . To allow a comparison with scanning tunneling
spectroscopy experiments we calculated the local density of states in the vacuum,
which is measured by such experiments, as a function of the strength of the magnetic
fluctuations . Our results nicely resemble the trends found in temperature dependent
scanning tunneling spectroscopy experiments. However, a direct comparison of the
theoretical results with an experiment at a certain temperature is difficult . With
the strength of the fluctuations the character of the surface states change drastically
due to hybridization with other states, also with states that originally had a different
spin-character in the ferromagnetic configuration . Finally only a single peak in the
vacuum local density of states is present . In that configuration the valence magnetic
moment is still as large as 0.4 ltB at the surface . Hence, the decreasing and finally
vanishing spitting of the peak of the density of states due to the surface state can-
not be taken as support for the applicability of the Stoner model in the sense of a
vanishing valence magnetic moment.
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1. Introduction



Chapter 2

The Density Functional Theory

In order to establish a deep understanding of the physical properties of solids, it
is of major importance to develop a valid quantum-mechanical description of these
systems. However, the atom nuclei and the electrons constitute a complex many-
body problem. A simplification of this problem can be achieved employing the Born-
Oppenheimer-approximation, within which the atomic nuclei are considered point
charges at fixed positions. Thus, all quantum effects of the nuclei are neglected. This
approximation, which is made in the vast majority of first-principle calculations, leads
to the following Schr6dinger equation .

h2

	

N

	

e2

	

N M e2ZIA
2

2m

	

i,j=1 Iri - r~ ~

	

~~Iri - -rPJ
i0i

2.1

	

The Theorem of Hohenberg and Kohn

The all-electron wavefunction contains all information available about an electronic
system . However, not the whole information is needed to determine the ground state
properties of a physical system . The measurable quantities are given by expectation
values of the quantum-mechanical operators corresponding to the observable under
consideration. The central idea of the density functional theory [JG89] is to replace

However, due to the large dimension of IP and the requirement of antisymmetry,
which means that T has to be expanded into a sum of Slater determinants, rather
than simple product-functions, this equation can be solved only for tiny systems,
including few electrons. In order to deal with realistic materials, relevant in solid
state physics, further approximations have to be made.
A breakthrough in the parameter-free ab-initio description of complex electronic

systems has been achieved with the development of the density functional theory by
Hohenberg and Kohn [HK64] and Kohn and Sham [KS65] .
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the complex many particle wavefunction by a far simpler quantity, the electron den-
sity, given by

N
n(r)

	

S(r- rz)
2-1

Hohenberg and Kohn were able to show for systems with a non-degenerate ground
state, that :

. For a given external Potential Vext, the ground state energy and all other ground
state properties of the system are unique functionals of the electron density n(r) .

. The energy functional is variational, i.e . the ground state density no (r) mini-
mizes the energy functional E[n], under the subsidiary condition that the num-
ber of electrons is kept constant .

E[n] > E[no ] = Eo

	

for all

	

n(r) =7~ no (r)

	

(2.3)

The density functional formalism can be extended to degenerate ground states
[Koh85, DG90] . The second part of the theorem implies, that the ground state
density can be obtained from the minimization of the energy functional.

Levy [Lev79] provided a simpler and more general derivation of the above theorems,
defining the energy functional by

However, no explicit representation of E[n] has been derived so far.

2 .2

	

The Kohn-Sham Equations

2. The Density Functional Theory

(2 .2)

6E[n] = 0

	

(2 .4)

E[n] =

	

min n(

	

(2.5)

An important step on the way to finding an applicable approximation of the energy
functional is the idea of Kohn and Sham [KS65] . The central concept of their theory
is to split the energy functional into tree contributions .

E[n] = T, [n] + U[n] +E., [n]

	

(2.6)
Where Ts is the kinetic energy of non-interacting electrons . The Coulomb energy
U consists of the interaction of the electrons with the external potential, which isusually due to the atomic nuclei, and the electron-electron interaction in Hartreeapproximation .

U[n] = Ee.t[n] + EH[n]

E�t[n] =. f Ve~t(r)n(r)d 3r (2.7)

EH[n] = 47r_ f n(r)n(r~)
~r

d3rdBr'_ r~1



2.2 The Kohn-Sham Equations
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Equation 2.6 can be regarded as a definition of the exchange correlation functional
E.,,[n], which contains all remaining contributions to E[n], i.e . the exchange and
correlation energy and correction to the kinetic energy due to the electron-electron
interaction . The importance of this representation of E[n] has two reasons. The
kinetic energy of the non-interacting electrons Ts , which is a significant contribution
to the total energy, can be calculated exactly. By that, many deficiencies due to
inaccurate treatment of the kinetic energy by the Thomas-Fermi method are removed.
In addition approximations to E,,,[n] can be found, that lead to excellent results for
the ground state properties calculated for a wide variety of systems.

An explicit formula for Ts [n] can be obtained using a special ansatz for the electron
density. The density can be written as a sum of single particle wavefunctions, as in
the case of non-interacting electrons.

N

n(r) = 2E 10i (r) 12

	

(2.8)

i-i

Where, where the sum is over the occupied states and the factor "2" accounts for the
spin degeneracy. With this ansatz the kinetic energy can be written as :

Ts [n] = - 2

	

f Oz (r) 2m~2 Y'i (r)d3r

	

(2.9)
i-1

Instead of minimizing the energy functional with respect to the electron density,
it can also be minimized with respect to the wavefunctions Oi (or their complex
conjugates). In this case the subsidiary condition of particle conservation is replaced
by the requirement of normalized wavefunctions .

with

f I9'i(r)1 2d3r = 1

	

(2.l0)

This requirement is taken into account by Lagrange parameters ei. Applying the
variational principle yields the Kohn-Sham equations.

2

These equations have the form of a single particle Schr6dinger equations. However,
the potential has been replaced by an effective potential consisting of three contribu-
tions: The external potential Vext, the Hartree potential

VH(r) (r= 47re2 f Ir )li
d3r (2.l3)

and the exchange correlation potential

Vxc(r)
BEx,[n(r)]= (2 .14)

Sn(r)

{-2v2 +Veff (r)}~bi(r) = eioi(r) (2.11)

Veff (r) = Vext(r) + VH(r) + V.,c,(r) (2.12)
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Since VH and Vxc depend on the electron density, this formalism constitutes a self-
consistency problem.

Even though the Kohn-Sham equations have the form of a single-electron Schr6-
dinger equation, the formalism does not provide any justification to interpret the
Lagrange parameters ei as excitation energies, nor to regard the wavefunctions as
physical electron wavefunctions. Nevertheless, experience shows, that doing so with-
out formal justification can be meaningful, and helps to understand the properties of
the system under consideration .

2.3

	

Spin Density Functional Theory
In order to describe magnetic effects the density functional theory has to be extended
to the case of spin polarized electrons . This is important for systems that posses
non-zero ground state magnetization, which is the case for most atoms, magnetic
solids and surfaces and electronic systems exposed to an external magnetic field. The
necessary extension to the Hohenberg-Kohn theory can be formulated replacing the
electron density by the electron density plus the magnetization density as fundamental
variables. In this case, the variational principle becomes

E[n(r), m(r)] > E[no(r), mo (r)] .

	

(2.l5)

An alternative, but completely equivalent, formulation can be obtained using a four
component density matrix pap instead of n(r) and m(r) [vBH72, Kiib95] . In or-
der to gain a generalized form of the Kohn-Sham equations, it is necessary at least
to introduce two component Pauli wavefunctions, that reproduce the electron and
magnetization density.

2. The Density Functional Theory

Applying the variational principle again yields the Kohn-Sham equations, which nowhave the form of Schr8dinger-Pauli equations .
z
mV + Veff(r) + a' Beff(r)

	

' i(r) = ei'I'i (r) (2.18)

The additional effective magnetic field consists of two terms. One of them is due tothe variation of the exchange correlation energy with respect to the magnetization

Oi(r) (2.16)4
N

n(r) I `f'i(r)I 2
i=1
N

m(r) _ E ~bz (r)a'~i(r) (2.17)
i-1



In many applications, like for example ferromagnetic and antiferromagnetic solids,
the magnetization is orientated along one particular direction . For these collinear
cases the problem can be simplified further. The z-axis can be chosen along the
direction of the magnetic field. Therefore, the Hamiltonian of equation 2.18 becomes
diagonal in the two spin components of the wavefunction, i.e . the spin-up and -
down problems become completely decoupled and can be solved independently. The
energy and all other physical observables become functionals of the electron density
and the magnitude of the magnetization density m(r) = Im(r)I rather than m(r), or,
equivalently, of the spin-up and spin-down electron densities nt(r) and nor) which
are given by

The vast majority of the spin-polarized density functional calculations have been
performed using this formalism.

2.4

	

The Local Spin Density Approximation

So far, no approximations have been made. The density functional formalism, out-
lined in the previous sections, could in principle reproduce all ground state properties
of any complex many-electron system exactly, if the exchange correlation energy Ex,
was known. Unfortunately, no explicit representation of this functional, that con-
tains all many-body effects, has been found yet. Thus, approximations to Exc have
to be used . The most widely used and very successful approximation is the local
spin density approximation (LSDA) . The underlying idea is very simple . At each
point of space Exc is approximated locally by the exchange correlation energy of a
homogeneous electron gas with the same electron and magnetization density. Hence,
the approximate functional Exc is of the form

Exc[n(r), lm(r)1] = f n(r)Exc(n(r), Im(r) I)d'r

	

(2.21)

It is important to note, that Exc is not a functional, but a function of n(r) and Im(r) I
at a particular point of space. As a consequence of its local definition Exc and thus Exc
depend only of the magnitude of the magnetization . This, in terms, leads to the fact
that Bxo(r) and m(r) do always have the same direction. Therefore, the exchange
correlation potential and magnetic field derived from 2.21 become

,,,c(r) = Exc(n(r), Im(r) I) + n(r) SExc(n(r) , Im(r)I)
Sn(r)

(2 .20)

2.4 The Local Spin Density Approximation 13

density. The second term is the external B-field, if present.

Bcff(r) = %,.(r) + Bext(r)

Bxc(r)
JE,,, (r)~=

[6
n(r), (2 .19)
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__

	

Jexc(n(r) Im(r)I)
B~~()

	

()	JIm(r)I

	

ih(r) .

2.5

	

Determination of the Total Energy

E[n] = Ts [n] + U[n] +E.,,[n] +Eii,

N

2. The Density Functional Theory

Using the LSDA the Kohn-Sham equations take exactly the same form as the Hartree
equations, and they are no more difficult to solve. In particular, they are far easier
to deal with than the Hartree-Fock equations because of the local effective potential .
Intuitively one should expect, that the LSDA is valid only for slowly varying densities .
Nevertheless, it has been applied successfully to inhomogeneous systems.

Explicit parameterizations of e,,, can be obtained for example from Hartree-Fock
calculations for the homogeneous electron gas. Of course, such calculations do only
take into account the exchange effects, but neglect correlation . Modern parameteri
zations of ex, are based on quantum-mechanical many-body calculations . Most com-
monly used are the parameterizations of v. Barth and Hedin [vBH72] and Moruzzi,
Janak and Williams [MJW78], which have been obtained applying the random phase
approximation (RPA), the parameterization of Vosko, Wilk and Nusair [VWN80],
that is based on Quantum-Monte-Carlo simulations by Ceperley and Alder [CA80],
and goes beyond the RPA, and the parameterization of Perdew and Zunger [PZ81],
which is, in a certain sense, a mixture of the previous two. The results of the present
work have been obtained using the parameterization of Moruzzi, Janak and Williams .

If the total energy of a system is needed, for example in order to calculate the equi-
librium lattice constant of a crystal, the Coulomb interaction of the atomic nuclei
has to be taken into account. This extra contribution Eii (ion-ion) has to be added
to the electronic energy, given by 2.6 .

lvr ZI"Ztt'
Eii - e2

IT'' - 7.1"1u,u =i

(2.22)

(2 .23)

where tc sums over all atoms of the crystal with the position -r'. In principle, thisformula could be used to calculate the total energy. However, for numerical reasons itis desirable to avoid the explicit application of the operator V2 . Therefore, the kineticenergy is calculated from the sum of the single particle eigenvalues ei . Rewriting theSchr6dinger-Pauli equation 2.18 yields
2

-mj2,oi(r) = ei0i(r) - Veff(r),Oi(r) - a. - Beff(r)~bi(r)

	

(2.24)

Multiplying from the left with f d'r 01(r, a) and summing over the occupied statesgives the kinetic energy.

T, [n]
-

	

ei - f n(r) Veff(r)d3r - f m(r) - Beff(r)d3r

	

(2 .25)i=1
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Using (2 .7), (2 .21) and assuming that the external potential is given by the atomic
nuclei and that no external magnetic field is present,

the total energy becomes

M

Vext(r) = -47re2

	

Ir
Z

~,u1,

	

Bext(r) = 0

	

(2.26)
u

N
E[n, m]

	

=

	

E Ei - f n(r)Veff (r)d3r - f m(r) - Bxe(r)d'r
i=1

47re2 M
n(r)Z,4

d3r - 47re21
f n(r)n(r) d3rd3r'%

1

	

Ir - T"`I

	

2

	

Ir - r1

+

	

f n(r)Exe(n(r), Im(r) I )d 3r + 47re2

	

E

	

I

	

~ -

	

.

	

(2.27)

1.412

M Zi'

Using 2.7 and 2.22 this can be simplified further .
N

E[n, m]

	

=

	

E ei -

	

n(r)Vxe(r)d 3r - f m(r) - Bxe(r)d3r
i=1

-

	

47re21

	

n(r)n(r') d3rd3r,
2 f

	

Ir -r'I
M

+

	

f n(r)Exe(n(r), Im(r) I )d 3r + 41re2

.U'A'=1
F" 5 -̀/A

,

Z.'`/-"

IT/-t -T/.t,I

2 .6

	

The Stoner Model of Itinerant Magnetism

(2.28)

Equation (2.28) holds exactly for the selfconsistent electron and magnetization den-
sity . During the iterations on the way to selfconsistency this result represents only
an approximation to the total energy. Another difficulty arises, because the Hartree
energy and the contribution from the Coulomb interaction of the nuclei are diver-
gent . Weinert, Wimmer and Freeman [WWF82] showed how these singularities can
be canceled analytically.

Although all results of the present work have been obtained from ab-initio calcula-
tions, a brief discussion of the Stoner Model will be given in this section . This model
provides a framework within which to interpret the results of the calculations . It is
very important to keep these simple models in mind, in order to build ones physical
intuition. Comparing ones "intuitive" expectations with the outcome of the calcula-
tions is certainly the most important step on the way to understanding the physics
of a system . The magnetism of solid is determined by the interplay of the gain of ex-
change energy due to the formation of a local moment and the increase of the kinetic



16

energy, if not all k-states are double occupied within the Fermi sphere. This effect

can most easily be illustrated within the Stoner model for ferromagnets .
The magnetization density m(r) = Im(r) I of solids is usually small compared to

the electron density n(r) . Expanding the exchange correlation energy exc(n(r), m(r))

into a Taylor series in terms of the parameter ~ = n yields

Thus, the magnetic field Bxe becomes

E., (n, e) - e.. (n, 0) + 1exc(n, 0)e2 + . . .

Bxc = nelljn, 0)m.

	

(2.30)

In the case of ferromagnetism Bxc acts as an extra potential term Vxc, that adds to the
non-magnetic exchange correlation potential V°. This term, which is proportional
to m, has the same magnitude for both spin-directions, but it is attractive for the
majority-spin (+) and repulsive for the minority-spin(-) .

V , (r) - V°(r) ::F Tjxc (r)m(r)

	

(2.31)

Within the Stoner theory this rising and lowering of the potential is expressed by a
constant .

Where M is the total magnetic moment per atom, and I is the exchange integral
(Stoner parameter) . Because of this constant shift the spatial shape of the potential
remains the same as in the non-magnetic case . Consequently, the solutions of the
Kohn-Sham equations also remain unchanged, only the single particle energies ei are
shifted by the same amount as the potential.

V~(r) = Vx(r) T 2IM

~)~ (r) = ~o (r),

	

et = so T
2
1

Hence, the whole band structure is spin-split, but the shape of the bands remains
unchanged. As a result, the local densities of states projected on an atom for the
spin-directions ±,n' (e), are also shifted by ±!IM.

W-- (e) = n° (e ± (1-IM)

2. The Density Functional Theory

(2 .29)

(2 .32)

(2 .33)

(2.34)

From this property of the density o£ states a criterion for the existence of ferromag-
netism can be derived. Integrating the density of states up to the Fermi energy EF
yields the number of electrons N and the total magnetic moment per atom M.

N

	

=

	

J <EF [no(e + 2IM) + n° (e -
2IM)]

de

J <EF
[n') (e +

2
1 IM) - n° (e -

21 IM)]
de

	

(2.35)
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These two equations determine the unknown Fermi energy and magnetic moment.
Requiring charge neutrality the first equation can be used to obtain the Fermi energy
as a function of the magnetization EF = EF(M) . Substituting this into the second
equation leads to a selfconsistency problem for M.

M = F(M),

	

F(M) = f
<EF(M)

[n ) (e + 2IM) - n ° (e - 2IM)] de

	

(2.36)

The function F(M) has the following properties.

" F(0) = 0

" F(M) = -F(-M)

" F(±oo) = ±M,,.

" F(M) > 0

Where M,, is the largest possible magnetization, reached when only majority-spin
states are occupied. The graphic solution of 2.36 is illustrated in Fig. 2 .1 . Two

F(M)

Figure 2.1 : Graphic solution of the Stoner model

-I-
M

M�

functions F(M), consistent with the above properties, are plotted . In case A only

the trivial non-magnetic solution M = 0 is present, whereas in case B three solutions
exist, two of which have non-zero magnetization . From the properties of F(M)
follows, that 2.36 always has solutions with non-zero magnetization, if the slope of
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F(M) at M = 0 is larger than 1 . From 2.36 follows that the slope of F(M) is given
by

This finally is the Stoner criterion for ferromagnetism :
F'(0) = In° (EF) .

	

(2.37)

In° (EF) > 1 .

	

(2.38)

A big exchange integral and a large non-magnetic density of states at the Fermi
energy favors ferromagnetism . This result is not surprising, because a large n° (EF)
means, that only a small increase in kinetic energy has to be accepted to obtain a
large magnetization, and thus a large gain of exchange energy. In the most simple
approximation the size of the density of states is proportional to the inverse of the
bandwidth W. Thus, the smaller the bandwidth is, the larger the tendency towards
magnetism becomes. The limiting case of zero bandwidth are atoms. Here the
Stoner criterion is always satisfied, and the magnetic moments are determined by
Hund's rule, with the exception of the Lanthanides and the Actinides. The only bulk
materials that fulfill the Stoner criterion are Fe, Co and Ni. However, due to the
reduced coordination, the bandwidth at surfaces is smaller than in bulk materials.
Thus, from the Stoner model one should expect an enhancement of magnetism at
surfaces and even new magnetic materials, which are non-magnetic in their bulk
crystalline phase, but become magnetic at the surface.



Chapter 3

The FLAPW Method

3.1

	

The FLAPW Method

There are many possible ways to solve the Kohn-Sham equations . One very common
method is to use some kind of basis set to represent the wavefunctions . A very
suitable choice that is already suggested by Bloch's theorem are plane waves . They
have a lot of advantages : They are orthogonal, they are diagonal in momentum
and any power of momentum and the implementation of planewave based methods
is rather straightforward because of their simplicity. However, since the electron
wavefunctions are varying very quickly near the core, large wavevectors are needed
to represent the wavefunctions accurately. This makes planewaves very inefficient .
To overcome this problem one can employ pseudopotential techniques, which allow
an accurate description of the wavefunctions between the atoms, but avoid the fast
oscillations near the core . Thus, less basis functions are needed. Another way to solve
this problem is to use a basis set, which contains radial wavefunctions to describe the
oscillations near the core . This has already been suggested by Slater [Sla37]. The
corresponding technique is called the augmented planewave method (APW) .

3 .1 .1

	

The APW Method and its Problems

Within the APW approach, space is divided into spheres centered at each atom site,
the so-called muffin-tins, and the remaining interstitial region (cf. fig. 3 .1) . Inside the
muffin-tins the potential is approximated to be spherically symmetric, and in many
implementations the interstitial potential is set constant . The restrictions to the
potential are commonly called shape-approximations . Noting that planewaves solve
the Schrödinger equation in a constant potential, while spherical harmonics times a
radial function are the solution in a spherical potential, suggests to expand the single

19
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Figure 3.1 : The division of space in the APW method . The muffin-tin
spheres are surrounded by the interstitial region .

particle wavefunctionsl 0,(k, r) in terms of the following basis functions:

ei(G+k)r

	

interstitial region
~pG (k, r) ;

	

EALG (k)ul (r)YL (f)

	

muffin-tin p
lm

3. The FLAPW Method

Where k is the Bloch vector, SZ is the cell volume, G is a reciprocal lattice vector, L
abbreviates the quantum numbers l and m and ui is the regular solution of the radial
Schrödinger equation

2 2 2

	

)
2mjr2 + 2m

j(1

	

1

	

+V(r) - El

	

rul(r) = 0

	

(3.2)_--r2 1
Here El is an energy parameter and V(r) is the spherical component of the potential .
The coefficients AILa (k) are determined from the requirement, that the wavefunctions
have to be continuous at the boundary of the muffin-tin spheres.

Hence, the APW's form a set of continuous basis functions that cover all space.
Where each function consists of a planewave in the interstitial region plus a sum of
functions, which are solutions of the Schrödinger equation to a given set of angular
momentum quantum numbers lm and a given parameter Et , inside the muffin-tin
spheres .

If the El were kept fixed, used only as a parameter during the construction of the
basis, the hamiltonian could be set up in terms o£ this basis . This would lead to a
standard secular equation for the band energies . Unfortunately, it turns out, that the

lI will only discuss the application of FLAPW to systems that possess either 2- or 3-dimensional
translational symmetry, i.e. bulk crystals or thin crystal films .
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APW basis does not offer enough variational freedom if the El are kept fixed . An
accurate description can only be achieved if they are set to the corresponding band
energies . However, requiring the El 's to equal the band energies, the latter can no
longer be determined by a simple diagonalization of the Hamiltonian matrix. Since
the ul's depend on the band energies, the solution of the secular equation becomes a
nonlinear problem, which is computationally much more demanding than a secular
problem.

Another disadvantage of the APW method is, that it is difficult to extend beyond
the spherically averaged muffin-tin potential approximation, because in the case of a
general potential the optimal choice of El is no longer the band energy. And finally,
but less serious, if, for a given choice of El , the radial functions ul vanish at the
muffin tin radius, the boundary conditions on the spheres cannot be satisfied, i.e . the
planewaves and the radial functions become decoupled . This is called the asymptote
problem. It can already cause numerical difficulties if ui becomes very small at the
sphere boundary.

Further information about the APW method can be found in the book by
Loucks [Lou67], which also reprints several early papers including Slater's original
publication [Sla37] .

3J -2

	

The Concept of LAPW

The basic idea of the linearized augmented planewave method (LAPW) is to add extra
variational freedom to the basis inside the muffin-tins, so that it is not necessary to
set the El equal to the band energy. This is done by using not only the radial solution
of the Schr6dinger equation, but also its derivative with respect to the energy. This
construction, which was first suggested by Andersen [And75], can be regarded as a
linearization of the APW. To realize this recall that in the APW method the ul's
depend on the band energies and can thus be understood as functions of r and e.
Hence, ul can be expanded into a Taylor-series around El.

uc(e, r) = ut(EI, r) + üa(EI, r)(e - Ei) + 0[(e - Ei)2] (3 .3)

Here it, denotes the energy derivative of ul, 8ul(e, r)/8e, and 0[(e-E02] denotes errors
that are quadratic in the energy difference . Ergo, the LAPW method introduces an
error of order (e - El )2 in the wavefunction . Therefore, according to the variational
principle the error in the calculated band energies is of the order (e - El) 4 . Because
of this high order, the linearization works very well even over rather broad energy
regions. In most cases a single set of energy parameters is sufficient for the whole
valence band. However, sometimes the energy region has to be split up in two (very
rarely more) windows with separate sets of energy parameters .

But let's turn to some important properties of the LAPW basis first, before dis-
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cussing its quality and accuracy. The LAPW basis functions are of the form

ei(G+k)r

	

interstitial region

(pG (k, r) _

	

E ALG (k) ul (r)YL (r) +
BLG

(k)

L
(r) YL(r) muffin-tin p

(3.4)

with the extra term BLic l (r)YL(f) compared to the APW method. The additional

coefficient is determined by requiring that not only the basis functions, but also their

derivatives with respect to r are continuous at the sphere boundaries . It is useful to

require the following normalization .

Nu) =

	

RMT
ui(r)r'dr = 1

0
(3.5)

Here RMT is the muffin-tin radius . Taking the derivative of (3.5) with respect to the

energy it can easily be shown, that ul and iat are orthogonal . it, is calculated from a

Schr6dinger-like equation, derived by taking the energy derivative of (3.2) .

-t

	

h2 _a2 + h2
l(l + 1) + V(r) - Ei

	

ricl(r) = rui(r)

	

(3.6)
2m ~r2

	

2m

	

r2

Still the solution of this equation has to be made orthogonal to ul, since any linear
combination of it, and ul also solves the equation . Once the ul and it, are made
orthogonal the basis functions inside the spheres form a completely orthogonal basis
set, since the angular functions Yj,n(i) are also orthogonal . However, the LAPW
functions are in general not orthogonal to the core states, which are treated separately
in the LAPW method . This fact can cause problems in the presence of high lying core
states . A detailed discussion of these problems and strategies to circumvent them can
be found in the book by Singh [Sin94], which includes a very comprehensive review
of many aspects of the LAPW method .

With the construction of the LAPW basis the main problems of the APW method
are solved :

" Since it is no longer necessary to set the energy parameters equal the band ener-
gies, the later can be determined by a single diagonalization of the Hamiltonian
matrix .

" The LAPW method can be extended to nonspherical muffin tin potentials with
little difficulty, because the basis offers enough variational freedom . This leads
then to the full-potential linearized augmented planewave method (FLAPW) .

" If ul is zero at the sphere boundary, its radial derivative and Al are in general
nonzero . Hence, the boundary conditions can always be satisfied and there is
no asymptote problem .

As a final remark it is worth mentioning, that the nonlinearity inherent to the APW
method can only be circumvented at the expense of a larger eigenvalue problem . To
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see this, recall that within LAPW (and also within APW) the basis functions are
represented by planewaves . The functions inside the muffin tins are coupled to the
planewaves via the boundary conditions, and can only varied indirectly by a variation
of the planewave coefficients . Clearly, with a finite number of planewaves, at maxi-
mum the same number of functions inside the spheres can be varied independently.
Hence, to make use of the of the extra variational freedom, that the LAPW basis set
allows compared to the APW basis, i .e . to vary the ul 's and the itl 's independently,
more planewaves have to be used .

3.1 .3

	

The Concept of FLAPW

In the past the majority of applications ofAPWand LAPW' method employed shape-
approximations on the potential used in the Hamiltonian. Typically, the potential in
the unit cell V(r) is approximated by Vo (r),

Vj = const.

	

interstitial region

VZT(r) muffin-tin

using a constant potential in the interstitial region and a spherically symmetric po-
tential inside each sphere .

While the LAPW method yields accurate results for close-packed metal systems
the shape-approximation becomes difficult to justify for crystals with open structures
such as silizides, perovskides, surfaces or clusters .

In the full-potential LAPW method (FLAPW) [Ham79, WKWF81] any shape-
approximations in the interstitial region and inside the muffin-tins are dropped. This
generalization is achieved by relaxing the constant interstitial potential VI and the
spherical muffin-tin approximation VMT(r) due to the inclusion of a warped interstitial
E VGeiGI and the non-spherical terms inside the muffin-tin spheres:

VGeiGr
r

V(r) G
F VI6T(r)YL(r)
L

interstitial region

muffin-tin
(3 .8)

This method became possible with the development of a technique for obtain-
ing the Coulomb potential for a general periodic charge density without shape-
approximations and with the inclusion of the Hamiltonian matrix elements due to
the warped interstitial and non-spherical terms of the potential. The charge density
is represented in the same way as the potential:

A(r)

PGeiGr

	

interstitial region
G

PL
T (r)YL (f) muffin-tin

(3.9)

L
'There are APW and LAPW methods available which include the warped interstitial potential

[Koe72] .
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Detail of the solution of the Poisson equation for an arbitrarily shaped periodic po-
tential are described in section 3.7 .

3.1.4

	

The Generalized Eigenvalue Problem

After discussing the FLAPW basis it is necessary to say a few words about the
eigenvalue problem. The solution of the eigenvalue problem has to be carried out
separately for every Bloch vector . And, of cause, the basis set and the Hamiltonian
matrix have to be set up for each Bloch vector . However, I will not add the index k
to the basis functions and the Hamiltonian matrix .

There is one important fact that I have not mentioned so far. Even though plane-
waves form an orthogonal basis set, the FLAPW functions do not. The planewaves
in the interstitial-region are non-orthogonal, because the muffin-tin are cut out, i .e .
the integration,in terms of which orthogonality is defined, does not stretch over the
whole unit cell, but only over interstitial region . An additional contribution comes
from the muffin-tin . Even though the ul (r)YL and i& l(r)YL are mutually orthogonal,
in general each planewave couples to all functions in the spheres.

Due to the non-orthogonality of the basis functions the overlap matrix S, defined
by (3 .10), is not a diagonal, but a hermitian matrix .

SG'G -

	

SAG,(r)WG(r)d3rf

3. The FLAPW Method

(3.10)

In (the more convenient) Dirac notation the eigenvalue problem has the following
form.

we obtain

70i) = Eil Y'i)

	

(3.11)
Where I0i) denotes the eigenfunction corresponding to the it' eigenvalue ei. Substi-
tuting the expansion of the eigenfunctions

E CiG I (PG)

	

(3 .12)
G

where the eigenvector ci is the coefficient vector corresponding to the ith(3 .15) is called a generalized eigenvalue problem.
eigenvalue .

E CiGWIWG) = eiE
G

CiGI<PG)
G

Multiplying this from the left with (w., I we find

3.13

E CiG(~PG~ I I(PG) = ei E, CiG((PG' IWG) (3 .14)
G G

which can be written in matrix form

{H -,Eis} ei = 0 (3.15)
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However, this problem can be reduced to a standard eigenvalue problem using the
Cholesky decomposition. It can be shown (e.g . Stoer [Sto94]), that any hermitian
and positive definite matrix can be decomposed into a matrix product of a lower
triangular with only positive diagonal elements matrix and its transposed . Clearly,
the overlap matrix satisfies these conditions and can be written

Thus the generalized eigenvalue problem has been reduced to a simple eigenvalue
problem . The eigenvectors ci can be obtained by the back-transformation

ei = (L") -lxi

3.1 .5

	

Film Calculations within FLAPW

(3.21)

Nowadays the physics of surfaces is an field of major interest and investigation . How-
ever, surfaces are difficult to treat, because they break the translational symmetry,
i.e . there is only the 2-dimensional symmetry parallel to the surface left to be used to
reduce the problem, and a semi-infinite problem is left perpendicular to the surface.
In our approach surfaces are approximated by thin films, typically 10-15 atomic lay-
ers thick. Obviously, this approximation, which is called the thin-slab approximation,
can only yield good results if the interaction between the two surfaces of the film is
week enough, so that each of them shows the properties of the surfaces of an ideal
semi-infinite crystal.

In the case of film calculations space is divided into three distinct regions, the
muffin-tins, the interstitial and the vacuum region (cf. fig. 3 .2) . The interstitial
region now stretches from -D/2 to D/2 in z-direction, which is defined to be the
direction perpendicular to the film . The representation of the wavefunctions inside the
muffin-tin spheres remains exactly the same as in the bulk case . Since the periodicity
along the z-direction is lost, the unit cell extends principally from -00 to 00 in z-
direction. Still the wavefunctions can be expanded in terms of planewaves . However,
the wavevectors perpendicular to the film are not defined in terms of D, but in terms

S = LV' (3 .l6)

Therefore (3.15) becomes
Hci = eiLLtrci (3 .17)

multiplying from the left with L-1 and introducing a unit matrix we get

L-1H(L-1)t'Ltrci = eiLtrci (3 .18)

defining
P = L-1H(L-l)tr' xi = Ltrci (3.19)

we finally have
Pxi = eixi (3.20)
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---------------------------
Vacuum

	

-D/2unitcell -

Figure 3.2 : The unit cell in film calculations .

of D, which is chosen larger than D to gain greater variational freedom . Therefore,
the planewaves have the form

with

where GII and kll are the 2-dimensional wave- and Bloch vectors, rll is the parallel
component of r and GL is the wavevector perpendicular to the film . The basis func-
tions in the vacuum region are constructed in the same spirit as the functions in the
muffin-tins . They consist of planewaves parallel to the film, and a z-dependent func-
tion uG,i (k1l, z), which solves the corresponding 1-dimensional Schrödinger equation(3 .24), plus its energy derivative AGii (kll, z) .

h2__ ä2

	

2

2m 8z2
+ VO(z) - Evao + 2m (Gll + kll)2

	

UGii (kll, z) - 0 (3 .24)

WGII GL(kll , r) = gZ (Gjj}kj l)rll eiGlx (3 .22)

GL 27rn
= D (3 .23)
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E�ac is the vacuum energy parameter and Vo (z) is the planar averaged part of the
vacuum potential. As in the case of iLl in the muffin-tins, the function icGll (kll, z) is
calculated from a Schr8dinger-like equation, which can be obtained by deriving (3.24)
with respect to the energy.

rZ2 az
2m öz2

+ VO (Z) - Evac

	

h2

+ 2m (GII + kll)2

	

AGll (kll , z) ': UGll (kll , z)

	

(3.25)

The resulting basis functions have the form

(PGIIG.L (kll , r) = {AGIIGL (kll) UGII (kll , z) + BGIIGi (kll)i&Gll (kll , z)}
	e'(Gll+kll)rll

	

(3.26)

The coefficients AGIIGL(kll) and BGI,G1(kil) are determined in exactly the same way
as it is done for the muffin-tins by requiring that the functions are continuous and
differentiable at the vacuum boundary. It should be mentioned, that the vacuum
basis functions offer less variational freedom than the basis set in the interstitial
region does . This can be seen by noting that there are only two functions, UGli and
fiGll times the corresponding planar planewave, to be matched to all planewaves of
the interstitial region with the same GII . But there are generally far more than two
different G1 's, i.e the number of basis functions in the vacuum region is significantly
smaller than in the interstitial region. However, this can be improved rather easily. In
equation 3.24 only one energy parameter E,ac is used . Instead one can used a whole
series of parameters Evac to cover an energy region . A possible choice of the energy
parameters could be E,,',,, = EL = E�ac - 2mG1, which leads correspondingly to G1
dependent basis functions UGIIGl(kli,z) . For more details see [NKD86] . In general,
however, the present approximations is accurate, the energy spectrum of the electrons
in the vacuum region is small due to the work-function .

Finally we would like to summarize the basis set used for thin film calculation
with the FLAPW method.

flIG-L(kll,r) =

3 .2

	

Relativity in Valence Electron Calculations

This expansion has been suggested by H. Krakauer, M. Posternak and A.J. Free-
man [KPF79] .

Relativistic effects are important for the correct numerical description of core or va-
lence electrons. Both core and valence electrons have finite wavefunctions near the

ei (Gll+kll)rll eiGLz Int.

{AGIIGL(kll)UGll (kll, z)

+BGIIGl(kll) GII(kll , z)} ei
(
GII+kil)rll Vac. (3 .27)

E AiG(k)ut(r)YL(r) +BLG(k)fl(r)YL(r) MT p
L
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nucleus, where the kinetic energy is large. This kinetic energy enhancement becomes
more significant for heavier elements and compounds. Additionally, only relativistic
effects, in particular the spin-orbit-coupling, introduce a link between spatial and spin
coordinates . Thus, information about the orientation of spins relative to the lattice
can only be gained if relativity is taken into account . For fully relativistic descrip-
tion of the electronic structure all relativistic effects (mass-velocity, Darwin-term,
spin-orbit coupling) have to be taken into account [SDKW96] . However, in many
applications an approximation is used, where the spin-orbit interaction is neglected.
This approximation is called the scalar relativistic approximation.

3.2.1

	

The Kohn-Sham-Dirac Equation
In a relativistic density functional theory the Kohn-Sham equation has the form of a
single particle Dirac equation

3. The FLAPW Method

Here, ax ay vz are the Pauli matrices and o- is the vector of Pauli matrices, p isthe momentum operator, and In denotes an (n x n) unit matrix. Veff is the effec-tive potential, that contains electron-nucleon Coulomb potential, Hartree potentialand exchange-correlation potential. In the case of non-zero spin-polarization, Veffbecomes spin-dependent . Finally, * is the relativistic four component wavefunction.The straightforward way to solve this problem would be to expand each of thefour components of T in terms of the FLAPW basis. However, if all four componentswere treated with the same accuracy, this would result in a basis set which containsfour times as many functions as in the non-relativistic (non-magnetic) case . Sincethe numerical effort of the Hamiltonian diagonalization scales with the dimension ofthe matrix to the power of three, this would increase the computing time needed forthe diagonalization by a factor of 64 .
The FLAPW implementation we use introduces some approximations to makerelativistic calculations more efficient. One of these approximations is the scalarrelativistic approximations, which has been suggested by D.D. Koelling and B.N.Harmon [KH77], where the spin-orbit term is neglected, and spin and spatial coordi-nates become decoupled. Hence, the Hamiltonian matrix reduces to two matrices ofhalf the size, which can be diagonolized separately. This saves a factor of four in com-puting time . The scalar relativistic approximation will be discussed more detailed in

{ca - P + (ß - 1)mc2 + Veff (r)} T = ET (3.28)

0 )'(U 0)'(~ ))tr- C o. (3 .29)0 0 l

ß- (
12 0
0 -I2 (3 .30)
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the next section. It should be noted, that relativistic effects are only significant close
to the nucleus, where the kinetic energy is large. It is therefore reasonable to treat
the interstitial region and the vacuum non-relativistically. Thus, merely within the
muffin-tins the electrons are treated relativistically. And only the large component
of 1@ is matched to the non-relativistic wavefunctions at the boundary between the
muffin-tins and the interstitial region, because the small component is already negli-
gible at this distance from the nucleus. The small component is attached to the large
component, and cannot be varied independently. However, this is a sensible approxi-
mation for two reasons: Firstly even inside the muffin-tin sphere the large component
is still much bigger than the small component, and plays the more important role,
and secondly the two components are determined by solving the scalar relativistic
equations for the spherically averaged potential . Therefore, they are very well suited
to describe the wavefunctions .

Hence, the size of the basis set and the Hamiltonian matrix remains the same as
in non-relativistic calculations, but the problem has to be solved twice, once for each
direction of spin . This amounts to a numerical effort, that is equal to that needed in
spin-polarized non-relativistic calculations .

3 .2 .2

	

The Scalar Relativistic Approximation
As I pointed out in the previous section, the electrons are only treated relativistically
inside the muffin-tin spheres. Thus, the first problem that has to be addressed is
the construction of the relativistic radial function . This is done by solving the scalar
relativistic equation, including only the spherically averaged part of the potential.
The starting point is the following Dirac equation .

{ca-p+(ß-1)mc2 +V(r)}1F=ET (3.31)

The solution of (3.31)is discussed in many textbooks, e .g . E.M . Rose [Ros61] . Due
to spin-orbit coupling m and ms are not good quantum numbers any more, and
they have to be replaced by the quantum numbers n and lc (or j and ,u), which are
eigenvalues of the operators K and the z-component of the total angular momentum
j,z (or the total angular momentum j and jz) respectively. K is defined by

Where g,ti (r) is the large component, fk(r) is the small component, Xk/j. and X_krz are
spin angular functions, which are eigenfunctions of j, j,z, K and s2 with eigenvalues j,
p, n (-r,) and s = 1/2 respectively. The spin angular functions can be expanded into

K =,8(a -1 + 1) (3.32)

The solutions of (3.31) have the form

_ 9r.(r)X.j, (3.33)
ifk(r)X_./,
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a sum of products of spherical harmonics and Pauli spinors. Where the expansion
coefficients are the Clebsch-Gordon coefficients . The radial functions have to satisfy
the following set of coupled equations.

To derive the scalar relativistic approximation D.D. Koelling and B.N. Har-
mon [KH77] introduce the following transformation .

a_
ar

3. The FLAPW Method

Where M' denotes the derivative of M with respect to r (aM/ar) . Multiplying thefirst line in (3.39) by (n -}-1 )/2Mcr and subtracting it from the second yields

-

	

2Mc
1

	

1(1+ 1)

	

g,.(r)

	

= 01

	

2 a ~~(r)2Mc

	

r2

	

+-(V(r) - E) + K
+ 1

	

M'

	

__ -c

	

r 2M2c r ar
(3.40)Where the identity ß(r,+1) =1(1-1-1) has been used . Recalling, that r. is the eigenvalueof K = ,ß(o- " 1 + 1) the term (K + 1)M'/2M2 cr can be identified as the spin-orbit

~+1ag,(r) _ - g,,(r) + 2Mcf,£ (r)r (3 .34)

arA(r) I" 1_ (V(r) - E)gk(r) -I- fk(r) (3 .35)r
with

M=m+2c2 (E-V(r)) (3 .36)
This can be written in matrix form .

+ 1_ _ _a 2Mcr ar 9.(r)
1

= 0
r, - 1 a 1 ( f, Or) )

(3 .37)

c r Or

g� (r)
0

9~(r)
1 fk(r) (3 .38)

2Mc r
Using this transformation (3.37) becomes

ar 2Mc
1 K(K + 1) 1 1

2Mc r2 + c(V(r) - E) - + 1 _a __M' - 1 _ _a
2Mc r Or M r ar

(
gk(r)
0', (r) )

= 0 (3.39)
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term . This term is dropped in the scalar relativistic approximation, because it is the
only one, that causes coupling of spin up and spin down contributions . In the original
paper this is interpreted as an average over all states for the two possible values of
n, r. = l, (j = l -1/2) and r, = -(l + 1), (j = l + 1/2) . The radial functions g, (r) and
0t(r) (the index r, has been replaced by l) can now be calculated from the following
set of differential equations.

agl(r)

	

=

	

2Mcol(r)

	

(3.4l)

- 19 01(r)

	

=

	

2Mc
l(l
r 1) + c (V (r) - E)

	

gt(r) - rOt(r)

	

(3.42)Or (

Deriving these equations with respect to the energy yields a set of equations for 9'r(r)
and 0r(r), which are the relativistic analog of i~a(r) .

,9r Mr)
2Mc~l(r) + 2 Vlcol(r)

	

(3.43)

a~t(r)

	

=

	

1

	

l(l+ 1) + 1(V(r) - E)

	

9t(r)ar

	

(2Mc r2 c

For numerical reasons the functions gi(r) and 0a(r) are replaced by p(r) = rgl (r) and
q(r) = crol(r) . Thus, equations (3.41) - (3.44) become

_ (

	

111l(l + 1)

	

1

	

2
2M2c

	

r2

	

+ c ga(r)

	

r~a(r)

	

(3.44)

This formulae have been obtained using the definition of M (3.36), 1V1 = 1/2c2 and
the fact that m = 1 in Hartree units. In our implementation of FLAPW the radial
wavefunctions are normalized according to

gl ) ~ (
gt

	

gi
)

)
= fRMT

(gi (r) +02(r))r2 dr = 1

	

(3.49)

rp(r) =
r

2 C1
+ c2 (E p( )- V(r))) q(r) + (3 .45)

a =
ar
q(r) l(l + 1) q(r )- -

2(1+
+ E

2,2(E
V(r) p(r)- V(r))) r2 r (3 .46)

arp(r)
_

2 C C1 +
p(r)

-
_

2c2 (E
V(r))) q(r) + 2c2 q(r)) (3 .47)

a =
ar q(r)

1(1 + 1) + V -E
2 (1

(r) P(r)
+ - (E - V(r))) r22C2

l(l + 1) q(r)- + 1 -
4c2 (1

p(r)
+ L(E - V(r)) r2 r

(3 .48)
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However, gi (r) + 0i (r) is not the charge density. The radial charge density is defined

by

The energy derivatives of the radial functions have to be made orthogonal to the

radial functions (comp. section(3.1.2)) .

Thus, the scalar relativistic FLAPW basis set is

~PGIIG_(r) '-

Note, that the Pauli-spinors have been omitted, since the spin up and down prob-
lems are solved independently within the scalar relativistic approximation. Rewriting
(3.40)

with

Aa(r) -

	

ft

	

h

	

-

	

pRMT
(gi (r) ~' .fi (r))r2dr

	

(3.50)}

JoI )~ ( 91 )) -

1 ei(GII+kll)r~l eiG_LZ

{AGIIG
_LuGII(z)+BGIIG1ÜGII(z)1

ez(Gll+kll)rll

AIm
k

	

4'1\

	

Ym\r) + BImk

	

Y'd(r)

	

Ym(r)

	

M~
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Int .

Vac.

3.3

	

Construction of the Hamiltonian Matrix

(3.51)

(3.52)

a matrix expression for the scalar relativistic Hamiltonian including only the spheri-
cally averaged part of the potential can be obtained .

The FLAPW Hamiltonian and overlap matrices consist of three contributions from
the three regions into which space is divided.

H = HI +HMT+Hv

	

(3 .55)

S

	

=

	

Sr +SMT + SV

	

(3 .56)

All three contributions have to be computed separately . Let's begin with the muffin-
tin spheres.

9a(r) 9c(r)
SP ( 0i(r)

)
__ E (

0c(r) )
(3.53)

1 l(l + 1) 2c ä_
+ V(r) - - c

WSP
2M r2 r är= (3.54)

cj -2mc2 + V(r)
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3 .3.1

	

Contribution of the Muffin-Tins

The contribution of the muffin-tin to the Hamiltonian matrix and the overlap matrix
is given by:

with

Where we distinguish between the atom index /.t and the atom type index a(EL) . In
most application the are symmetry equivalent atom in the unit cell, i.e . some atoms
can be mapped onto each other by space group operations . Clearly, these atom
must possess the same physical properties, e.g . the potential has to be equal. As
a consequence, the Hamiltonian and the basis functions 4L(r) do not differ among
the atoms of the same type. This fact is exploited in that the muffin-tin potential
of an atom type is only stored once for the representative atom, and the matrices
3.61-3.64 is also calculated for the representative only. 7iMT« is the scalar relativistic
Hamiltonian operator . It can be split up into two parts, the spherical Hamiltonian
WSp (3.54) and the nonspherical contributions to the potential V,,, .

WMTa = WC' + Vn

	

(3.60)

The above integrations contain the following matrix elements .

taIL

	

=

	

f

	

~', (r)WMTc WL(r)d3r

	

(3.61)
MT«

tL L

	

fMTa ~p', (r)WMTaOL(r)d3r

	

(3.62)

tLIL = fMTa 0",(r)WMTaWL(r)d3r

	

(3.63)

LIL

	

LT. (PL1(r)?iMTOOL(r)d3r

	

(3.64)

These matrix elements do not depend on the ALG (k) and BLG (k) coefficients . Thus,
they are independent of the Bloch vector and need to be calculated only once per

HMT (k) _ fMT~ T ALG, (k)W', (r) +'
BLG'

(k) ~PL~ (r) WMT«

(
Z ALG (k) APL (r) + BLG (k)APL (r) dar (3.57)
L

SMT (k) _ fm (E ALG' (k)WL , (r) + BLG' (k) 0L, (r)
Tl L'

ALG (k)~pL(r) + BLG (k)~PL(r) dar (3.58)
L

~Pi(r)
9t ft(r)= (r) =
01 (r)

YL(r)~ ~Pi(r)
(

~a(r)
)
YL(r) (3.59)
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iteration . The functions WL and c0L have been constructed to diagonalize the spherical
part Vp of the muffin-tin Hamiltonian WMT. .

However, 'lp is smaller than WI, by a factor of 1/c2 and is therefore neglected.

Multiplying these equations with cPL, (r) and APL' (r) respectively and integrating over
the muffin-tins gives

Where the normalization condition for cp' has been used . So, only the expectationvalues of the nonspherical part of the potential are left to be determined. Since thepotential is also expanded into a product of radial functions and spherical harmonics,the corresponding integrals consist of product of a radial integrals and an angularintegrals over three spherical harmonics, the so-called gaunt coefficients .
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The I matrices contain the radial integrals. Finally, the Hamiltonian and overlap
matrix elements become

HMT (k) -	E(ALG,(k))*t'LAG" (k) + (BLG,(k))*tLTOwL BG' (k)
11 LIL

+(ALG,(k))*t"L BL
G
(k) + (BLG,(k))*t'LAl

G(k)

	

(3.82)

SMT (k)

	

=

	

1:1:(ALG,(k))*ALG(k) + (BL/.IG' (k))*BLG(k)(0"10L)MTtt (3.83)
11 L

3.3.2

	

The Vacuum Contribution

The vacuum contributions to the Hamiltonian and overlap matrix are.

Hv,G (kll)

	

_

	

~V (tAG�IGL(kll)uG'II(kll,z)+BG
, IIGl(kll) G'u(kll~z)}

e2(G~u+ku)ru)*

liv (lAG,IGi (kll) uGII (kll, z) +BGIIG.L (kll)üGll (kll , z)I ei(Gll+kll)rll ) d3r

Sv'G (kll)

	

-

	

~V (fAGIIIGi(kll)uG'll(kll,z)+BGI IIG1(kll) G'II(kll~z)}
ei(G'll+kll)rl,)*

(fAGIIG.L(kll)UGII (kll , z) + BGIIGL(kll)uGII (kll, z)} e'(Gll+kll)rll) dar

(3-84)

The treatment of the vacuum region in FLAPW is in many way similar to the treat-
ment of the muffin-tins . As in the muffin-tins the basis functions are constructed to
diagonalize only a certain part of the Hamiltonian . Here this part of the Hamiltonian
includes only the non-corrugated planar averaged part of the potential (Vno(z)), that
depends only on z.

Wv = W,,, + V,o(r)

	

(3 .85)

The t-matrices can be defined in the same way as inside the muffin-tin spheres ((3.61)
- (3.64)) .

The contribution to these matrices from

	

are given by the analog of equations
(3.68) - (3.71) . The non-corrugated potential is expanded into z-dependent functions

tG, IIGII (kll) = (WG,II (kli)jWvWGll (kll))v (3-86)

tGIIIGII(kll) = (WG,u(kjj)IWVOGII(kll))v (3 .87)

tG,IIGII (kil) = (OG'll (kjj)IWVWGII (kp))v (3 .88)

tG,IIGII (kll) = (OG, II (kll) IWVOGII (kll))v (3 .89)
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and
Gmmim" _ f YmYimiY,,m , idSl (3.81)
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and planewaves in the x-y-plane .

The contribution due to the expectation values of Vco(r) consists of a z-dependent
integral and an integral in the x-y-plane of the following form.

Thus, the t-matrices are given by

tG'llGll (kll)

tG'ljGll (kil)

tG'llGll (kll)

tG'llGll (kll)

V,,(r) = F, VG,,, (z)eiGilr

G"11

f e-iG'IlreiG ll reiGllrdxd

	

= SG'll(GII+GII)

IG'l1Gll(G'p -GII)(k 1l) +JG'llGIlEvac

IG'llGll(G'll-GII)(kjj) + 6G1llGll

IG'llGll(G'll-Gll)(kjj)

,( )

	

i GHGG k

	

=

	

Q
f e- ( +k)r ~_

2m
A +V(r)) ei(Gl +k)rd3 r
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(3 .90)

(3.91)

(3.92)
(3.93)
(3.94)

IG'IIGII(G'II-GII)(kll)+SGIIIGIIEvac(uGll(kll)I ?~GII(kll))V (3 .95)
Where the I matrices abbreviate the z-dependent integrals including VG'II-GII) (z) .

The Hamiltonian and overlap matrix elements are calculated according to
HV ,G(kll) = (AGIIGi_(kll))*tGIIGll(kll)AGIlGl(kll)

e+(AGIIGL (kll ))*tl GII (k ll )BGII G.L (kll )

+(BGIIGi (kl l ))*tGll GII (kll) AGII GL (kll )

+(BGIIGL (kII)) *tGIIGII BGIIGl (kll)(k,I)

	

(3 .100)

SV 'G (kll) = (AGIIGl(kll))*AGIIG .L(kll)SGIIGII

+(BGII G,(k ll))*BG IIGL(kll)(uGll(kll)luGll(kll))V6GII G ll (3.101)

3.3.3

	

The Interstitial Contribution
The interstitial contributions to the Hamiltonian and overlap matrix have the follow-ing form .

(3 .102)

IGIIGIIGII (kll) = f UGII (kll)UGll (kll)VGiI (z)dz (3.96)

IGIIGIIGII (kll) = f UGI, (kll) fi GIl (k ll) VGii (z)dz (3 .97)
isu

IGIIGIIGII (kll) = fBV,, (kll)UG ll (kll)VGI,, (z)dz (3.98)

IGIIGIIGII (kll) = f ~Gll(kll)~GII(kll)VG,i (z)dz (3 .99)



G'
Without the existence of the muffin-tin spheres the integration would stretch over
the entire unit cell and the integration becomes rather simple . The kinetic energy is
diagonal in momentum space and the potential is local, diagonal is real space and of
convolution form in momentum space.

a
HGG/ (k) = mIG + ki2SGG' + VG-G)

In film calculations the region between D/2 and D/2 has to be cut out too, but to
keep it simple we will discuss the only the bulk case in this section. Using the step
function the matrix elements can be written:

SGG = 8I GG'
However, these matrix elements are not as straightforward to calculate as they appear
at first glance, because of the complicated structure of the interstitial region . The
integrations have to be performed only in between the muffin-tins . Therefore, a step
function O(r) has to be introduced, that cuts out the muffin-tins .

O(r) __

	

1

	

interstitial region
0 muffin-tins

Where OG and (VO)G are the Fourier coefficients of O(r) and V(r)O(r) respectively.
Apparently these coefficients are needed up to a cut-off of 2Gm,a,x . The step function
can be Fourier transformed analytically.

eG = SG,O - Ee
-iGpA 47r(RMT) 3 il (GRMT)

S2 GRMT

(3.105)

HINT' (k) _ f e-'(G-G' )rV (r)O (r) d'r
cell

+2 (G' + k)2 S2 J
e-i(G-G')r0(r)d3r (3.106)

ell

SINT
_ a(_ e G' )r0(r)d3T (3.107)

S2 cell
In momentum space 3 .106 becomes:

2
HNT (k) = (VO)(G-G') +2(G' + k)20(G-G') (3.108)

'SINT
GG'

= ~(G-G') (3.109)
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SGG' 1= e-i(G+k)rei(G'+k)rd3r (3 .103)

The potential is also expanded into planewaves in the interstitial region .

V(r) = EVG' e-iGr (3.104)
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The Fourier transform of the product of V(r) and 0(r) is given by a convolution in
momentum space .

`V'9 )G -	VG'E)(G-G')
G'

This convolution depends on both, G and G', therefore the numerical effort increases
like However, (VO)G can be determined more efficiently, using Fast-Fourier-
Transform (FFT) . In fig . 3.3 it is shown schematically how (VO) G can be obtained
using FFT. Using this scheme the numerical effort increases like (Gmax )3ln((Gmax )3 )
with Gmax .

e(r)

	

analytic F.T .
cut-off 2Gmax

O (G)

	

r=1 ,Ö (r) (V Ö)(r)

	

r.. r~~ (VO)(G)
V(G)

	

FFr
--p- V(r)

Figure 3.3 : Schematic representation of the calculation of (VO)G. First O(r)is Fourier transformed analytically with a cut-off of 2Gmax yielding &G . Then
OG and VG are fast Fourier transformed and multiplied on a real space mesh.Finally, the result (VO)(r) is back-transformed to momentum space .

3.3 .4

	

The Muffin-Tin A- and B-Coefficients
Within FLAPW the electron wavefunctions are expanded differently in the intersti-tial region and the muffin-tins . Each basis function consists of a planewave in theinterstitial, which is matched to the radial functions and spherical harmonics in themuffin-tins . The coefficients of the function inside the spheres are determined fromthe requirement, that the basis functions and their derivatives are continuous at thesphere boundaries. These coefficients play an important role . In this section we willtherefore discuss how the matching conditions can be solved and what propertiesthey induce .

In many systems that the FLAPW method can be applied to some atom aresymmetry equivalent, i .e . these atoms can be mapped onto each other by a spacegroup operation {Rl-r} . Such a group of atoms is called an atom type, representedby one of the atoms. Let {R"IT"} the operation that maps the atom A onto itsrepresentative . This atom can now be assigned a local coordinate frame SA (cf.fig. 3.4), where the origin of SA is at the atoms position 3 p". The local frame ischosen such that the unit vectors of the local frame S" are mapped onto those of the3The atom position is very frequently denoted by Tm , which would clearly cause some confusionin this context .
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global frame by R9 (RASH` = S9 ) . The local frame of the representative atom Sa
is only translated with respect to the global frame, i.e . the same rotation RA maps
SA onto S« . The potential (and other quantities) inside the muffin-tins can now
be written in terms of the local coordinate system . Due to the symmetry we find
VMTO (r«) = VMT" (r"), where ra and r/` are expanded in terms of the local frames S"
and S" respectively . As a consequence the radial functions4 ul(r) and the t-matrices
are the same for all atoms of the same type . This way symmetry is exploited to save
memory and computer time (during the calculation of the t-matrices) .

Any planewave can be expanded into spherical harmonics via the Rayleigh ex-
pansion.

eiKr = 4-7rE il jt(rK) YL (K) YL(r)
L

Where r = (rl, K = IKI and K abbreviates (G + k) . Looked at from the local frame
K and pm appear rotated, besides the origin of the local frame is shifted. Therefore,
the planewave has the following form in the local frame :

ei(R"K)(r+R"p")

Thus, the Rayleigh expansion of the planewave in the local frame is given by:
eiKP" 4-7rE il jl(rK) YL (RVK) YL(r)

	

(3.112)
L

The requirement of continuity of the wavefunctions at the sphere boundary leads to
the equation :

ALG(k) ul (RMTa )YL (r) +BLG(k) ul(RMTa )YL (r)
L

4Within this section the radial functions are denoted by ul(r) for simplicity, though in scalar
relativistic calculating the large component gi (r) is used instead of ul(r).
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The Wronskian W is given by:

= eiKP" 47rE il jl(rK) YL(R"K) YL(r)
L

Where RMTa is the muffin-tin radius of the atom type a. The second requirement is,

that the derivative with respect to r, denoted by a/ar = ', is also continuous .

E, AL (k) ul (RMTa)YL (r) + BLG (k) 26l (RMTa )YL(r)
L

3. The FLAPWMethod

= eiKpw 47rE il Kji (rK) YL(RI'K) YL(r)

	

(3.114)
L

These conditions can only be satisfied, if the coefficients of each spherical harmonic
YL(r) are equal. Solving the resulting equations for Ai (k) and BLG(k) yields :

ALG (k)

	

=

	

eiKpt` 4irli l
YL (R"K)

[ul(RMTa)K.il(RMT.K) - Al(RMTa)jl(RMT-K)J
BLpG (k)

	

=

	

eiV'P" 47r~il YL (Rpk)

Lul (RMTa ).%l (RMTaK) - ul (RMTa)K.il(RMTa K)]

W= [i~l(RMTa)ui(RMTa) - ul(RMTa) fil(RMT«)1

	

(3 .116)

Transformation of the FLAPW basis functions in systems that possess
inversion symmetry

Planewaves transform in a very simple way under the operation r -+ -r. Let Z be
the inversion operator :

1eiKr =EiKr = (eiKr)

The FLAPW basis functions still have this property, i.e . cpG(k, -r) = cp*(k, r) .
Clearly, the system must possess inversion symmetry, because only if there is an
equivalent atom at the position -pw to each atom /.c at position pp', the basis functions
inside the corresponding spheres can be complex conjugates . The value of the basis
function WG(k, r) inside the muffin-tin p is give by :

~oG(k,r) _

	

Ai(k) ul(r)YL(T) -}" BLG(k) itl(r)YL(r)

	

(3.118)
L

The vector -r lies in the opposite muffin-tin at the position -pp . Let's denote this
atom by -p. Thus, we find :

(PG (k,

	

ALAG (k) ul(r)YL (r) + BL pG (k) ül(r)YL(r)

	

(3.119)
L
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The argument of the spherical harmonic is r rather than -r, because the vector
is expanded in the local frame of the atom -M. Substituting the explicit form ofALpG (k) and BLpG (k) from (3 .115), yields :

(PG (k, -r) =Ze'K(-ng) il YL (-R,`K) YL(r){Aul(r) + Bül(r)1

	

(3.l20)

Where it has been used, that p-A = -pA and R-A = -RA, A and B abbreviates
all terms in (3 .115) that are real and do not depend on r or r. Using that YL(r) _
(-1)l YL(r) (3.120) becomes:

VG(k, -r) = Ee K(pb`) (-i)
t YL(R4K) YL(r){Au,(r) + Bül(r)}

	

(3.121)
L

L

In the last step it can be exploited that Y_�z (r) = (-1)m Y*,t(r) . Substituting
m' _ -m (3 .121) becomes:

VG(k, -r) =E e-iK(pm) (-i) l Ym �(Rgk) Y* ,(r){Aul(r) + Bül(r)}

	

(3.122)

Hence, we have shown, that the FLAPW basis functions transform according to

in the interstitial region and the muffin-tins, if the system possesses inversion sym-
metry.

The Hamiltonian Matrix of Systems with Inversion Symmetry

The property of the FLAPW basis functions derived in the previous section leads to
property of the Hamiltonian and overlap matrix . In systems that possess inversion
symmetry these two matrices are real symmetric rather than complex hermitian . The
Hamiltonian depends explicitly on r via the potential. The matrix elements are given
by:

Substituting r' = -r yields :

~OG(k, -r) = co* (k, r)

	

(3.l23)

.HG'G(k) = f WG, (k, r)W(r)WG (k, rd3r

	

(3.l24)

HG'G(k) = f ~OG1 (k , r')

	

(r')WG(k,r~d3r

	

(3.125)

Where (3.123) and W(r) _ W(-r) have been used . In addition the Hamiltonian
operator is real, i.e . W(r) _ V(r). Thus, we finally obtain :

HG'G(k)

	

=

	

f (PG1(k, r')'R* (r%PG (k, r'd3r
-

~HG'G(k))* (3.126)

Apparently, the same relation holds for the overlap matrix . The fact, that the two
matrices are real means a great simplification in actual calculation. In principle,
the diagonalization of a hermitian matrix is no more difficult than in the real case .
However, one complex multiplication contains four real multiplication, and therefore
the complex problem is far more "expensive" than the real, and the diagonalization
needs the biggest part of the computer-time in each iteration .
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1 L

	

E

	

f, (k)

	

d3k
VBZ

	

,
v,e,,(k)<EF
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3.4

	

Brillouin Zone Integration and Fermi Energy
If density functional theory is applied to infinite periodic solids, quantities that are
given by integrals of functions that depend on the band and the Bloch vector over
the Brillouin zone have to be determined. These integrations stretch only over the
occupied part of the band, i.e . over the region of the Brillouin zone where the band
energy e,(k) (v is the band index) is smaller than the Fermi energy. Hence, the
integrals are of the form

(3.127)

where f is the function to be integrated . Example of such quantities are the number
of electrons per unit cell

Numerically, these integrations are performed on a discrete mesh in the Brillouinzone . In fact, only the irreducible part can be used to save computer time . Thereare different methods, that can be used to perform the integration, e.g . the specialpoints method [CC73, Cun74] and the tetrahedron method [JA71, LT72, BJA94] . Thespecial points method is a method to integrate smoothly varying periodic functionsof k. The function to be integrated has to be calculated a set of special pointsin the (irreducible) Brillouin zone, each of which is assigned a weight . Thus, theBrillouin zone integration is transformed into a sum over a set of k-points . However,these weights do not take into account, that the integration stretches only over theoccupied part of the bands. This problem is solved by including only those bandsinto the summation that have an energy below the Fermi energy at the k-point underconsideration . Thus, the integrals become :
1

VBZ Bz fv (k)

	

d3k --~

	

E

	

f, (k) w(k)

	

(3.130)
v,E,,(k)<EF

	

k v,e,,(k)<EF

Alternatively, this integration can be viewed as an integration over the whole Brillouinzone, where the function to be integrated is given by a product of the function f witha step function that cuts out the region of the Brillouin zone, where the band energy isabove the Fermi energy. Clearly, the resulting function does not satisfy the conditionof being smoothly varying. Therefore, the special k-points method does not convergevery quickly, and rather many k-points are needed to obtain accurate results. On

N _ s_
VBZ ~BZ E 1 d k, (3.l28)

v,e,(k)<EF

the electron (charge) density (cf. section 3.6) and the eigenvalue sum
1

VBZ fBZ
e,(k) d3k . (3.129)vev(k)<EF
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the other hand this method is simple to implement, because the weights depend only
on k and the band energy (via the step function) at each k-point. Another problem
arises from this "sharp" differentiation between occupied and empty bands (parts of
bands) . Let's consider a band that is very close to the Fermi energy at a certain
k-point. During the iterations the energy of this band might rise above or drop below
the Fermi energy. This leads to sudden changes in the charge density, which can
slow down or even prevent the convergence of the density. These sudden changes are
clearly a result of the discreetization in momentum space. To avoid this problem,
the sharp edges of the step function have to be removed. This can be done, e.g .
by using the Fermi function (e(E-EF)1kBT + 1)-1 rather than the step function . In
other words, the function to be integrated is artificially made smoothly varying. The
temperature T can then be adjusted to obtain the best convergence. This method is
called temperature broadening .

In the current implementation of the FLAPW method the Fermi energy is deter-
mined in two steps . First the bands are occupied (at all k-points simultaneously),
starting from the lowest energy, until the sum of their weights equals the total number
of electrons per unit cell, i.e . the discretized equivalent of (3.128) is solved at T = 0.
Then the step function is replaced by the Fermi and the Fermi energy is determined
from the requirement that :

Where the weights are given by:

N = E1: w(k, e,(k) - EF)
k v

w(k, e,(k)
- EF) =

w(k) e(Ev(k) -E)1kBT + 1

	

(3.132)

The weights w(k, ev(k) - EF) are stored to be used for later Brillouin zone integra-
tions .

3.5

	

Representation of the Density and the Poten-
tial

The expansion of the charge density p 5 and the potential is very similar to expansion
of the wavefunction . In the interstitial-region the two quantities are expanded into
three-dimensional planewave, inside the muffin-tins they are represented by spherical
harmonics and radial functions, which are store on an exponential mesh and in the
vacuum they are expanded into two-dimensional planewave and z-depended functions,
which are also given on an exponential mesh. However, the charge density is given
by

p(r) = Y 10i(r) 12,
i

(3.133)

'The charge density is related to the electron density by p(r) = -en(r). However, the program
is written in Hartree units, where e = 1, therefore p and n are equal .
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which contains contains terms of the form ei(G-G')r . Consequently, for a consistent
representation the charge density cut-off has to be twice the wavefunction cut-off
Gma. . In section 3 .3.3 we explained, that the potential is also needed up to cut-
off of 2Gm,,,,, . This leads to a large number of coefficients, that need to be stored.
Fortunately, this number can be reduced, if the symmetry of the system is exploited.

Of course, the charge density and the potential posses the lattice symmetry.
Therefore, the expansion into planewaves is more general than necessary. The Plane-
waves can be replaced by symmetrized planewaves, the so called stars. They are
defined by :

~3D (r) =

	

1

	

eiRG(r-r)

p op

where {RI-r} are the symmetry operation of the lattice space group ; if all the trans-
lation vectors T are zero, the space group is call symmorphic . By this construction
all planewaves, that are symmetry equivalent, are combined to form one star . The
two-dimensional stars VD(r) are defined in the same way, applying the operations
of the two-dimensional space group only.

The same arguments can be applied to the expansion of the p (V) inside the
muffin-tins. In this case the relevant symmetry group is the point group of the
atom under consideration . Thus, different expansions are used at different atoms in
general. The symmetrized functions are called lattice harmonics and they are linear
combinations of spherical harmonics.

The lattice harmonics are real, orthonormal and invariant under the point group
operations . Finally, the expansion of the the charge density has the form

~s ps~,D (r)

	

r E I
p(r) =

	

Es ps (z)~2
D (r)

	

r E Vakuum

	

(3.136)
Ev pv (r)K� (r)

	

r E MTa
The Potential is expanded in exactly the same way.

Kv(r)

	

cVmYL(r)

	

(3.l35)
m

3.6

	

Construction of the Electron Density

3. The FLAPW Method

(3.134)

In this section we will discuss the determination of the charge density from the eigen-functions. In density functional calculations of an infinite periodic solid the electrondensity is given by an integral over the Brillouin zone (cf. (2 .20)) .

n(r)

	

Vaz ~BZ

	

E

	

I~v(k, r) I2d3k

	

(3.137)v,eL(k)<EF

Where VBz is the volume of the Brillouin zone, v is the band index and EF isthe Fermi energy. In spin-polarized calculations the summation includes also the
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spin-index u (cf. (2 .8)), while in a non-magnetic calculation a factor "2" has to be
added to account for the spin-degeneracy. In the case of film calculations the three-
dimensional Brillouin zone is replaced by a two-dimensional Brillouin zone . In both
cases integration methods that sample eigenfunctions and the eigenvalues on discrete
k-point are used to compute the integrals . These methods transform the integration
into a weighted sum over the k-points, where the choice of k-points and their weights
depend on the integration method used . These weights depend not only on the k-
point, but also on the energy of a band, i.e . on the band (index), because each band
contributes to the electron density only if its energy is below the Fermi energy.

Within the FLAPW method the eigenfunctions are represented in terms of the coef-
ficients of the augmented planewaves .

where

3 .6 .1 Ill-like" Charge
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n(r) = E~ 10, (k, r) I w(v, k)

	

(3.138)

k v

(k, r) _

	

cG(k) ~PG(k,r)

	

(3.l39)
G

Inside the muffin-tin spheres each planewave is coupled to a sum of spherical har-
monics and radial functions . Hence, in a sphere IL an eigenfunction is given by:

v(k~r) _

	

cG(k)

	

`4LG(k)ut (r)YL(r)+BU
G
(k)ici (r)YL(r")

	

(3 .140)

G L

The AUG (k) and BUG(k) coefficients can be replaced by band dependent A- and
B-coefficients, obtained by performing the contraction over the planewaves :

0v (k, r) = E AL,v(k)ul(r)YL(r) + B1,v(k)ui (r)YL(r),
L

Ov (k, r) _

	

Y'v,I(k,r)
i

Therefore, it contains cross-terms with a mixture of different l's .

AL ,v (k) = E cG(k)AUG (k),	Bi,v(k) _ E CG
(k) BUG (k) .

	

(3.142)

G

	

G

Since the wavefunctions are expanded into spherical harmonics inside the muffin-tin

spheres, they can be split up into contributions with a certain 1-character .

(3.143)

The particle density of a certain state depends on the square of the wavefunction.

nv
(r)

	

Vsz ~BZ

	

~

	

V, a (k> r)
12 +

a~
2 (

	

v c~ (k_

	

r)

	

vi (k, r)d3 1~

	

(3 .144)

t
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If, however, the density is integrated over the muffin-tin, the cross-terms vanish be-

cause of the orthogonality of the spherical harmonics . Thus, the total electron density

inside a sphere can be written as a sum over contributions with definite 1-character .

_ 1
n" - ~n",a'

	

n,,,,

	

VBZ fBZ LTA 1 ",i(k~r)I2d3rd3k_

	

(3.145)
i

Where nv,l is called "l-like" charge . We can also define a k-dependent 1-like charge

and the orthogonality of the spherical harmonics, the normalization o£ ui and the
orthogonality of ui and it',' have been used.

3 .6 .2

	

Determination of the Optimal Energy Parameter
In order to minimize the linearization error, the energy parameters should be chosen
as close to the band energies as possible . However, the band energies ev (k) depend on
k whereas the energy parameters Ei are constants . In addition, the radial functions
contribute to the eigenfunctions of different band with different energies . Therefore,
deviations between e"(k) and El" have to be accepted . An optimal choice can be
obtained from the requirement, that the energy parameters minimize

(ev (k) - Eä)2 nv l (k)d3 k,

	

(3.149)
fBZ' v,E,,(k)<EF

which is the quadratic error weighted with the amount of charge that each band
contributes to the 1-like charge with the 1-character of the energy parameter . Setting
the derivative (c9/0E,") equal to zero yields the optimal energy parameter :

a =ZEl faz E w(k)nv,a(k)d3k (fBz

	

(3.150)
v,e~(k)<EF

	

Bz v,e,.(k)<EF

The Brillouin zone integration methods transform this into a sum over a discrete
k-point set .

(EEe"(k)nv,i(k)w(v, k)) / (EEnv, t (k)w(v, k)

	

(3.151)k v

	

k v

by:
n/-'",I (k) - fMT,, 19'vl (k, r)12d3r (3.146)

Substituting (3 .141) yields :

nv,i (k) _ I Ai,v (k)12 + IBi,v (k) I2Ni (3 .147)
M=-l

Where
a

1Vi
RMT= f (Act (r))2r2dr (3.148)
0
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3.6 .3

	

Construction of the Electron Density in the Muffin-
Tins

Substituting (3.141) into (3.137) yields the electron density in the muffin-tin spheres.

n" (r) = 1

	

(AL,,v(k)ui,(r)+BL,,v(k),(r))*YL,(r)VBZ

	

BZ v,e,(k)<EF L'

E (Ai,v(k)ui (r) + BL,v(k) i (r)) YL(T)d3%

	

(3.152)
L

The particle density inside the muffin-tins is also expanded into spherical harmonics.
n" (r) = E CL(r)YL(r)

	

(3.153)

The coefficients CL� (r) can be determined by multiplying (3.152) with f dQYL� (r) .

with

CL" (r)

	

=

	

1

	

f

	

~

	

E(A,",,,,(k)ui, (r) + BL, ,v(k)ui, (r))
BZ

	

BZ v,ev(k)<EF L,

(AL,v(k)ul (r) + BL/,v(k)ui(r))
Gmm'm� d3k

	

(3.l54)
L

Gmm
= f YmY,m,Y �m�dQ

	

(3.l55)

where it has been used, that the gaunt coefficients are real, i.e .

fYmY ,,Y*m�dQ = f Y**,,Y,m,Y�m�dQ

	

(3.156)

Finally, applying a Brillouin zone integration method yields :

CL� (r)

	

_

	

J:EE (Ai',v(k)) * AL,v(k)G
mmIm, Iw (v'k) ui, (r)ui (r)

III ( k v m,

	

lm

+ E EEE (AA,,v(k))
BL,v (k)Gmln m w(v, k) 011(r)01 (r)

l, l ( k v m,m

+

	

~~

	

(BL',v(k))* AIL' ,v(k)Gmm'm"w(v,k)

	

iq,(r)ui (r)
l, l k v m,m

~~

	

(BL',v(k))*BL,v(k)Gmm'm"w(v , k) ici,(r)ici (r)
l , l k v m,m

(3.157)

3.6 .4

	

Construction of the Electron Density in the Interstitial
Region

In the interstitial region the wavefunctions are represented in the following form.

yw(k , r) _

	

CG(k)ei(G-{-k)r
G

(3.158)
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Starting from (2.8) the electron density is given by:

()

	

1

	

(cG' (k))*
cG«(k)d3kez(G"-G~)r

VBZ

	

BZ v,ev(k)<BF GIG"

The electron density in the interstitial region is also expanded into planewaves .

n(r) =EnGeZGr

G

Hence, the planewave coefficients of the electron density are:

nG =

	

1

	

E

	

(cG' (k)) * CGu
(k) d3k

VBZ 1BZ vev(k)<BF

	

GIG"
G" -G'=G

Apparently, the planewave cut-off of the particle density has to be twice the cut-off
of the wavefunction expansion (Gmax) to allow an accurate description . The k and
state dependent density

nG
(k) =

	

E

	

(CG, (k))
* cG«

(k)
-

	

(CG,
(k))

* cvG+G')
(k)

	

(3.162)
GaGu

	

(V

	

G,~
G"-G'=G

is given by a convolution in momentum space. For each coefficient a sum over G has
to be performed. Consequently, the numerical effort put into the determination of
nG(k) scales proportional to the number of G-vectors squared, i.e . proportional to
(Gmax)s . However, nG(k) can be calculated more efficiently using the fast Fourier
transform (FFT) . First, cG(k) is Fourier transformed to real space, where it is squared
on a real space mesh yielding n�(k, r), then all states are summed up and finally the
resulting particle density is back-transformed to momentum space.

cG(k) M ~v(k,r)
8q~e nv (k,r) ~ n(k,r)

3. The FLAPW Method

nG (k)

(3 .159)

(3.160)

With this scheme the numerical effort increases proportional to (Gmax)3 ln((Gmax)3 ),
which is a major improvement for large systems. In a last step the planewaves have
to be combined to form the three-dimensional stars.

3.6 .5

	

Construction of the Electron Density in the Vacuum
Region

In the vacuum region the wavefunctions are expanded into two-dimensional plane-
waves parallel to the surface and z-dependent functions perpendicular to the surface.

0v(kll , r)

	

cGIIG-~
(k1I) (AGIIG.t (k1I)UG11(kll, z) +BGIIG, (kll)I~Gil (kll, z)) ez(G11+k11)r11

G11G1

(3.163)
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Hence, the electron density is given by:

The particle density in the vacuum is represented in the following form.

Performing the Brillouin zone integration on a discrete kII-mesh and carrying out the
summation over G1 and G'i we find that the coefficients nGII (z) are:

nGII (z)

	

=

	

EEE(AGII ,v(kll))
*
A(GII+GII ),v(kll)w(v, kII) nGII (kll , z)u(GII+GI I)(kll , z)

kII

	

v

	

GII

with

n(r)

	

=

Here, the terms of the form

1 %
Vsz JBz

	

I:

	

E

	

F_
v,ev(k)<EF GIIGL GIIG~i

(cGIIG1(kll) (AGIIG1(k1I)nGII(kll,z)+BGIIG1(kIl)nGII(kII
z))1

(cGII G1 (kll)

	

G�G� (kll )nGII (kll , z) + BGIIG
�

(kll)üGII (kll , z))) d3k

ei(GII -GII)rll

+

	

(AG,Iw(kll))* B(GII+GII ),v(kll)w(v, kII) UGll (kll , z)u(GU+GII)(kll , z)
kII

	

v

	

GII

+

	

E (BGi,,,,(kll))* A(GU+GII ),,(kll)w(v, kII) uGI (kII' z)u(GII+GU)(kll , z)
kII

	

v

	

GII

+

	

EEE(BGII ,v(kll))
*
B(GII+GII ),v(kll)w(v, kII)

	

GII (kll , z)iI(GII+GI I )(kll , z)
kII

	

v

	

GII
(3 .l66)

AGU ,v(kll) =

	

cGIIG1(kll)AGIIGl(kll),
G1

n(r) = E nGII (z)e'Gllrll

	

(3 .165)
GII

BGII ,v(kll) _

	

cGIIG1(kll)BGIIGl(kll)

(AG,I,v(kII))* A(GII+GII)'v(kII) uGII (kil , z)u(GII+Gp)(kII , z)

II
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(3.164)

represent convolutions in momentum space. Similar to the interstitial region these
terms could be calculated more efficiently, using two-dimensional fast Fourier trans-
form . However, there are far less two-dimensional planewaves than three-dimensional
planewaves . Therefore, the possible saving of computer time is much smaller.
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3.7

	

Construction of the Coulomb Potential

The Coulomb potential consists of two parts, the Hartree term VH(r) and the external

potential of the nuclei Vi(r) .
V,(r) = Vx(r) + Vi (r)

	

(3.168)

The Hartree potential has to be determined from the charge density via the Poisson
equation .

AVH(r) = 41rp(r)

	

(3.169)

In real space the solution o£ 3.169 is given by

3. The FLAPW Method

VH

	

4?rp(rl) dar .

	

(3.170)

In reciprocal space, however, the Poisson equation is diagonal, as a result the solution
is very simple .

3.7.1

	

The Pseudocharge Method

4irp(G)

	

(3.171)Vx(G) =

	

G2
Therefore, and because of the representation of the charge density and the poten-
tial in the interstitial- and vacuum-region, the solution of the Poisson equation in
reciprocal space appears to be convenient . However, due to the rather localized core
and valence states the charge density changes on a very small length scale near the
nuclei . Therefore, the planewave expansion of p convergences slowly, and a direct use
of (3.171) is impractical, if not impossible. This difficulty can be circumvent via the
pseudocharge method.

The pseudocharge method, developed by Weinert [Wei81], is a very elegant technique
to calculate the interstitial and vacuum Hartree potential. The underlying idea is to
divide the solution of the Poisson equation into two steps. In the first step the
true muffin-tin charge is replaced by a convergent pseudocharge density p, that leads
to the same potential outside the muffin-tins . Then the interstitial (and vacuum)
potential is calculated in reciprocal space . In the second step the muffin-tin potential
is determined from the Dirichlet boundary value problem, defined by the exact muffin-
tin charge and the interstitial potential on the muffin-tin sphere boundaries. The
potential outside the the muffin-tin spheres due to a charge distribution inside the
sphere is determined completely by its multipole moments qL.

00

V(r)
_ E

	

qL YL(r),1-0 m--1 21 + 1
However, the multipole moments do not define the charge density uniquely . Thecharge density is given by :

(3 .172)

p(r) = pr(r)e(r E 1) +E pa (r)e(r E MT')

	

(3.173)
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Of course, in film calculation there is also a vacuum charge, and we will come back
to this later. 3 .173 can be rewritten

p(r) = pl(r) -I- J>«(r) - pI(r)]O(r E MT«)

	

(3.174)
a

Thus, the interstitial charge has been extended into the muffin-tin and subtracted
there again . The second term in 3 .174 can now be replaced by a pseudocharge p«, that
has the same multipole moments (s . [Wei81] for details) . The resultant pseudocharge
p is given by

p(r) = pI (r) + Ed'(r)

v

(3.175)

p(r) is constructed to have a more rapidly converging Fourier expansion than the
original charge density p(r) . Therefore, the Poisson equation can now be solved
using (3.171) .

Still, the muffin-tin potential VMT remains to be determined . For this step the
exact muffin-tin charge pa has to be used . Since, the interstitial potential is already
known at this point, the calculation of VMT constitutes a classical spherically sym
metric Diriclet boundary value problem, which can be solved by the Green's function
method [Jac83] .

VMT(r) - fMTa p« (r')G(r, r')d3r, - 47r

	

V,(r1) 8n' dQ'

	

(3 .l76)

The second integral is over the muffin-tin sphere boundary S«, and it is necessary to
satisfies the boundary conditions . The Green's function is given by :

G (r'r ) = 47r

	

21 + 1

	

r11

	

1 - CRmTa

)

	

(3 .177)

where r> = max{Irl, Ir'l}, r< = minfrl, Ir'l} . Finally, the muffin-tin potential has
to be expanded into lattice harmonics K,(r) .

VMT(r) = EVMT,v(r)Kv(r)

	

(3.178)

The potential of the nuclei V«(r) = e-t is added to the spherical (l = 0) component
of the potential VJGT,o(r) .

The muffin-tin potential is computed in the same way for both, bulk and film cal-
culations. Apparently, the interstitial and the vacuum have to be treated differently
is the two cases, due to the different boundary conditions and the different represen-
tation of the vacuum potential. Therefore, the next two sections the solution of the
Poisson equation will be outlined separately for these cases in .
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3 .7.2

	

Determination of the interstitial Coulomb Potential in
Bulk Calculations

In the case of bulk calculations we have periodic boundary conditions in three dimen-
sions. Therefore, the solution of the Poisson equation,

is very simple . Obviously, this equation can only be solved, if p(0) = 0. Since p(0) is
the average charge density, this means, that charge neutrality is essential . Still, V(O)
remains undetermined by 3.179, i.e . one has the freedom to shift the potential by a
constant . This is a consequence of the periodic boundary conditions, because they
do not fix the reference of the potential . Usually V (O) is chosen to be zero, hence the
Coulomb potential in the interstitial-region is given by:

V, (r) _

	

47rP(G) eiGr =

	

47'~s ,)3D (r)
G2 G2

GOO

	

600 S

where the first summation is expressed in terms of G-vectors and the second in terms
of stars .

3 .7.3

	

Determination of the interstitial and vacuum Coulomb
Potential in Film Calculations

In a film the translational symmetry in z-direction is lost . Accordingly, the boundary
conditions are periodic in two dimensions only. In z-direction the periodic boundary
conditions are replaced by the requirement, that the potential approaches zero at
infinity. The latter condition defines the absolute reference of the potential . As a
consequence of the symmetry breaking, the following expansion of V and p is most
suitable to solve the Poisson equation :

V (r)

	

=

G2V(G) = 4-7rp(G)

Substituting this into the Poisson equations yields :

_d2

dz2

3. The FLAPW Method

(3 .179)

(3 .180)

VO(z) + E VGii
(Z)eiG il r

	

(3.181)
G1100

p(r)

	

=

	

PO(z) + E PG1 1
(z)eiG jj r

	

(3.182)
G1100

- GU

	

VG � (z) _ -47rpGii (z) (3.183)

This equation is treated differently for G11 = 0 and G11 0 0,
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The GII = 0 Component of the Potential

For the GII = 0 component of the potential the Poisson equation has the form

The G1I = 0 component of the pseudocharge density is given by :

vacuum region is given by :

with

2

dz2
Vo(z)	-47rpo(z)

	

(3.l84)

PI'S + EG1 PI'G1 eZG1x
PO (z) =

	

(3.185)
POV(z)

	

IZI >
D

The Poisson equation for the GII = 0 can be integrated directly. The result in the

00
VV(z) = -4-7r f

	

av(z')dz',

	

(3.l86)
z

z
o-v(z) = fD Pv(Y)dz' -I- pI-2

where the average interstitial charge density pI is given by :

pr =

	

Pi'G1
jo(GlD) .

Gl
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(3 .187)

(3.188)

Here pI does not equal p0,0 , because the G 1 are defined in terms ofD rather than D,

i.e . the period of the z-dependent planewaves does not equal the integration interval .
In the interstitial region the solution to (3.184) is

OG
0

	

0,0 2

	

2

	

PI'
1

iG1z

	

iG
VI (z) = -27rpl

	

z -
4 )

- 4,7r

	

G12 (e

	

-e

	

'-D

	

- 4~r
f4 o'V(z )dz

G1

Where the Green's function is given by:

VGII

	

- ~~

	

z-z' dz'
II ( ) - J-oo PGII (z)GG � (

	

)

	

(3.190)

GGII (z - ZI) =
27i' eIGII Ilz-z'I
GII

(3.189)

The GII :A 0 Component of the Potential

In the case GII 0 0 the Poisson equation is solved via the Green's function method .
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This leads to the following solution in the vacuum-region

V;G° (z)

Vvu (z)
27r eGllz

J

z

	

Pvll (z)e-GII"dz'

__D

+. 2

	

e-Gllz I

	

z
PVII (z')eGllz

dz'GI

GII,GL

47r PI eiGlz

n Ga
+ 27r E P7

	

21
~eGllz (Gll + iG.~)e-(GII -zGl)

D

GII Gl

+ e-Gllz(GII - iG1)e-"(GII+iG1)DI +

3. The FLAPW Method

GII,Gl21r
-Gliz_

	

Pr

	

(e(Gll+iGl)z - e-(GIl+iG1,)z)

+ GII
e

	

G,, GII + iGl

and in the interstitial-region

_D21r

	

G z

	

°°_

	

GII

	

G z'

	

G z_

	

z

	

GII

	

Gil

+GII
[e

11

	

Z

Pv (z)e

	

II

	

dz + e- ll

	

PV (z)e II
D

	

f 00

(3.192)

(3.193)

3.8

	

Computation of the Exchange Correlation Po-
tential

The problem of the determination of the exchange correlation potential is quit dif-
ferent from the Coulomb potential. On one hand, V.1, is a local quantity, i.e . V.''(r)
depends only on nt(r) and n~(r) at the same position r. Thus, the muffin-tins, the
interstitial- and vacuum-region can be treated independently. On the other hand,
V., and e'~ are non-linear functions of nt and n~ . Therefore, V,', and exC have to be
calculated in real space. V and EXc are determined in the same way. First, nT and
n~ are transformed to real space, where Vx, and ex~ are calculated . Then V.1, and
e., are back-transformed . Then, Vx' is added to the Coulomb potential, yielding the
spin-dependent potential VT and V~. el is needed for the determination of the total
energy.

3.8 .1

	

Calculation of c' and Vx, in the Interstitial-Region
In the interstitial-region the charge density is expanded into three-dimensional stars
with coefficients n', . Multiplying these by eiRG' yields the planewave coefficients
nG . If the space group is symmorphic the star and planewave coefficients are iden-
tical . However, due to numerical inaccuracy, the calculated coefficients of symmetry
equivalent planewaves are not exactly equal, and the corresponding star coefficient
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is obtained from the average of the planewave coefficients . In the next step a three-
dimensional Fast-Fourier transform is carried out. Then the exchange correlation
potential is calculated on a real space mesh ri . Finally, Vxc is back-transformed, and
the star coefficients are computed.

na -4 nG F~ nv (ri) ~ Vc(ri)
FFT} VxcG

	

Vcf8 .

3 .8 .2

	

Calculation of c' and V,;c in the Vacuum-Region
The vacuum charge density is stored in terms of two-dimensional stars and a z-
dependent exponential mesh zi . The GII = 0 component reaches further into the
vacuum than the GII =A 0 components. In the so called warping region the planewave
coefficients on each mesh point are determined by a multiplication with the phase fac-
tor eiRGii'' . Then, for each grid point zi along the z-axis, the two-dimensional charge
density is Fourier transformed to a real space grid (rll, zi), where V.1, is calculated.
Afterwards, V.1, is back-transformed and the star coefficients are computed.

no- (VD, zi)

2DFF -1

n'(GII, zi)

Vxc(GII z?)

2DFFT
nO'(rll , zi)

	

-4

	

Vxc(rll , zi)

V( 2D )-i

	

xvc\,s

	

, zi
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Beyond the warping region the exchange correlation potential is calculated directly
on the z-dependent mesh .

3 .8 .3

	

Calculation of eOC and V in the Muffin-Tin Spheres

The muffin-tin charge is expanded into lattice harmonics and radial functions. The
radial functions are stored on a discrete real-space mesh. Thus, the transform to real
space affects only the angular part . The charge density is calculated on a set of special
angular points ii = (Bs, Yeti) . Again, the exchange correlation potential is calculated
in real space. Thereafter, the result Vx,(r) is expanded into spherical harmonics YL .
The YL are orthonormal, therefore the coefficients can be obtained from

v~o,L(r) = f YL(r)Vc(r, r)dQ .

	

(3.194)

The choice of the points ri = (e%, Oi), on which n(r) and Vxc(r) are calculated,
depends on the integration method, that is used to perform the angular integration .
In the current implementation (3.194) is computed via a Gauß-Legendre integration
and the angular points are chosen such, that the orthonormality condition of the YL
holds also for the angular mesh ri .

3 .9

	

Minimization of the Energy Functional

The aim of electronic structure calculations is to minimize the energy functional with
respect to the electron density. Within density functional theory this minimization
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is performed implicitly, by the determination of a selfconsistent density n(r) . In the
previous sections we described, how an effective Potential can be calculated from a
charge density, how the Kohn-Sham equations including this potential can be solved
and how a new electron density can be calculated from the resulting single particle
wavefunctions . Combining these steps defines a map:

The electron density that minimizes the energy functional no (r) is a fix-point of
F{n(r)}, i.e . it solves

.T{no(r)} = 0,

	

with Fln(r)} = F{n(r)} - n(r) .

	

(3.196)

The density is expanded into a large set of basis functions . Therefore, in actual
calculations, the charge density is a coefficient vector of dimension n, where n is
typically of the order of 104. Thus, (3.196) constitutes a system of n nonlinear
equations, which can be solved by iteration :

3 .9 .1

	

"simple mixing"

n'(r) = F{n(r)}

	

(3.l95)

A`+1 (r) = F{nm(r)}

3. The FLAPW Method

A starting density can be constructed by a superposition of atomic densities . How-
ever, this scheme is in general divergent. To achieve convergence the output density
has to be mixed with the input density. Different mixing schemes are discussed in
the following.

The slowest method is the "simple mixing", which converges only linearly.

(3.197)

I sn(m+~) I

	

(3 .198)16n(m)
I

	

G tonst.

Where 8n(m) is the difference of the density of the mth iteration and the unknownfix-point, Sn(m) = n(m) - no . The density for the next iteration is constructed as alinear combination of n(m) and F{nmj according to :
n(m+i)

	

=

	

(1- a)n(') -I- aFlnm}
=

	

n(m) +a.P{n(m')}

	

(3.199)
a is the so-called mixing parameter. If it is chosen small enough the iteration con-verges and is very stable . In spin-polarized calculations different mixing parameterscan be used for the charge and the magnetization density. Usually, the spin mixingparameter can be chosen far larger than the parameter for the charge density. How-ever, for the type of systems we are interested in a is very small, requiring manyhundreds of iterations .
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3.9 .2

	

The Newton-Raphson Method
In the Newton-Raphson method the functional Y{n} is linearized around the ap-
proximate solution n(') .

Where the Jacobian is defined by:

.Ffn} - Ffn('n ) I + J{n(') } (n - n(m) )

	

(3 .200)

n( ) p
= aa

	

( )n (r)

57

(3 .201)

In actual calculations the Jacobian is a n x n matrix. Similar to the well known
Newton method for one dimensional functions, the next approximation to no, n('+1),
is determined from the requirement, that the linearized functional in (3 .200) vanishes
at n('n+1) . Thus, n(m+1) is given by:

n(m+1) = n(m) - [J{n(m) }
-1
.F{n(m) }

The Newton-Raphson method converges quadratically :

(3.202)

Ign(m+1)
< const.

	

(3.203)
16n(m) 12

The major drawback of this method is the difficulty to evaluate the Jacobian . Even
if the functional .F{n} was know, the evaluation would be cumbersome due to the

enormous size of J{n} . In addition, the Jacobian has to be inverted where the

amount of calculation scales with cube of the dimension . A further problem is that

the convergence radius is rather small so that the method can only be used if n(m) is
already very close to no.

3.9 .3

	

Quasi-Newton Methods

With the development of the Quasi-Newton methods it became possible to exploit the

advantages of the Newton-Raphson method, i.e . to make use of the information that is

contained in the Jacobian, for problems where the Jacobian cannot be calculated or its

determination is too demanding . Rather than computing the Jacobian each iteration,

an approximate Jacobian is set up and improved iteration by iteration . From the

linearization of Y{n} (3.200) we find the following condition for the Jacobian, which

is usually called Quasi-Newton condition :

On(m) = ,[J( )

	

1 AJr(m)

On(m) = n(m) - n(m-1),

	

AY(m) = .FJn(m)} - Y{n(m-')}

(3.204)
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Quasi-Newton methods converge super-linearly

Jn(m+1) 1
-4,

Jn(m) I

	

0

3. The FLAPW Method

and have a larger convergence radius than the Newton-Raphson method. Since the
Jacobian is build up iteration by iteration, the "history" of the previous iterations
is memorized in ,7, whereas the Jacobian of the Newton-Raphson method depends
only on the previous iteration . In this sense the Newton-Raphson method is self-
corrective [Blü88], it "forgets" inadequately chosen corrections . The Quasi-Newton
methods sometimes need to be restarted, if the iteration converges only slowly. This
can happen if the starting density is very far from no or when physical or numerical
parameters that affect the calculations are changed during the iteration. Equation
(3.204) does not determine the Jacobian uniquely, instead (3.204) constitutes a system
of n equations for n2 unknowns. The various Quasi-Newton schemes differ by the
ansatz how the new information is used to build the inverse Jacobian . The methods
that are implemented in the FLAPW code are discussed in [Pen96] .



Chapter 4

Non-Collinear Magnetism

As we have seen in Sec. 2.3 the energy functional of a general magnetic system can
be expressed in two ways. It can be written as a functional of the charge density
n and the magnetization density vector field m or as a functional of the hermitian
2 x 2 density matrix p. The two formulations are completely equivalent . The density
matrix is defined by the following equation :

P =
1 n Iz +Q . m = 1 (	n +m,z

	

Mx - imy
2

	

2

	

mx + imy

	

n-mz

We can also define the potential matrix in the same way.

N

n2

	

l
_-V2

12 +V } Y'v = ev pv2m
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V = V 12 + /-IB o- - B =

	

V+PBB,,

	

1JB(B, - iBy)
( AB (Bx + iBy )

	

V- PBB,

	

)

	

(4.2)

Comparing (4.1) with equation 2.17 on page 12 shows that the components of the
density matrix are given by a very simple relation in terms of the solutions of the
Kohn-Sham equation :

P«,0 = E y'v,a Y'v,~3

	

(4.3)

In an actual implementation of non-collinear magnetism in a computer program these
matrix quantities are very useful, though they are less intuitive than the "physical"
quantities n, m, V, and B.

Using the potential matrix (4.2), the Kohn-Sham equation (Eqn. 2.18, p. 12)
becomes

(4.4)

The kinetic energy part of the Hamiltonian is diagonal in the two spin directions . It
is only the offdiagonal part of the hermitian 2 x 2 potential matrix, e.g . V21 =
AB (B., + iBy), that couples the two components of the Pauli spinor '0v. If the
B-field is collinear, the spin coordinate frame can always be chosen such that the
B-field points in the spin z-direction.

	

In this case V21 , and thus the offdiagonal
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part of the Hamiltonian, becomes zero, because Bx and By are zero . The notation
Vfi = V -f- ABBz, V~ = V - pBB, is commonly used for the diagonal elements of V
in the collinear case . Since the two spin directions become completely independent,
the spin-up and down problem can be solved separately in two steps. Each step can
be treated like the non-magnetic problem with the appropriate potential Vfi or Vfi, .
In practice this means that extending a non-magnetic ab-initio program to collinear
magnetism is rather straight forward. In addition collinear calculations are by far less
costly . Since the effort required to diagonalize the Hamiltonian matrix scales with
the number of basis functions to the third power, diagonalizing two small matrices
for each spin is much faster than diagonalizing one matrix of twice the size. It also
requires only 1/4 of the memory to store the matrix. Another advantage arises when
the system has inversion symmetry. In that case the Hamiltonian and the overlap
matrix become real symmetric rather than complex hermitian (cf. Sec. 3.3 .4, p . 40) .
In a general non-collinear calculation the Hamiltonian matrix is always complex, due
to the complex Pauli matrix uy, i.e . the term ip,BBy in V21 . A third point is, that
in most cases non-collinearity reduces the symmetry. The consequence is, that the
area of the irreducible part of the Brillouin zone increases . The computational effort
increases linearly with the number of k-points that have to be taken into account for
the Brillouin zone integration. So far most magnetic calculations have been performed
for collinear systems, because such calculations are more simple and significantly less
time consuming.

Since the density functional theory was first proposed, different parameterizations
of the exchange correlation energy exc have been suggested in the local spin density
approximation (LSDA) and also in the generalized gradient approximation (GGA) .
These parameterizations have been developed and mostly used for collinear calcula-
tions. Due to the local character of LSDA exe depends only on the magnitude of the
magnetization (exc = ex,(n, Im`), cf. Sec. 2 .4) . The environment of a point in space
does not enter into the formula for the exchange energy . Hence, there is no reference
to any direction and exc can only depend on Iml . Therefore, the LSDA can equally be
applied to collinear and non-collinear systems. The application of the LSDA to non-collinear systems is straight forward. All that needs to be done is to locally calculaten, Iml and memorize the local direction of m, since the exchange correlation B-fieldalways has the same direction as the magnetization (cf. eq . 2 .22) . After this step thestandard parameterizations can be applied. In contrast, in the generalized gradientapproximation the environment of a point in space does enter the formula for excthrough the gradients of the densities. In general the gradients of n, mx, my and mzhave to be considered. The available parameterization are, however, developed forcollinear calculations and hence consider only the gradients of the scalar quantities nand m. Therefore, these parameterizations are in principle not applicable to a non-collinear system. In practice the GGA can be used in a approximate way, becausethe contribution of the gradient of n is more important than the gradients of themagnetization . There are two possible quantities to feed into the parameterizationin replacement of the gradient of m of a collinear calculation: (i) the gradient of the
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magnitude of the magnetization vector field, (ii) the gradient of the projection of the
magnetization vector field onto the local direction of the magnetization . We have
chosen the first option .

All results in the present work have been obtained within the scalar relativistic
approximation, i.e . the spin-orbit coupling (SOC) is neglected. This has important
consequences for the symmetry groups that have to be used . The spin-orbit coupling
and the dipole interaction, which is usually treated classically, are the only terms
in the Hamiltonian that couples real space and spin space. Only these parts of the
Hamiltonian create a relation between the spin and the spatial coordinates . When
the spin-orbit coupling and the dipole interaction (both terms are of similar size in
the systems under consideration) are neglected, real space and spin space can be
regarded as completely independent. For this purpose generalized groups, the spin
space groups (SSG), have been introduced [BE66, San91] . The action of a SSG
operator {asJaRJt} on a two-component spinor can be defined by

{asl aRlt},0(r) = U(as)iP({aRJt}-1r) = U(as),O(aRir - aRit),

	

(4.5)

where 0 is a two-component spinor, U is the spin 1/2 rotation matrix (cf. ap-
pendix A), as and aR are the spin and space rotation, respectively, and t is a space
translation . Under the restriction as = aR we return to the definition of the opera-
tions of the usual space group. The operators of the space group are thus a subset
of the SSG operators . The condition as = aR implies that the spin and the space
coordinates are transformed in the same way. This property is required for operations
that leave the Hamiltonian invariant when SOC is taken into account. The relative
angle between the lattice and the spin is important in this case . However, when SOC
is neglected as and aR can be different. This is a very important feature of the SSG
and it is a prerequisite for the treatment of incommensurate spin-spirals within an
ab-initio calculation . A more comprehensive discussion of this topic can be found in
a review article by L. M. Sandratskii [San98] .

4.1

	

Constrained magnetic moments

In general, an arbitrary magnetic configuration given by a set of local (atomic) mag-
netization directions are not extrema of the total energy functional E [n(r), m(r)] .
The exceptions are high symmetry states, like the ferromagnetic state, the antifer-
romagnetic state, a certain class of spin-spiral states and also some more complex
non-collinear states like the Neel state of the triangular lattice . Therefore, an gen-
eralization of the density functional theory is necessary to be able to deal with ar-
bitrary magnetic configuration, i.e . configurations where the orientations of the local
moments are constrained to non-equilibrium directions . Dederichs et al . [DBZA84]
extended the density functional theory to systems that are subject to arbitrary con-
straints . The basic idea is to minimize the energy functional enforcing the constraint
condition, i.e . to find the lowest energy state compatible with the constraint . The



62
4. Non-Collinear Magnetism

constraint can be taken into account by a Lagrange parameter in the energy func-

tional . Enforcing the constraint that the direction of the average magnetic moment

of atom ce is fixed to 6' yields the energy functional

+AB

	

Ba

	

m(r)d'r -
6a Ce«

- ,f

	

m(r)d3r
a " ~MTa	M

	

lT

=

	

E[n(r), m(r)] + ABE B« - JM« _" MII

= E [n(r), m(r)] + lcsEBa -ML, (4.6)

where E[n(r), m(r)] is the energy functional of the unconstrained system and the

local (integrated) moment M" and its parallel and perpendicular components, M1

and Mi, have been introduced. Physically, the Lagrange parameter is a magnetic

field . Minimizing (4.6) with respect to the wave functions yield the Kohn-Sham
equations inside the muffin-tin sphere a, which contain an extra contribution .

a

	

~~~-2mVa + Veff(r) + ABU - Beff(r) + ABU * (B« - ea (ea ' Bo))

	

"bi(r) = ei9'i(r)
(4.7)

The extra term, ABU - (Ba - e"(e" - B")) is always perpendicular to e" so that Ba
can be assumed to be perpendicular to e" without loss of generality . By means of the
Hellmaiin-Feynman theorem the change dE of the energy due to a directional change
de" is given by the classical result

dE = -ABMll (e
«)B«(e") - de" .

	

(4.8)

MI'l is the projection of the local (integrated) moment of the muffin-tin sphere a onto
e", MIl = e" - fmTa m(r)&r.The difference vector de" is perpendicular to e" . The
factor AB , which was already present in Eqn. (4.6), appears in the in the Hellmann-
Feynman theorem because of the definition of the magnetization density and the
magnetic moment. In the context of ab-initio calculations the (z-component) of the
magnetization density is commonly defined as mz = nt-n~, and we define the density
matrix (4.1) in that spirit . However, the standard definition of the magnetization
density in electrodynamic is : mz = -AB(nt - n~) .

Demanding that the perpendicular component of the local moment My vanishes
is not the only way to formulate a constraint to the direction of the local moment.
There are several alternatives . A formulation that differs only formally from the con
straint of equation 4.6 is to require that the crossproduct M" x e" vanishes . M" x e"
has the same magnitude as M1 but is perpendicular to ML. Using this constraint the
additional tern in the energy functional for each atom would be B" - (M" x e") . Ap-
plying the Hellmann-Feynman theorem we find that the change of the energy is given
by dE = -ABM« " (B« x de") . Therefore, the constraint field can be interpreted as a
torque acting on the magnetic moment, in the spirit of the derivation of Antropov et
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al . [AKvSH95, AKH+96] . Stocks et al . [SUW+98, UWN+99] performed constrained
local moment calculation, where they used the approximation that the constraint
field has the same functional form as the exchange correlation B-field, rather than
being a constant . Within that approximation the constraint field can be written as
the exchange correlation B-field times a scaling factor c. Of course, the direction of
the constraint field dc' is perpendicular to B' , which is parallel to the local quanti-
zation axis 6'. They write the constraint field as B'(r) = celBe(r), where Be (r)
is the magnitude of the exchange correlation B-field, B0~(r) = e0'Bc(r) . A much11
stronger constraint condition than those discussed so far would be to demand that
the magnetization density m(r) is parallel to 6' in every point inside a muffin-tin
sphere . This constraint would result in a constraint field that depends on the position
in the muffin-tin .

In an actual constrained local moment (CLM) calculation n(r), m(r) and BC,
have to be determined self-consistently. n(r) and m(r) are calculated in the usual
self-consistency cycle. At the same time the local constraint fields Ba have to be
adjusted, until the constraint condition fMT11 m(r)d'r - 6' (ea " fMT. m(r)d'r) = 0 is
fulfilled. At the end of such a calculation we obtain the self-consistent densities and a
set of local constraint B-fields that make the integrated magnetization perpendicular
to the local spin quantization axes 6' vanish in each muffin-tin sphere. The total
energy of the system is given by the constrained energy functional (4.6) . Since B'
is always perpendicular to 6' the extra contribution to the total energy is fMT« B« ,
m(r)d1r. However, the effective B-field that enters the Hamiltonian in the the muffin-
tin sphere of atom a is given by Bff(r) = BXC(r)+Bet(r)+Ba. Therefore, the above
contribution to the total energy cancels with the contribution of the constraint field
to the kinetic energy (2 .25) . Thus, the constraint field does not enter the expression
for the total energy (2.28) explicitly, but it enters implicitly through the eigenvalues
e2 and through the self-consistent densities .

4.2 Spin-Spirals

A magnetic structure with moments that are rotated by a constant angle from atom
to atom along a certain direction of the crystal is called a spin-spiral . This can be

described by a reciprocal lattice vector, the spin-spiral vector q. The rotation angle
of the magnetic moment of an atom at the position Rn is then given by cp = q - Rn.

The magnetic moment of an atom at the position R'n is given by

Mn = M(cos(q - Rn) sin V, sin(q - Rn) sin 79, cos z9)

	

(4.9)

Spin-spirals are also frequently called spin density wave, or more specific spiral spin

density wave, to distinguish from the longitudinal spin density waves, or frozen

magnons. The origin of the last term is that a spin-spiral looks like a "snap shot"

of a single magnon at a fixed time. Spin spiral calculations can therefore be used to

simulate the effect of temperature on a magnetic system. In particular at very low
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temperatures, when magnons with long wavelength dominate. Without the applica-
tion of the generalized Bloch theorem, which I will discuss in Sec . 4.3, the investigation
of such magnetic structures requires very large unit cells . Another possible applica-
tion of spin-spirals is the simulation of domain walls including the calculation of the
formation energy. In general, it can be said that among all possible magnetic states,
besides the high-symmetry magnetic states, i.e . ferromagnetic of antiferromagnetic
configurations, the spin spirals are the next class of relevant spin states . It is believed,
that they cover a large and important part of the phase space of possible spin states .
Though there are many possible applications for spin-spiral calculations, it was the
discovery of a spiral ground state structure in fcc iron [Tsu89] and 4f and 5f metals
[NM00] that gave rise tb many theoretical studies [MLSG91, USK92] .

In addition to the spin-spiral vector q there are two more parameters needed to
define a spin-spiral uniquely, the rotation axis and the relative angle 79 between the
magnetic moment and the rotation axis . Fig . 4.1 shows four examples of spin-spirals
with spin-rotation axis perpendicular (upper two) and parallel (lower two) to the spin-
spiral vector q and different angles between the spin-rotation axis and the magnetic
moment . The spin-spiral vector q is a vector in the real space coordinate frame, while

Figure 4.1 : Four examples of spin-spirals with spin-rotation axis perpendic-ular (upper two) and parallel (lower two) to the spin-spiral vector q. For eachcase two spirals with angles of V = 7r/2 and V = 7r/4 between the magneticmoment and the rotation axes are shown .
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the spin-rotation axis is a direction (vector) in the spin-coordinate frame. Since
these two coordinate frames become totally independent when spin-orbit coupling
is neglected, the angle between the spin-spiral vector q and the spin-rotation axis
becomes meaningless. In that case the two spirals at the top and the two spirals
at the bottom of Fig. 4.1 become completely equivalent . However, the spin spirals
with different z9 do not become equivalent . V is still a well defined quantity, if SOC
is neglected, because the rotation axis is a vector (direction) in spin space. In the
next section it will be shown that a very elegant treatment of spin-spirals by first-
principle calculations is possible when a generalized Bloch theorem [Her66, San86] is
applied, that will be discussed in the next section . However, this theorem can only
be proven, when SOC is neglected. For this reason the spin-rotation axis will always
be considered as parallel to the z-axis of the spin-coordinate frame. Thus, only the
mx and my components are rotated, while m,z does not change .

4.3

	

Generalized Bloch Theorem
In the case of an incommensurate spin-spiral the periodicity with respect to lattice
translations along the direction of q is lost . This is a major problem for ab-initio
methods that rely on the translational periodicity. However, when spin-orbit cou-
pling is neglected all atoms of the spiral structure are equivalent . The magnitude
of the magnetic moment of each atom is the same and they all "see" the same local
environment, i.e . the relative angles between the local moment and the moments of
the neighbors are equal. Only the angle between the local moment and the lattice
changes from site to site, but that is only significant in the presence of SOC. This
leads to a generalization of the Bloch Theorem[Her66, San86] .

Let us consider a spin-spiral structure in a crystal without an external magnetic
field and take the rotation angle cp = q - IV to be counterclockwise . The only term
of the Hamiltonian that changes from site to site is the exchange correlation B-field

Bxc, i.e . the matrix potential V = V12+ PBQ' . Bxc. Hence, the Hamiltonian satisfies
the relation

W(r +Rn) = U(gRn)W(r)Ut(qW) .

	

(4.l0)

As pointed out in the previous section the rotation axis can always be taken to be
along the spin z-axis . Thus, the spin 1/2 rotation matrix (cf. appendix A) has the
form

e-iW/2 0
U(gR ) _

	

0

	

eiW/2 W=q .Rn . (4.11)

Keeping these properties of the Hamiltonian in mind we can define a generalized

translation, Tn - {-gRnIeIRn}, that combines a lattice translation and a spin rota-

tion . Here e denotes the identity operation. These translations are members of the

SSG but not of the usual space group, since the rotation in spin space differs from

the rotation in real space. Applying a generalized translation to Wo yields

TnW(r),O(r) = U(_gRn)¢l(r + Rn)Ut(-gRn)U(-qRn),O(r + Rn)
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Thus, the generalized translation commutes with the Hamiltonian:

(i) (4.l6) =* (4.l5)

Tnii = WT

T... = TT =T,+.

n/. k

	

Ead.R.n/2

	

0T,,4~

	

, r

	

=

	

,

	

n

	

eik.(r+Rn)0

	

e-iqR /2
= eik-Rn �l'~,(k r)~

(ii) (4.15) ==> (4 .16) a and ,ß can always be defined to be

eik "Rn
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= W(r)U(-qRn ),o(r + Rn) .

	

(4.l2)

It can be shown that the generalized translation operations satisfy the relation

(4 .13)

(4 .14)

In analogy with the proof of Bloch's theorem in the textbook by Ashcroft and Mermin
[AM76] it follows that the eigenstates can be chosen such that

TnO(k, r) = U(-qRn),O(k, r + Rn) = eik.Rn o(k, r) .

	

(4.l5)
This formulation of the generalized Bloch Theorem is equivalent to the statement
that the eigenstates of the Hamiltonian can be written in the form

k r

	

= eak-r

	

e-iq.r/2a(k, r) ) ,
( e+iq.r/2ß(k~ r)

	

(4.16)

where a(k, r) and ,ß(k, r) are functions with translational periodicity, e .g . a(k, r) _
a(k, r + Rn). We will prove the equivalence of (4.15) and (4.16) in two steps .

8-iq-(r+Rn)/2a(k, r + Rn)e+iq-(r+Rn)/2p(k, r + Rn)

(4.l7)

__ ei (k,r)

	

~2(k,r)a(k, r)

	

ei(k-q/2 ) r 1

	

,ß(k, r) = ei(k+q/2)r 1

	

(4.18)
where 01 and 01 are the two components of the spinor 0. Now it remains tobe proven that a and ß are periodic . Starting from (4.15) we find

eiq.Rn/2

	

0

	

ei(k-q/2)(r+Rn) a(k, r + Rn)
0

	

e-iq.Rn/2

	

ei(k+q/2)(r+Rn)(

	

)ß(k, r + Rn)
eik ,Rn

	

ei(k-q/2
)r a(k, r + Rn)

( ea(k+q/2)rp(k, r + Rn)
6 (

	

q/) a(k, r + Rn)

	

ik.Rn ( ei(k-q/2)ra(k, r)ei(k+q/2)rß(k, r + Rn) ) = e

	

ei(k+q/2)rO(k: r) )
a(k, r + Rn) = a(k, r),

	

8(k, r + Rn) = 0(k, r) ,	(4 .l9)
The fact that a and ,ß are periodic functions is very important for the implementationof the spin-spiral into the FLAPW method. The FLAPW method relies on plane waveexpansions and Fourier Transforms . Therefore, it is necessary to formulate the theoryin terms of periodic functions .



Chapter 5

Implementation of Non-Collinear
Magnetism into FLAPW

The first non-collinear ab-initio calculations for a periodic solid were performed us-
ing the Korringa-Kohn-Rostoker (KKR) method [SG86, SG89] and the Augmented
Spherical Wave (ASW) methods [KHSW88a, KHSW88b, SHK89]. Later calculations
used the Linear Muffin Tin Orbital (LMTO) [MLSG91, MLSG92] method. All of
these methods have one common feature, they use cells (spheres) around each atom.
Every point in space can thus be associated uniquely with an atom . The implemen-
tation of non-collinear magnetism is done in a way that allows only one direction
of magnetization per atom, i.e . the direction of the magnetization density m is not
allowed to change within one sphere, but varies only from sphere to sphere. Never-
theless, the magnitude of the magnetization density can change within a cell .

m(r) = m(r - p")6«

	

(5 .1)

Here pa is the position of the atom a and ea is the direction of the local magne-
tization . We call this the atomic sphere approximation for the direction of mag-
netization . It agrees with the intuitive picture that each atom carries a magnetic
moment and these moments differ between the atoms. Such methods describe only
the inter-atomic non-collinearity. However, in general the direction of the magnetiza-
tion changes continuously from site to site, though, in many cases, the deviations from
the main atomic direction are only significant in a region between the atom, where
the magnitude of the magnetization is rather small. The first calculation that treated

the magnetization as a continuous vector quantity was published by Nordstr6m et
al . [NS96] . They followed the most general approach allowing the magnetization to

change magnitude and direction continuously, i.e . even within an atom. Thus, their

implementation, that is based on the FLAPW method, allows them to also investigate

the intea-atomic non-collinearity.
We are interested in the non-collinear magnetism of 3d transition metals at sur-

faces and in open structures . The intea-atomic non-collinearity is expected to be

small for theses systems and we are mainly interested in the inter-atomic non-collinear

67
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magnetism. However, it is difficult to use a pure inter-atomic treatment of the non-
collinearity in the FLAPW method due to the representation of the magnetization
within the FLAPW method. In the interstitial and the vacuum region the potential
and the magnetization are expanded into plane waves. Points that lie in these regions
cannot be assigned to an atom uniquely. Therefore, the magnetization is treated as
a continuous vector field in the interstitial and in the vacuum regions, while inside
each muffin-tin sphere we only allow for one direction of magnetization . This "hy-
brid" approach is illustrated schematically in figure 5 .1 . The ratio of the volume
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Figure 5 .1 : Schematic illustration of the representation of the non-collinearmagnetization density within the present approach. The magnetization istreated as a continuous vector field in the interstitial region and in the vacuum .Within each muffin-tin the magnetization has a fixed direction and can onlyvary in magnitude. For a better illustration the muffin-tins have been chosenmuch smaller than in actual calculations .

in which the magnetization is treated as a continuous vector field and the volumeof the muffin-tins, in which the atomic sphere approximation of the magnetizationdirection is applied, can be changed by changing the muffin-tin radius . We performednon-collinear calculations with different muffin-tin radii to investigate the validity ofthis approximation. The result of these test calculations are discussed in Sec. 5 .4.2(Fig . 5 .4) and 6.3.3 . The method can be extended to full vector field treatment ofthe magnetization density everywhere in space. To achieve this it would be necessaryto calculate the components of the magnetization that are not parallel to the local
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quantization axis of an atom and to include the corresponding components of the
B-field into the Hamiltonian. If that was done the implementation would still differ
from that of Nordstr6m[NS96], because Nordstr6m uses different basis functions in
the muffin-tin.

The FLAPW method for collinear calculation uses two sets of radial basis func-
tions inside the muffin-tin spheres, one for each spin direction . For each spin direction
they are set up using the spherical part of the corresponding potential, Vf or V~, and
the corresponding energy parameter, Elf or Ely . It is still possible to work with
Vt and Vy in the non-collinear case, since we restrict the magnetization to the local
quantization quantization axis . Therefore, a local spin-space coordinate-frame is in-
troduced with the z-axis parallel to the local quantization axis . Vt and V~ are now
spin-up and -down with respect to the local axis. Since both, the potential and the
basis functions, are set up in terms of the local spin-coordinate frame, the determina-
tion of the basis functions and calculation of the integrals of these functions with the
Hamiltonian inside the muffin-tins is completely unchanged. The changes come in,
when the basis functions inside the muffin-tins are matched to the plane waves in the
interstitial region, because the local spin-coordinate frame Sa is rotated with respect
to the global frame S9 . Finally, it is important to realize that these rotations are
only applied to the direction of the magnetization, i.e . the spin space. The real space
is not affected at all by the rotations. In particular, no rotation has to be applied to
the coordinate r or the spherical harmonics YL.

5.1

	

Setup of the Hamiltonian Matrix

The FLAPW method uses augmented plane waves as basis functions. Therefore, each
basis function can be uniquely identified by is wave vector G and the spin direction.

The basis functions in the interstitial region are:

ei(k+G)r
X

9
Q

(5.2)

Xg is a two component spinor. The index g has been added to notify that Xg is

the representation of this spinor in the global spin frame (cf. appendix A) . This

representation of the basis functions is used for both collinear and non-collinear cal-

culations. However, the potential matrix V, and thus the Hamiltonian, is diagonal

in the two spin directions in the collinear case . Therefore, the Hamiltonian can be

set up and solved separately for the two spin directions . In the non-collinear case

the of-diagonal part of V is not zero anymore. Hence, the full Hamiltonian for both

spin directions has to be set up and solved in a single step . In the vacuum we also

use the global spin frame for the representation of the basis functions. The basis

set is only changed in the muffin-tins, because we use a local spin coordinate frame,

which is rotated with respect to the global frame. The consequence is that, when

the plane waves are matched to the functions in the muffin tin spheres, each spin

direction in the interstitial region has to be matched to both, the spin-up and -down
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basis functions, in the sphere . Thus, the basis set has the following form.
ei(G+k)r x9

WG,Q (k,r) = (AG(kll)u~u (kll , z) +B2(kll)

	

~° (kll , z)) e2(Gii+ku)ru

(ALa« (k)ul(r) +BiQ« (k)ict(r)) YL(r) x~~
va L

xg

Int.

Vac .

MTM

(5 .3)
The sum in the muffin-tins is over the local spin directions . The A- and B-coefficients
depend on the local and the global spin .

The global spin-coordinate frame S9 can be transformed into the local frame by
a rotation, given by the Euler angles (a�ß, 0) . In this case, the Euler angles are
equivalent to the polar angles of the local quantization axis in the global frame,
a = cp, ß = V. The magnetization density and the magnetic field, seen from the
global frame, m«9 (r) and Ba9 (r), are related to the same quantities seen from the
local frame by

mas (r)

	

=

	

Rag' m«t (r)

B«9(r) = Rag' B«t(r) .

	

(5.4)
where the index a indicates, that this corresponds to quantities inside the muffin-tinof atom type a . The Pauli spinors transform according to

xa9 = Uaga xal .
The matrices Ra9l and Ua9l are explained in appendix A, p. 189, on coordinate frametransformations, which also contains our definition of the Euler angles .In the collinear case the radial functions uaQ and it', 1 are determined as solutionsof the radial Schr6dinger (scalar-relativistic) Eqn. (3.2) (3.41), including the spin-dependent potential V,. . Thus, the basis functions inside the muffin-tins are linearcombinations of

(5.5)

Afterwards, the spin-dependent t-matrices (3 .61 - 3.64) are calculated . This wholeprocedure remains completely unchanged in the non-collinear case, with the only dif-ference, that spin-up and -down means up and down in terms of the local quantization1The radial functions are denoted u only for convenience . In the actual calculations the scalar-relativistic approximation is employed, and therefore the large component of the radial function isused here .

uir(r)YL(r)xr , ifi(r)YL(r)x~
u`-(r) YL(r)Xj , üa.(r)YL(r)xa, (5 .6)

where L abbreviates lm, and

xtl- o , x� = (0) .
(5 .7)
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e

2a cos(~2-)	

«

	

a

c	

at

	

-6

2a sin(~)

xfi9=Uagl

icfi`=	

;a

	

,

	

X

9=U 9 X =

e

z sin(2)	

~'

	

~"

	

e

zwo(2)

The

next step is to connect the plane waves, representing the basis functions in the

interstitial

region, to the muffin-tin basis, with the aim of forming a set of continuous

and

differentiable basis functions

.

In the collinear case the plane waves with spin a

are

connected to the muffin-tin basis functions with the same spin only

.

Hence, the

boundary

conditions that have to be satisfied on the muffin-tin sphere are

:

ei(k--G)rXa

=	

(ALa

(k)ui~(r) + BL, (k)~(r)) YL(r)X,	

(5.10)
L

In

the non-collinear case each function in the interstitial couples to both, spin-up and

-down,

in the muffin-tins

.

Therefore, the boundary conditions become

:

ei(k+G)rXv

=	

(AL~

« (k)ui~a (r) + BL~a (k) i~a (r)) YL(r)Xää	

(5.11)

va

L

In

order to calculate the A and B-coefficients, we multiply equation 5

.11

with (Xfi9)*

or

(Xj9)*, which yields

ei(k+G)r(X~ä

)*X~ _	

(AL~

a (k)uj,« (r) + Bi~« (k)ui,a (r)) YL(i)

.

	

(5.12)

L

Comparing

this equation with Eqn

.

(5

.10)

shows, that the non-collinear A- and B-

coefficients

can be expressed in terms of the collinear coefficients

.

AL

aa (k)	

=

	

(X'ä)*X,

AL~ (k)

BLa

« (k)	

_

	

(Xää)*X,

BL~ (k)

(5 .13)

Similarly,

the contribution of the muffin-tin of atom p HMT~G~ (k) to the non-collinear

Hamiltonian

HG'a'Ga(k) can be expressed in term of the muffin-tin contribution

HMT.(k)

to the collinear spin-dependent Hamiltonian H?IG(k)

.

MG

	

G
HMT,,(k)

	

-

	

(AL'~,(k)ul'v(r)

+BL,'(k)ui',(r))_	

YL(i)X,

	

WMT,"
~ (EMTw

L'

(ALG

(k)uz~

.(r)

+ BpLor (k)0 (r)) YL(r)Xo-	

d3r

	

(5.14)

L
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axis.

Consequently, the muffin-tin basis set becomes

uifi(r)YL(i)Xt9,

0jfi(r)YL(r)Xfi9,

uiy(r)YL(f)Xj9,

&i~(r)YL(r)Xjg,

(5 .8)
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In the non-collinear case an additional summation over the local spin or" has to be

performed.

HG'a'Ga k
MT~

	

( } -
r

(AL~l'a«r (k)01,,., (r) + BLQ,Q«i (k)2Gi~Q«' (I')) YL' (r)Xa«'

	

MTIr,
)*fMTP a«' L'

(ALaa« (k) ua« (r) + BLaQ« (k)OZ,. (r)) YL()xaä

	

d3r

	

(5.15)

aa L

However, WMTA is diagonal in xa«, and (xaä,)*XQ« = Sa«'~« . Hence, 5 .15 becomes:

HG
;

, Gor(k) =MTM *
'

	

i
(ALQ'a« (k)2Glia« (r} -}- BLa'a« (k)2Glia« (r)) YL' (r)xaä

	

WMT1,
aa fmTP

	

L'

(ALS« (k)uia« (r) + Bi~« (k)uia« (r)) YL(r)xaä

	

dar

	

(5.16)

(L

Using 5.13 and the fact that (xa«)*WMT-xaa - HMTa« (k) 5.16 simplifies to :

HMT
A
Ga(k) -' E((Xa~)*xa')*(Xaä)*xaHMTa«(k)

	

(5.17)
a«
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In complete analogy the muffin-tin contribution to the non-collinear overlap-matrix
is given by :

SMT,,G'
(k) = E((xaä ) *xa' )* (i~aä ) * ~'a

SG

	

a« (k)
a«

In the interstitial and vacuum region we work within the global spin coordinate
frame. Hence, the Hamiltonian matrix can be set up directly according to

2
HG'a'Ga

	

f WG a

	

-

	

v2
12 +V

	

(PG,ad
3r

~ 2m

(5 .18)

(5.19)

Because the basis functions are either pure spin-up or spin-down in the interstitial
and the vacuum the contribution to the overlap matrix and the contribution of the
kinetic energy term to the Hamiltonian matrix are diagonal in spin . Thus, the only
quantity that needs to be calculated in a non-collinear calculation which is not needed
in the collinear case is the integral of the basis function with the off-diagonal elements
of the potential matrix . However, that integration can be performed in exactly the
same way as the integrals including the diagonal parts of the potential matrix, with
the sole difference that the off-diagonal part is in general a complex quantity.

In the interstitial region the step function that "cuts out" the muffin-tin spheres
has to be taken into account (cf. Sec. 3.3.3) . The product of the step function with
the potential matrix is calculated separately for each part of the potential matrix .
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The procedure of calculating (VO)Gaa' is precisely the same as described in Sec. 3.3 .3 .
Once (VO)Gaal is calculated the Hamiltonian and overlap matrix are given by

a
HNT ''' (k)

	

_

	

(Vaa1 O)(G-G1 ) -I - Saarm(G'+ k)
a
0(G-GI)

SIGIT
l
a"

	

=

	

goaoa'E)(G-GI)

	

(5 .20)

In contrast to the muffin-tin the vacuum basis functions couple only to one spin
direction in the interstitial region , because they are set up in terms of the global
spin frame. In addition to the spin diagonal parts, integrals of the form (cf. 3.96)

IGII G II G II (kjj) = f uGII,(kll , z) uGila, (k ll , z ) VGiiaa, (z)dz,

	

. . .

	

(5.2l)

that also take into account the of diagonal part of the potential matrix have to be
calculated. The t-matrices (cf. 3.92) become

(5.22)
tGIIG II (k ll )

	

IGIIGII(GII-G II)(kll)+JGIIGIISoralE'vac,a7

	

. . .

Finally, the Hamiltonian and overlap (cf. 3 .100) matrix are given by

Hv
aG'a'

(kll) = (AGa(kll))*tGIIGII(kll)AG'a'(kll)+ . . .

SVaG'a'(kll)
=

	

(AGoa(kll))*AG'a'(kll)6GIIGil6aa' + . . .

	

(5.23)

5 .2

	

Construction of the Charge and Magnetiza-
tion Density

From solving generalized eigenvalue problem (cf. Sec. 3 .1 .4) including the full Hamil-
tonian and overlap matrix for both spin direction we obtain the eigenstates of the
non-collinear system . The eigenstates are given in terms of the basis functions (5.3) .

v(k~ r) _

	

Q(k)WG,a(k, r)

	

(5.24)
a G

Now the density matrix has to be determined from the eigenstates. In the interstitial
and vacuum region, where we work within the global spin frame, this is done according

to eqn. 4.3 . In addition to the diagonal elements of the density matrix that are needed
in a collinear calculation we now also have to calculate the off-diagonal element

P21 = pie . In the interstitial region (3 .162) has to be generalized to

Pv«ß(k) _

	

(
c
G«(k))*

Cvß+G')(k) .
G,

(5.25)

As in a collinear calculation (cf. Sec. 3.6 .4) the calculation of the density matrix can

be performed more efficiently using fast Fourier transform (FFT) according to the

scheme
k r

	

PFT;1

	

G kQ(k)

	

yw,a (k, I')	-~

	

/w,«ß (k, r)

	

-'~

	

P«ß (

	

)	P«ß (

	

) '
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Similarly, in the vacuum eqn. 3.166 has to be generalized to

5. Implementation of Non-Collinear Magnetism

Paß (z)

	

-

	

1 (AGaI (kll)1* AVß
I+GII)

(kll)w(v, kll) UG il ,«(kll , z)u(GII,ß+Gil)(kll , z)
kll v

GI

	

/I

Inside each muffin-tin we need to calculate only the diagonal elements of the density
matrix. By neglecting the off-diagonal part we project the magnetization density onto
the local quantization axis. Therefore, the changes affect only the determination of
the A and B-coefficients of the local spin-up and down basis functions. In contrast
to a collinear calculation each basis function WG,. couples to both spin directions in
the spheres. In other words, each spin direction in the global frame contributes to
both spin directions in the local frame. Thus, a summation of the global spins has to
be performed when the A and B-coefficients of each state (cf. 3.142) are computed.

5.3

	

Construction of the Potential Matrix

(5.26)

AL,vo," (k) -EEEECG
v (k)AL

	

, (k),	BLBL��> (k)_

	

CGv(k)BL~a (k)

	

(5 .27)
Q G

	

Q G

The remaining task that needs to be done in each self-consistency iteration is the
determination of the potential matrix V from the density matrix p. The poten-
tial matrix can be split up into three contributions, the external potential, which
is usually given by the atomic nuclei, the Hartree potential and the exchange cor-
relation potential . The first two contributions depend on the atomic positions and
on the electron density. They do not depend on the magnetization . Thus, we areconcerned with the exchange correlation potential when generalizing the method tonon-collinear magnetism. If we allowed for a general magnetization vector field every-where in the unit cell the changes would affect all parts of space, i.e . the muffin-tins,the interstitial and the vacuum regions. However, since we use a local spin coordinateframe in the muffin-tin spheres and allow only for a collinear magnetization insidethe spheres, the potential generation in the muffin-tins is unchanged compared to acollinear calculation . Hence, the changes are in the interstitial and vacuum region.In these parts of space we work within the global spin coordinate frame and thecharge and magnetization densities are stored in terms of the density matrix p. Thestandard parameterizations of the exchange correlation potentials are in terms of thescalar quantities n and m. In the local density approximation this is not a majorproblem, as I have pointed out in the previous chapter. Due to the local characterof the approximation it is possible to calculate the charge density and the magnitudeof the magnetization density at each point in space and then apply the standardparameterization of the exchange correlation potential. In addition, it is necessaryto calculate and store the polar angles V and cp of the local direction of the magne-tization density, because they are also the polar angles of the exchange correlation
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B-field and are therefore needed later . Starting from the definition of the density
matrix (4.1) we find that the quantities needed are given by:

n(r)

m(r)

tan(cp(r))

tan(,9(r))

nt(r) + n~(r) = p11 (r) + P22 (r)

Im(r)I =

	

(mx(r))2 + (my(r))2 + (mz(r))2

(2Re{p21(rf 2 + (2Im{p21(r)j)2 + (pii(r) - p22(r))2
my(r) - Im{p21(r)}
mx (r)	Re{p21(r)}

(m.,(r)) 2 + (my(r))2

	

(2Re{p21(r) })2 + (2Im{p21(r)})2
m, (r)

nfi(r) and n~(r) are the spin-up and down densities, which are commonly used to
formulate the collinear theory. Now the LDA parameterization of the exchange cor-
relation potential can be applied yielding Vx,(r) and Bx,(r) . Using the the angles
co(r) and z9(r) we can retrieve the vector field B,,,(r) . The effective potential matrix
is then given by the sum of the external potential, the Hartree potential and the
exchange correlation terms (cf. also eqn. 4.2) .

V (r)

	

_

	

(Ve~t(r) + VH(r) + V~c (r))12 + 2 a- - B., c (r)

Bxc (r)

	

=

	

B.,c (r)

The procedure of calculating n, m and the angles cp, z9 is commonly formulated
in an equivalent way in the literature, e.g . [San98] . The density matrix is locally
diagonal in a spin coordinate system with the spin z-axis along the local direction

of the magnetization . This local spin coordinate system is rotated with respect to

the global system by the angles cp and 79 . Thus, calculating n, m, cp and V we have

diagonalized p(r) in each point of space by local coordinate transformation . This

rotation of the coordinate system can be done with the spin 1/2 rotation matrices

(A.5) . Hence, the density matrix in the global frame can be expressed by the the

diagonal density matrix (in the local frame) and the spin 1/2 rotation matrices (cf.

p11(r) - p22(r)

75

(5.28)

sin(V(r)) cos(cp(r))
sin(z9(r)) sin(cp(r))

	

(5.29)
cos(V(r))

Where Vfi - Ve t + VH + Vx, +_

	

/2B., and Vj, = Vext + VH + V~~ - /2Bx~ are the

spin-up and -down potentials in the terminology of the collinear theory.

appendix A) .
0

p«y(r)
nt(r)= U«9'

( )
U"l9 (5 .30)

0 n~(r)

The same applies to the potential matrix .

0
V.a9(r)

Vf(r)= U«9t ( Uat9
0 V~(r) )

(5 .31)
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The procedures described above have to be carried out in real space . The rotation
angles cp(r) and T9(r) in general different for every point in space. However, the density
matrix is stored in terms of three-dimensional plane waves in the interstitial region
and two-dimensional plane waves in the vacuum (cf. Sec . 3.5) . Therefore, the density
matrix has to be Fourier transformed to a real space mesh on which the angles, n
and m are calculated . The angles are kept on the mesh in order to be used later to
calculate the potential matrix . The whole procedure in illustrated in Fig. 5.2 . The

PG -
FFF-, P(r)

VTG,VIG F~i VT(r),V1(r)

nT(r),n1(r)

	

FFT_ i nTG,n1G

(P(r),1~(r)

V(r) FFT
-0~ VG

nG

	

Possion Eqn . ~

	

VcG

n(r),m(r)

	

LDA i Vxc(r),Bxc(reS
GG*A

VTGNIG

Figure 5.2 : Schematic illustration of the calculation of the potential matrixin non-collinear calculations . One aim of this implementation was to use thepotential generator of the collinear program (boxed) without changes.

potential generator of the collinear program is enclosed in a box in Fig. 5 .2 . One aimof this implementation was to use it without any changes, i.e . to use it as a "blackbox" . For this reason the quantities nf, n~ and Vf, V~ appear as intermediate results.As we have seen in the previous chapter the treatment of non-collinear magnetismrequires a generalization of the GGA exchange correlation potential. The currentlyavailable parameterizations do not take gradients of the the off-diagonal part of thedensity matrix, i.e . mx and my, in to account. The current implementation uses theGGA in an approximate way. The gradient of Im(r) I is used instead of the gradientof mx (r) = lm(r)l of the collinear problem. A second way to implement the GGAwould be to use the gradient of the projection of m(r) onto the local quantizationaxis in each point of space, rather than the gradient of lm(r)l . Comparing these twoapproximations could give an idea of how large the contribution from the gradientsof the off-diagonal part of the density matrix are. It should be kept in mind that thisproblem exists only in the interstitial and vacuum region, where the magnetizationis rather small. Inside the muffin-tins the standard GGA potential can be applied,because of the collinear magnetization in this region . Therefore, the corrections areexpected to be small.
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5.4

	

Constrained local moments (CLM) in FLAPW
The implementation of non-collinear magnetism I have presented in the previous
sections allows us to specify the orientation of the moment for each atom by specifying
the direction of the z-axis of the local spin-coordinate frame. When constructing the
magnetization density m(r) in each self-consistency cycle the components m,,(r) and
my (r) in the local coordinate frame are neglected, i.e . the magnetization density is
projected onto the local z-direction. This can be interpreted as constraining the
magnetization density along a prescribed direction . Since these components of the
density are neglected in each iteration the resulting magnetization density is not a
self-consistent solution of the energy functional . Thus, in general the constrained
density functional theory [DBZA84] has to be applied for such calculations .

The method of constrained local moment (CLM) calculations is explained in
Sec. 4.1 . There it is shown how constraint is taken into account by Lagrange pa-
rameters, the local constraint B-fields, that enter the energy functional . However,
up to now we have not answered the question of how the local constraint fields are
determined in an actual calculation . As we have pointed out above the Ba have to
be determined self-consistently in an iteration scheme. Thus, after each iteration,
or set of iterations that converges n(r) and m(r), a correction to Ba needs to be
determined .

Scout - Bcin + OBc«
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(5.32)

Naturally, we expect OBI to be proportional to the perpendicular magnetic moment
in the sphere, Ma = fMT1 m(r) -ea(ea m(r))d3r . The proportionality factor should
be chosen such, that B« approaches the self-consistent value quickly, but does not
overshoot. In principle, we best need to know dM1/dB", but this quantity is not
easily accessible . However, if we assume that rotating Bff by some angle rotates
M« by the same angle, we arrive at the following choice for the correction to the
constraint field, a

AB« _

	

ff)I IM« I
(5.33)

where M« = fMTa m(r)d3r is the integrated magnetic moment in the muffin-tin and
(B' f) is the average effective B-field in the sphere. All quantities on the right-hand
side the output of a self-consistency iteration. To generalize this formula and to

improve the convergence we can add a scaling factor cxc.

OB MaLC _ -cxcl (Bff)I IM«)
(5.34)

Our test calculations show that, for systems where the size of the local moment

IMa I does not change much with Ba , the constraint field and the densities can be

converged simultaneously, i .e . the constraint field can be improved according to (5.32)

after each self-consistency iteration for n(r) and m(r) . An obvious improvement to

(5 .32) and (5.34) would be to use a Newton scheme to find the constraint B-field that

makes the perpendicular moment vanish. However, the test calculations show, that
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the constraint fields converge faster than the charge and magnetization densities . In
most cases a large scaling factor 0.5 < a, < 1.0 can be used . Hence, it does not seem
to be necessary to improve the iteration scheme for B.I .

5.4.1

	

Hamiltonian setup in constrained local moment calcu-
lations

The implementation described in the previous sections is based on the atomic sphere
approximation (ASA) for the spin direction inside the muffin-tin spheres, as illus-
trated in Fig. 5 .1 . Thus, the effective B-field, which is given by the exchange correla-
tion B-field alone in all calculations presented in this thesis, is collinear and parallel
to the local quantization axis, Belff (r) = Bff (r)ea . As a consequence, the Hamilto-
nian is diagonal in the local spin directions . Due to this property, the equations for
the contributions of the muffin-tin region to the Hamiltonian and the overlap matrix
(5.17, 5 .18) have a rather simple form . However, the constraint B-field is perpen-
dicular to the local quantization axis, B« 1 ea, leading to a coupling between the
local spin directions . Fortunately, the constraint field is constant, and thus spherical,
inside each muffin-tin . Thus, the contribution of the constraint to the Hamiltonian
is diagonal in l and m, which keeps the computational effort calculating these matrix
elements moderate .

When the constraint field is added, the potential matrix, represented in the local
spin-coordinate frame inside muffin-tin sphere a is given by:

(r)

	

=

	

Va(r)I2 + ABC ' (B'(r)&') - ws° . * (Baxe' + Ba 6')

	

(5.35)
Va(r) + PBBxc(r)

	

-AB(Bax - iBay)
- AB(Bax + iBay)

	

Va(r) - ABBIC(r)
The constraint B-field can be written as the sum of the x- and y-component inthe local frame, since it is perpendicular to the local quantization (z-) axis, eC, eyrepresent the x- and y-axis of the local spin-coordinate frame. As I have already
pointed out, the offdiagonal part of the potential matrix, and thus the Hamiltonianis given by the constraint field alone. Hence, the additional term in the Hamiltoniancan be written as

WMTP,off-d = SQa,-Q«" (-AB(B«x -}- sign(u')iBay)),

	

sign va =

	

Ua-1

	

a -~

(5 .36)Using (5.36), in particular the fact that it is purely off-diagonal in the local spin di-rections, the additional contribution to the Hamiltonian matrix due to the constraintB-field is given by
HG'v'Gv

	

(k)
_

MTil,off-d

	

- E(-AB(Bax -I- sign(6a)iBay))

a% LV
«

	

r

MTw (~ \A a -v (k)uI,-~ (r) + BLGi(k)iti~-aa (r)) YLi T
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defined as :

obtain :

79

(AL~. (k)ui~a (r) + Bi~« (k)i i" . (r)) YL(r)

	

d3r.

	

(5.37)
L

Substituting (5.13) yields :

HMT"off-d(k) - E (-MB(Bax + sign(u")iB",)) [((X«ä")* X, , ) * (X'9)*X,]ca
*

(AL/
G' ,, (k)0_~a (r) + BLG'« (k)0,,'-,. (r)) YL, (r)l-

	

I-fMTI" L,

(Z (Ati (k)uiQa (r) + Bti (k)üiua (r)) YL(r)

	

d3r.

	

(5 .38)
L

The A- and B-coefficients are given by :

Ai~ (k)

	

=

	

eiKP, 4r
at YL (R1`K) Fi,ä (k)

Wt1a

BLa (k) eiKp~ 4r' i l Y* Rt`K

	

la (k)

	

(5 .39)L (

	

)	Wi ll a

where SZ is the volume of the unit cell and the Wronskian, Fiä(k) and Gce(k) are

WiQ«

	

_

	

[uc,_« (RMTa)uiaa' (RMTa) - ulQa(RMTa)ulva ' (RMTa )]

Fiaä(k)

	

_

	

[üiva (RMTa)Kj' (RMTaK) - utQ.' (RMTa)jl (RMTaK)]

Gio (k)

	

=

	

[ulva ' (RMTa ),%l (RMTaK) - uiua (RMTa)Kii(RMTaK)] -

	

(5.40)

jl is the spherical Bessel function and a ' denotes a radial derivative a/ar. Now,

we can substitute (5.39) into (5.38) . Using the addition theorem for the spherical
harmonics: t

PI(ki * k2)

	

21+1 E YL(ki)YL*(k2)7
m=-I

where PI is the Legendre polynomial, and the fact that f YL#)YL(ri)dQ = 5L',L we

HMT~off-a(k) - ~(-MB(Bcx + sign(a,")iBay)) [((X-0'a)*
Xul)*

(XCä)*X,] (5.42)
Q«

~` ei(G-G')p"' (4?.)2

	

1

	

21+1 P,(K . K,)
" " 4~

I

	

Wl-vaWIQa

(5.41)

(FiQa(k)F�, (k)fuiQa (r)ui~a (r)r2dr + Fi~a (k)Gl~ (k)fui~a (r)ui~a (r)r2dr

GaG'a (k) Fl' (k) fi~i
Qa (r)u"-,,,Hr(r)r2dr + Giora(k)GaG (k)fui~a (r)ut~a (r)r dr

The task to calculate these matrix elements can be compared to the determination of

the overlap matrix elements in a non-collinear calculation. The principal differences
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are: i) The constant pre-factor (-AB(Bax + sign(va)iBay )) given by the constraint
B-field and ii) the fact that all terms are cross-terms of the two local spin directions
ua and -a« . Consequently, the radial overlap integrals that appear in (5.42) are the
overlap of the radial basis functions with different local spin character.

5.4.2

	

Test calculations

5. Implementation of Non-Collinear Magnetism

As a first test of the implementation of the constrained local moment method we
compared the change of the total energy for small constraint B-fields with the en-
ergy calculated in first order perturbation theory. We performed non-self-consistent
calculations, setting the constraint field to different values manually, rather than
calculating it self-consistently. In other words, we applied small perpendicular B-
fields inside each muffin-tin, using the implementation for constrained local moment
calculations . We tried fields with different magnitudes, which were smaller than the
constraint field necessary to make the perpendicular moment in the respective muffin-
tin sphere vanish. Such fields represent a small perturbation of the system . In first
order perturbation theory the energy difference between the unperturbed and the
perturbed system is given by the sum over the expectation values of all occupied
states of the unperturbed system with the perturbation term of the Hamiltonian. If
we write the contribution to the Hamiltonian due to the perpendicular field within
the local spin-coordinate frame as in (5 .36), we find that the energy difference is given
by:

DE = EE fMT~ ~v(r) (-tts (a~Bx + o-yBy)) 0,(r)d3r

	

(5.43)v

_ -pBEM,,B'+MYBY .

We performed the test for an unsupported monolayer (UML) of Cr with the symmetryand the lattice constant of a monolayer on the Ag(111) surface. We used a unit cellcontaining two atoms according to the inset of Fig. 5 .3 . The magnetic moments of thetwo atoms are aligned at 90°, so that the configuration consists of alternating rowsof atoms with moments pointing in z- and x-direction respectively. We chose thetheoretical LDA Ag lattice constant of 7.79 a.u. The k-point set that we employedcorresponds to 180 points in the full two-dimensional Brillouin zone, the planewavecutoff was set to Km,,, = 3.3 a.u . -1 leading to a basis set with about 130 basis functionper atom and the muffin-tin radius was chosen as large as possible, RMT = 2.75 a.u .We applied the LDA parameterization according to Moruzzi, Janak and Williams[MJW78] .
From a self-consistent calculation without a constraint field we obtained smallperpendicular moments of about 0.12 AB inside the muffin-tin spheres. The di-rection of the perpendicular moments is shown in the inset of Fig. 5.3, indicatingthe tendency of the system to evolve into a state of alternating antiferromagneticrows. The local spin-coordinate frames of each atoms was chosen such that the per-pendicular moments point along the x-axis of the local frame. Starting from the
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Figure 5 .3 : The total energy difference (solid circles) and the product
ABM,,'B' (open circles) is plotted as a function of the applied perpendicular
B-field (Bx ) . The triangles show the perpendicular local magnetic moment

self-consistent charge and magnetization densities we performed non-self-consistent
calculations where we applied a perpendicular field also in x-direction and with the

same magnitude in each muffin-tin . Fig . 5.3 shows the change of the energy as a

function of the applied perpendicular B-field (solid circles) . For very small fields this

energy difference is in excellent agreement with the energy difference calculated in

first order perturbation theory (open circles) according to Eqn. (5 .43) . But already

for field as small as 20 meV//-IB 2 the calculated energy starts to deviate from the

result of the perturbation theory. In first order perturbation theory the effect of the

change of the eigenfunctions due to the perturbation is neglected . As a measure for

that change we can take the output perpendicular moment of the calculation, which

is also shown in Fig . 5.3 (solid triangles) . It can be seen that Mx decreases linearly

with increasing field . At a field of about 60 meV//JB it has already decreased to

half its original size . Hence, the result, that first order perturbation theory is only

accurate for very small B-fields, is not surprising .

As a second test we compared the calculated total energy to the energy obtained

2For comparison : the average exchange correlation B-field is about 2500 meV//LB inside the

muffin-tins .
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U

7/2

Angle of local moment a

Figure 5.4 : The total energy of an UML Cr with Ag(111) geometry as func-
tion of the angle of the local moment. The plot contains the results of two
calculations with different muffin-tin radii of RMT = 2.75 a.u . (solid sym-
bols) and RMT = 2.0 a.u . (open symbols) . Shown are the calculated total
energy relative to the ferromagnetic energy (circles), the product of the local
moment and the constraint B-field, -ABM11(a)B,(a) (triangles), and integral
of -ABMjj(a)B,(a) (squares) .

from the constraint B-fields using the Hellmann-Feynman theorem. Eqn. (4 .8) can beused to calculate the energy difference between two magnetic states by an integrationover a path of magnetic configuration that connects the two states . This method hasbeen used by Oswald et al . [OZD85] to calculate the magnetic energy of 3d-impuritypairs in Cu, Ag and Pd. We chose the same system, the UML Cr/Ag(111), as in theprevious paragraphs, using the same computational parameters . As starting and finalstates we consider the ferromagnetic and a row-wise antiferromagnetic configuration .Rotating one of the two atoms in the unit cell, as illustrated in the inset of Fig . 5 .4,yields a path connecting the two magnetic states . This path is described by a singleparameter, the angle a . If a is changed by an infinitesimal step da, the change of thedirection of the local moment de is always parallel to the local constraint field B« insuch a configuration . Now the Hellmann-Feynman theorem (4 .8) can be integrated,yielding an equation for the energy difference between the ferromagnetic state and a



The result of the test calculation is shown in Fig. 5 .4 . The graph shows the
calculated energy difference (solid circles), the product -,uBMll(a)B,(a) (solid tri-
angles) and the integral of the latter quantity (solid squares) . The energy decreases
with increasing angle. It shows a cosine like behavior as expected from the near-
est neighbor Heisenberg model for an antiferromagnetic material . The shape of
the -btBMll(a)B,(a) curve is dominated by B,(a) . M11(a) is almost constant . It
changes only within a range of 4.1 pB - 4 .2 AB . MII (a) also changes very little (less
than 1 %) from a calculation with the constraint field switched off to a constraint
calculation . The symmetric magnetic states, ferromagnetic and antiferromagnetic,
represent extrema of the total energy. Hence, they are stable magnetic solutions .
Consequently, the constraint field, and thus -PBMII(a)B,(a) is zero for a = 0 and
a = 7r . -ABMll (a)B,(a) is a continuous function, that reaches a maximum at an
intermediate angle slightly smaller than 7r/2 .

The integral of -ABMll (a)B,(a) exhibits the same behavior as the total energy,
but has a slightly smaller magnitude than the calculated total energy difference. At
the final (antiferromagnetic) state the two curves differ by about 9 %. We have
not completely understood the origin of the deviation. We suspect that is might be
due to incomplete-basis-set corrections . The Hellmann-Feynman theorem is based
on the fact that the functional derivative of the total energy with respect to the
(components) of the density (-matrix) vanishes, SEIBp = 0, because p is already the
groundstate density and minimizes E. Therefore, only the explicit dependence of the
energy on an external parameter has to be taken into account when differentiating
the energy with respect to the parameter. In our case this parameter is the direc-
tion of the local moment. However, in methods like the FLAPW method the basis
set depends on the external parameters . The corresponding corrections are called
the incomplete-basis-set corrections. Such corrections play an important role in the
calculation of the atomic forces [YSK91] . In fact, in atomic force calculations the

incomplete-basis-set corrections are usually even larger than the Hellmann-Feynman
force. Recently, Grotheer and Fähnle have derived an expression for the incomplete-
basis-set corrections to the torque acting on the localized magnetic moments [GF98] .

They have performed calculations similar to that presented in Fig. 5 .4 on bcc Fe and

found that the corrections are about 2 % of the size of the Hellmann-Feynman torque .

The basis function of the FLAPW method in the interstitial region are plane-

waves. Thus, the basis set is independent of the local quantization axis ea in that

region . Hence, changing the muffin-tin radii RMT should have an effect on the size

the incomplete-basis-set corrections. To gain an indication whether the incomplete-

basis-set corrections are the cause of the difference between the calculated total en-

ergy difference and the energy difference obtained from the Hellmann-Feynman the-

orem, we have repeated the calculation with a much smaller muffin-tin radius of

RMT = 2.00 a.u . With this choice the volume covered by the muffin-tin spheres is
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state with angle a between the magnetic moments:

E(a) - E(a = 0) =
fo

-ABMll(a)B,(a)da. (5 .44)
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reduced by more than 60 % . The result of this second calculation is also shown in
Fig. 5 .4 by the open symbols. The product -ABMJ(a)B,(a) is changed considerably.
The energy difference calculated from the Hellmann-Feynman theorem is now about
6 % to large, i.e . the deviation has changed the sign and its magnitude has become
smaller. This result supports the idea that the deviation is due to the incomplete-
basis-set corrections. However, to definitely settle this point, calculations including
these corrections would be necessary. Such calculations remain a future project.

Stocks et al . [SUW+98, UWN+99] chose bcc Fe to test their implementation of
constrained local moment calculations . Also Grotheer and Fähnle [GF98] used the
same test system for their implementation of the incomplete-basis-set corrections to
the Hellmann-Feynman torque on the magnetic moments. Therefore, we repeated
the test for bcc Fe using the same geometry as Stocks et al . In particular, we used
the same LDA lattice constant of ao = 5 .27 a.u . Our k-point set corresponds to
2016 k-points in the full three-dimensional Brillouin zone . The planewave cutoff was
set to Kmax = 4.0 a.u . -1 leading to a basis set with about 80 basis functions per
atom. We chose a muffin-tin radius of RMT = 2.25 a.u . To compare with the result
of Stocks et al . we started with an unconstrained calculation. In such a calculation
the magnetization density is projected onto the local quantization axis 6" inside
the muffin-tins after each iteration, i.e . the perpendicular magnetic moment M1 is
neglected. Although these calculations can be converged to a stable solutions, the
result is not self-consistent is the sense that the direction of the output magnetic
moment is not equal the direction of the input moment, 6üt 0 6%n = e".

The results of the bcc Fe calculations are presented in Fig. 5.5 . Panel b) con-
tains the parallel magnetic moment M11 (a) (open diamonds) and the perpendicular
(output) moment M1(a) (open triangles) . Our results are not in agreement with
those of Stocks et al . In particular, we find that the moment decreases strongly, by
more than 50 %, when it is rotated towards the antiferromagnetic state . Stocks et al .
obtain a very similar magnetic moment for the ferromagnetic state. However, in their
study the moment varies only within a range of 1 .9 PB - 2 .2 AB with the rotation .
Other authors also found a strong reduction of the moment in the antiferromagnetic
state. For example, Kübler [Kiib81] found a moment that is even slightly below 1 IVBin the antiferromagnetic configuration for the same lattice constant . Moruzzi and
Marcus [MM90] obtain a reduction from 2.34 AB (ferromagnetic) to 1.75 AB (anti-
ferromagnetic) . Their moments are larger in both configurations, because they used
the experimental lattice constant of ao = 5 .48 a.u .

Another difference between our results and those of Stocks et al . is the size of
M1(a) . Stocks et al . specify the difference between the input and the output angleof the local moment rather than Mj_ . They find a maximum difference of about 25° .The size of the magnetic moment for that angle is about 2 AB, which means thatMj_ must be about 0.9 AB . This value much larger compared to the maximum Mlof 0.37 AB that we found . Finally, Stocks et al . obtain a maximum constraint fieldof about 0 .23 RyIAB at 90° . We also find the maximum at 90° but the our value of0 .029 Ry/AB is almost a factor of 10 smaller. However, Fig. 5.5 shows that the energy
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Figure 5 .5 : Panel a): The total energy of bcc Fe as function ofthe angle of the

local moment . Shown are the calculated total energy relative to the ferromag-

netic energy (circles), the product of the local moment and the constraint B-

field, -MBMIJ (a)Bc (a) (triangles), and integral of -1-tBMII (a)B,(a) (squares) .

Panel b) : Shown are the parallel magnetic moment M11(a) (diamonds) and

the perpendicular moment M1(a) (triangles) . Both panels contain results of

constrained (solid symbols) and unconstrained calculations (open symbols) .
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difference calculated from the Hellmann-Feynman theorem using B,(a) (panel a) solid

squares) is is in fair agreement with the calculated total energy difference (panel a)

solid circles) . The Hellmann-Feynman result underestimates the energy difference
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between the ferromagnetic and the antiferromagnetic state by about 13 %. Panel
a) also contains the calculated total energy of the unconstrained calculation (open
circles) . Naturally, the energies calculated with and without constraint are equal
for the ferromagnetic and the antiferromagnetic configuration, where the constraint
B-field vanishes . For the intermediate angles the energy calculated with constraint
is always larger . We obtained the largest difference of 98 meV at an angle of 105° .
Compared to the other test systems this value is uncommonly large, e.g . for the Cr
UML we found a maximum difference of only 7.4 meV. Another effect of the constraint
can be seen in panel b) of Fig. 5.5 . In the region where the magnetic moment
decrease rapidly with changing angle the moment of the constrained calculation (solid
diamonds) is reduced even more strongly compared to the unconstrained moment
(open diamonds) . Other results showed that this seems to be a general trend. In
situations where the magnetic moments become unstable, the constraint tends to
reduce the moment further, while in most calculations the effect of the constraint on
the size of the moment is negligible.

U

Angle of local moment a

Figure 5 .6 : The total energy of an UML Mn with Cu(111) geometry asfunction of the angle of the local moment. Shown are the calculated totalenergy relative to the ferromagnetic energy (circles), the product of the localmoment and the constraint B-field, -ABMjj(a)B,(a) (triangles), and integralof -YBMjj(a)B,(a) (squares) .
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As the final test system we chose another unsupported monolayer (UML) of Mn
with the geometry of the Cu(111) surface (ao,cu = 6 .65 a.u.) . In contrast to the
previous two test systems the unit cell of this example contains three atoms. Dur
ing the computation the moment of two atoms was rotated into opposite directions
as illustrated in the inset of Fig. 5.6 . Since two atoms are rotated the integral of
Eqn. (5 .44) has to be multiplied by a factor of two, to obtain the corresponding equa-
tion for this configuration . When the angle a is changed from 0° to 180° the path of
magnetic configuration goes through three high-symmetry states, the ferromagnetic
state (a = 0°), the Neel state (a = 120°), and a collinear antiferromagnetic state
(a = 180°) . In the Neel state the magnetic moments of all nearest neighbors of each
atom are aligned at 120° . The antiferromagnetic state has a net moment, because
the magnetic moments of two atoms are parallel and only one atom has an anti-
parallel moment. This state will be denoted the 180° configuration in the following.
In Fig. 5.6 it can be seen that B,,, and thus ILBMj(a)B,(a) (solid triangles), becomes
zero at the three high symmetry configurations. The calculated total energy and
the energy obtained from the Hellmann-Feynman theorem are in good agreement.
The two energy curves have a very similar shape and in the 180° configuration the
energies differ by only about 2 %. At 120° the energy exhibits a local maximum .
The quantity ABMj (a)B,(a), which is proportional to the slope of E(a) according
to the Hellmann-Feynman theorem (cf. eqn. 5.44), changes sign at this point. The
plot also shows that the difference between the calculated energies with and without
constraint (open circles) is rather small . This difference reaches it maximum value of
36 m6V at 45°.

In summary, the outcome of the test calculation can be condensed in three main
points . The first test, presented in Fig. 5.3, shows that the constraint B-fields nec-
essary to force the magnetic moment into a prescribed direction, are to larger to be
dealt with in perturbation theory. Our results show further that the accuracy of the
Hellmann-Feynman theorem is limited to about 10 %. We suspect that the reason for
this limitation are the incomplete-basis-set corrections. However, calculations that
take these corrections into account are necessary to prove this hypothesis. A conse-
quence of this result is that if an interpretation of the constraint field as a force (or
torque) on the magnetic moment with high accuracy is desired, the incomplete-basis-
set corrections can not be neglected . Finally, in all calculations we have performed,
also those presented in later chapters, the dependence of the energy on the magnetic
configuration does not change qualitatively when the constraint is switched on. In

most cases the difference between the total energy calculated with and without con-
straint is only a few percent (< 5 %) of the difference between, for example, the

ferromagnetic and the antiferromagnetic state.

5 .5

	

Spin-Spirals in FLAPW
The FLAPW method relies on plane wave expansions for quantities like the charge

density, the potential, and the wave functions . It is therefore necessary to formulate
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the basic equations in terms of periodic quantities that can be Fourier transformed .
However, in an incommensurate spiral magnetic structure the magnetization density,
the B-field and the eigenfunctions are no longer periodic . They have to be replaced
by periodic quantities . For the wave functions the corresponding periodic quantities,
a(r) and ,ß(r), have already been introduced in Sec. 4.3 . Choosing the rotation axis
along the spin z-axis is only mx, my, Bx, and By that are affected by the spin rotation .
The magnetization and the B-field are rotated by cp = q - r counter clockwise in the
x-y-plane, i.e . (mx (r) + imy (r)) and (Bx(r) + iBy(r)) are complex quantities that
rotate like eiq-r in the complex plane. Accordingly, we have to apply a rotation in the
opposite direction to obtain the periodic quantities . These quantities are thus given
bye-iq-r (mx (r) + imy (r)) and e-iq-r (Bx (r) -}- iBy(r)) . According to the definitions
of the density and potential matrix (eqn . 4.1 and 4.2) (mx + imy) and (Bx + iBy)
are the off-diagonal part of these matrices and the above substitution yields the
corresponding periodic matrices p and V. These relations can also be expressed in
terms of the the spin 1/2 rotation matrix (4.11) :

P -- UtPU
V = UtVU .

SPGQ(k, r) = ei(G+k:Fq/2)rXv,

(5.45)
As suggested by Eqn. (4.16) a plane wave basis set is used for the periodic quantities
a(r) and 8(r) in the interstitial region . Hence, the interstitial basis functions are
given by

(5.46)
where the - sign in ::Fq/2 holds for spin-up and the + sign hold for spin-down. If we
multiply wG,, by Ut, we obtain the function OG,,- = ei(G+k)rX, that has exactly the
same form as the basis functions of a normal magnetic basis set,

~PG,v(k, r) = Ut WG,a(k, r) .

	

(5.47)
In film calculations the spin-spiral vector q is always parallel to the surface and thetwo-dimensional plane wave expansion that corresponds to (5.47) is used for the basisfunctions.

Due to the term jq-r/2 term, the basis functions are now different for the twospin directions . Before the basis functions differed only due to the spinor X, . Thisis not a fundamental problem, but as a practical consequence changes required tothe computer program are rather involved . There is another technical point I wouldlike to mention . In an conventional collinear or non-collinear calculation the planewave cutoff for the basis functions is enforced according to IK I = IG +k 1 < KmaxThe obvious generalization is to use I G -I- k -T q/21 G Kmax as the cutoff' condition.The consequence is that we find different sets of G's for the two spin directions . Infact, even the number of basis functions is in general different for spin-up and -down.In order to save programming work we first tried keeping the old cutoff conditionI G + kI G Kmax. In this case the sphere of G's is not centered around k T q/2 butaround k. In other words, the average of IG -I- k T- q/21 2 over all basis functions is
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larger than it would be if we took IG + k ::F q/21 G Kmax as the cutoff condition,
i.e . on average the basis functions have a larger kinetic energy matrix elements . In
the limit of large cutoffs this is not a problem, but for small cutoffs that are used
in actual calculations, this can cause a significant contribution to the total energy.
The calculated energies for configurations with large spin-spiral vectors are relatively
larger that for small q-vectors, e.g . the energy of a spin-spiral with q equal to a
reciprocal lattice vector is larger than that of a spiral with q = 0, though both
configurations are ferromagnetic. To retain the required accuracy it is necessary to
go to larger cutoffs and the method becomes less efficient . Therefore, we have changed
the program again enforcing the cutoff according to I G+kzFq/21 G K,»,a,; . This effect
and the difference between the two cutoff conditions is illustrated for the example of
Fe in Sec . 5 .5.4 .

On the other hand representing the matrix density and potential by ip and V re-
spectively has a very convenient feature . When the Hamiltonian matrix is calculated,
we need to determine the matrix elements of the basis functions with the potential
matrix . Thus we have to calculated integrals of the form

f (PG,vVWG,Qd3r = f SPG,UUUtVUUtcPG,,d3r =

	

~PG,aVSPG,,d3r .

	

(5.48)f
Hence, if we work with Yp and V, the form of these integrals does not change . This
means that the corresponding part of the computer program does not need to be
modified . Inside of the muffin-tins the basis functions are set up as in än conventional
calculation . However, they have to be matched to the new interstitial basis functions .
Due to the term e:Fq.r/2, the value of the plane wave at the sphere boundary is now
different for the two interstitial spin directions . Consequently, Eqn. (5.13) that relates
the non-collinear A and B-coefficients to their collinear counterparts does not hold

anymore .

5 .5 .1

	

Setup of the Hamiltonian Matrix

89

In contrast to a non-spin-spiral calculation the extra term Tq/2 appears in the ex-

ponent of the plane waves of the spin-spiral basis set . This term has to be taken into

account when the Hamiltonian matrix elements are calculated in the interstitial re-

gion . The overlap matrix elements remains unchanged, which becomes obvious when

(5.47) is substituted into the integral equation for the overlap matrix elements .

SGo,G'a-'

	

*

	

r ~d3r = f ~PG ~U'tTJcPG',~.~d3r = Sav'~(G_G')

	

(5.49)
IM

	

= f ~OG,orVG ,~

We have already shown that the contribution to the Hamiltonian due to the potential

matrix does not change , because we work with V (5 .48) . Yet, the term Tq/2

contributes to the kinetic energy and the Hamiltonian matrix elements are given by

2

	

(5.50)HNT I
Q .~

(k) _ (V�-o, ? 0)(G-G') +d','2(G + k

	

q/2)2C(G-G')
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The changes in the vacuum are very similar to those in the interstitial region .

The basic difference to a non-spin-spiral calculation is the extra contribution to the

kinetic energy. However, in the vacuum the extra term enters in to the setup of

the z-dependent functions . As a consequence the A and B-coefficients, the overlap

matrix elements and the contribution to the Hamiltonian from the potential matrix

are affected . Nevertheless, these changes are only indirect through the change of

uG,,, and itG,, Q . To take the extra contribution to the kinetic energy into account

the 1-dimensional Schr6dinger equation for the z-dependent functions (3.24) has to
be replaced by

h2 02

	

h2

2m--ä7+ Voo-o-(z) - Evac,u + 2m (G ll + kll -T gll/2 )2

	

uGiiU (kll , z) = 0 .

	

(5.51)
~

	

1
The equation for the energy derivative i~G U o, (3.25) has to be changed correspondingly.
Once the z-depending functions have been setup including the extra term T-qjj/2 the
rest of the matrix setup, e.g . Eqn. (5 .21) - (5.23), remains unchanged provided that
V is replace by V (5 .21) .

Inside of the muffin-tins the change to the plane waves do not play a role, instead
spherical harmonics and radial functions are used. Therefore, the quantities p andV
can still be used and do not need to be replaced by p andV in spin-spiral calculations .
The changes to the basis set enter only through the boundary conditions, since the
functions inside the spheres need to be matched to the plane waves in the interstitial
including the extra term :Fq/2 now. By replacing ei(G+k)r by ei(G+k::Fq/2)r in (5 .10)
we find -that the A and B-coefficients of a spin-spiral calculation can be expressed in
terms of the corresponding coefficients of a collinear calculation .

ALu. (k, q)

	

=

	

(Xorä) *X, All', (k T- q/2 )
ELaa (k, q)

	

_

	

(XCra) *x, BL~(k

	

q/2)

	

(5.52)

In contrast to an ordinary non-collinear calculation the coefficients for the two in-
terstitial spin directions differ by more than a complex pre-factor in the spin-spiral
case . Therefore, the very simple relations for the Hamiltonian and overlap matrix
elements (5 .17) and (5 .18) do not hold anymore. Instead, the Hamiltonian matrix
elements have to calculated directly from Eqn . (5 .16) . As a consequence, the numer-
ical effort setting up the contribution to the Hamiltonian and overlap matrix from
the muffin-tins is increased compared to an ordinary non-collinear calculation.

5 .5 .2

	

Construction of the Charge and Magnetization Density
Due to plane wave expansion of the density matrix in the interstitial and vacuum
region it is necessary to work exclusively with the periodic quantity p rather that p
in these two regions. Starting from Eqn . (4.1) and substituting the representation of
the eigenfunctions (5.24) we find that the contribution from a point K in the Brillouin
zone is given by

pau , (k, r) =EEE (Cc-(k)wGc(k, r))* cO', (k)(PG, o-, (k, r),v 0 G,
(5 .53)
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Test Calculations on fcc Iron
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with the spin-spiral basis functions (5 .46) . To obtain an equation for p (5.53) has to
be multiplied from the left and from the right by Ut and U respectively.

P,,' (k, r) = EEE
(CG

(k)~PG~(k, r))* CG,'(k)~PG'~' (k, r),

	

(5 .54)
v G G'

Since the cp have exactly the same form as the plane waves in an ordinary calculation
we can immediately write down the expression for the plane wave coefficients of p
(cf. eqn. 5 .25) .

Po-,' (k) _

	

v,o, (k)) * cv~+G')
(k) .

	

(5 .55)
G'

The equation for p of a spin-spiral calculation has exactly the same form as the
equation for p in a non-spin-spiral calculation (5 .25), which means that no changes
to the computer program are necessary.

The situation in the vacuum is very similar . Eqn. (5.26) has to be changed to

(AGaI
(kll)) * A(ä

I+GII)
(kll)w(v, kll) uGll , «(kll' z) u(Gll,p+G~I)(k ll , z)

Where the z-dependent functions have to be setup according to (5.51), taking into
account the extra contribution to the kinetic energy.

In the muffin-tin spheres the only change are the different boundary conditions,
i.e . the changed A and B-coefficients, since we do not need to work with p in the

spheres as pointed out in the previous section .

In a spin-spiral calculation the task of the potential generation involves determining

V from p. Starting from eqn. 5 .30 and 5.31 the corresponding equations for p and

V are obtained by multiplying with U(q - r, 0, 0) and Ut (q - r, 0, 0) from the right

and from the left respectively. As a result we find that p and V are diagonalized by

U(cp(r), ?9(r), 0), where ~p is given by cp(r) = cp(r) - q - r . Thus, exactly the same

scheme that is illustrated in Fig. 5.2 can be used in a spin-spiral calculation, with the

only change that the quantities p, V and cp have to be replaced by their counterparts

p, V and cp .

In order to test the spin-spiral implementation we have performed calculations on

the ,y-Fe (fcc Fe) system . y-Fe has been extensively studied for many years . One of

the reasons for the large experimental and theoretical attention this system attracted

are the Invar properties of alloys based on ,y-Fe . This interest has been renewed

by neutron diffraction experiments by Tsunoda [Tsu89], who found that the ground
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state of ,y-Fe most likely consist of a non-collinear, spiral magnetic structure. This
discovery stimulated many non-collinear ab-initio investigations by different authors
[MLSG91, CBL91, MLSG92, USK92, USK94, MFL96, KE96] . The large amount of
ab-initio data on -y-Fe spin-spirals make this an ideal test system for a spin-spiral
implementation .

We have used the experimental Cu lattice constant of 6.82 a.u., since the -Y-Fe has
been found for Fe in a Cu matrix . Our k-point set corresponds to 1120 k-points in the
full three-dimensional Brillouin zone . Our unit cell contains two atoms and we have
performed the calculation with two different plane wave cutoffs, KmQ.. = 4 .0 a.u . -1
and 4 .4 a.u . -1 corresponding to 85 and 115 basis functions per atom, respectively.
The calculated total energies and magnetic moments for spin-spirals with q-vectors
on the line I'-X are shown in Fig . 5.7. A spin-spiral with a q-vector at X corresponds
to a layered antiferromagnetic configuration . The results agree with those of previous
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Figure 5.7: Total energy and magnetic moment as a function of the spin-spiral vector q . The plot shows results of the two different implementationsof the spin-spirals as discussed at the beginning of Sec . 5 .5, i) cutoff enforcedaccording to IG + kj G K,y,, a,x (open symbols), ii) IG + k :F q/21 <_ Km,,, (solidsymbols) . The solid square represents the energy of the layered antiferromag-netic solution calculation carried out with the collinear program .

calculations . We find the minimal energy for a q-vector of about q

	

0.55X. Theminimal q-vector, the shape of the energy curve and, in particular, the magneticmoment of 'Y-Fe varies strongly with the lattice parameter . Uhl et al . [USK92] found alow-spin ferromagnetic solution for Wigner-Seitz radii of 2.66 a.u . (a = 6 .81 a.u.) and
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smaller, using a spin-spiral method. For Wigner-Seitz radii of 2.67 a.u . (a = 6 .83 a.u.)
and larger they found a high-spin solution . The magnetic moments were about 0.6 /-LB
for the low- and 2.5 /-LB for the high-spin state. Other authors [MLSG92] report a
ferromagnetic moment of about 0.9 AB at a Wigner-Seitz radius of Ryes = 2.66 a.u .
We have found a moment of 1.3 AB, which lies within that range.

As I have explained at the beginning of Sec. 5 .5 we have tested two slightly
different implementations of the spin-spirals, that use different cutoff conditions for
the basis functions : i) IG+kI _< Kmd, and ii) IG+kzFq/21 < Kmax. Fig. 5.7 presents
results for both implementations . Implementation i) is expected to yield less accurate
energies, they are generally too large for large q. This can very clearly be seen from
Fig. 5 .7 . Even for the larger cutoff of 4.4 a.u.-1 implementation i) deviates from
implementation ii) . In particular, implementation i) gives larger total energies. The
accuracy of this improved implementation can be appreciated from the fact that the
result for a q-vector of q = X coincides with that of a collinear antiferromagnetic
calculation (solid square at the right-hand side of the plot) . To achieve the same
accuracy with implementation i) it would be necessary to go to even higher plane
wave cutoffs . However, increasing Kma. from 4 .0 a.u .-i to 4.4 a.u .-1 already means
to use 115 basis functions per atom rather than 85, which makes the calculation much
more time consuming, since the effort of setting up and diagonalizing the matrix scales
with the number of basis functions to the third power.
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Chapter 6

Magnetism of 3d-monolayers on
Cu and Ag (111)

In the frontier field of nano-magnetism understanding the effect of frustration on
the magnetic properties is one of the current key issues . Exchange bias [NS99], for
example, is a technologically important effect for the magnetic recording industry
and the magnetoelectronics, for which frustration plays an important role . In mag-
netic systems the term frustration refers to the inability to satisfy the competing
exchange interactions to neighboring atoms . Frustration is known to be responsible
for a number of diverse phenomena such as spin-glass behavior, non-collinear and
incommensurate magnetic order and unusual critical properties . Frustration is very
common in low dimensional systems like for example small (antiferro-) magnetic clus-
ter in the gas phase [IA99], deposited on surfaces [UUD99] or included in biological
molecules. A further example are step edges at interfaces between a ferromagnet
and an antiferromagnet, e.g. Fe and Cr [SG93, SG95, VSDD95, BF97, BHB+98] .
But magnetic frustration also appears in the bulk phase, e.g. in the alloys of FeMn
[KHSW88a, KK63, EI71], RhMn3 [KK65, KKPS67] and PtMn3 [KKP+68]. One
of the most evident examples of frustration is the so-called geometric frustration
of an antiferromagnet on a triangular lattice. In fact, triangular antiferromagnets
can be crystallized e.g. in form of stacked antiferromagnets . Typical compounds are
RbNiC13 , VC12 , or CuCr02 [Kaw98, CP97] and they are localized spin systems. The

magnetic properties of these triangular antiferromagnets are almost exclusively de-

scribed within the framework of model Hamiltonians the simplest of which is the

classical Heisenberg model.
Another physical realization of antiferromagnetism on the triangular lattice are

antiferromagnetic monolayers grown on the (0001) surface of an hcp crystal or the

(111) surface of an fcc crystal of a non-magnetic or ferromagnetic substrate. In the

recent years the epitaxial growth of such ultra-thin films has been studied intensively

by various experimental techniques . In particular, Mn films on the (111) surface of

fcc Pd [TLW+92], Ir [AFM+96], Cu [TBJ92, GW97, GWH+98] and MgO [GSFW99]

and on the (0001) surface of Ru [AHP+87] and Co [OVH+94] have been prepared and

95
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analyzed . But also other ultra-thin hexagonal films, e.g . Cr and V on Pt (111) and
Ru (0001) [ZKD97, APW+98, SG99], have been investigated . A triangular lattice
can also be provided by pseudo-hexagonal growth on non-hexagonal substrates as for
example by the c(8 x 2) reconstruction of Mn on Cu(001) [FHW92] .

During the recent years, a particular interest has developed in 3d transition
metal films on noble metal substrates . They represent very interesting physical sys-
tems, both experimentally and theoretically [FPB+90, Sie92, LF85, FFOW85, Ter87,
BDZD89, FW91, WB93, B1ä95] . Due to filled d-bands of the noble metals the 3d-
3d hybridization between the overlayer and the substrate is small, which leads to a
narrowing of the d-bands in the monolayer compared to the bulk transition-metals .
As a consequence, magnetism is enhanced and the magnetic moments become larger
(cf. Fig. 6.2 top panel) . Moreover, there is a possibility of new magnetic materials,
which are non-magnetic as bulk metals and may become magnetic in low dimensions,
e.g . V.

So far most of the work has been done on overlayers grown on the (100) ori-
ented substrates, where the atoms of the monolayer are arranged on a square lattice.
In these monolayers, there is a competition between two magnetic configurations,
the p(1 x 1) ferromagnetic (Fig . 6.1 a) and the c(2 x 2) antiferromagnetic phase
(Fig . 6 .1 b) . The energy difference between the two magnetic configuration has been

Figure 6.1: Competing magnetic configurations on the fcc (001) surface. a)the p(1 x 1) ferromagnetic phase; b) the c(2 x 2) antiferromagnetic phase.(Figure taken from [AB98])

calculated on different (001) oriented substrates [BWD88, BD89, Blii96] . The re-sults of these calculations for the Cu (001) and the Ag (001) substrate are shown inFig. 6.2 (lower panel) . It turns out, that the early transition-metals, V, Cr and Mn,were predicted to order c(2 x 2) antiferromagnetically, while Fe, Co and Ni prefer thep(1 x 1) ferromagnetic configuration . Currently, huge experimental efforts are beingundertaken to spatially determine the microscopic structure of the antiferromagneticthin film [SSL+00] . Very recently, it has been shown that it is possible to image themagnetism of antiferromagnetic thin films using the spin-polarized scanning tunnel
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Figure 6.2 : Magnetic moments (for the ferromagnetic configuration, top

panel) and total energy difference per 3d atom between the p(1 x 1) ferromag-

netic and the c(2 x 2) antiferromagnetic phase (lower panel) for 3d transition

metal monolayers on Cu and Ag(100) . A negative energy difference means,

that the antiferromagnetic configuration is more stable than the ferromagnetic

one . (Figure taken from [Blii96])
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microscope (STM) on the atomic scale [HBK+00] . With this technique it is pos-

sible to distinguish atoms with different spin orientations in an antiferromagnetic

surface . For the example of a mono-atomic layer of Mn on the W (110) surface, these

experiments verify the theoretical predictions .
Not only the magnetic, but also the structural ground states of 3d monolayers

on noble metal substrates have been investigated . The stability of Mn/Cu(001) films
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against clustering and interdiffusion and in particular the formation of Mn/Cu surface
alloys has been investigated [B1ä96] . In a series of experimental investigations Wuttig
et al . have studied such alloys formed after deposition of Mn on Cu(001) [FHW92,
WT93, WFF95] . Several recent experiments confirmed the formation of these surface
alloys as well as the formation of large magnetic moments [OZT93, OT94, HPW95,
SRCE96, RGC+97] . But the interest is not limited to the Mn/Cu system : In search
of an understanding of the correlation between volume, magnetism and surface alloy
formation, Mn deposited on Pd(100) [TLJ90] and Ag(100) [SKHG97, SKHG98] has
been investigated experimentally as well as theoretically [KKO+98, AB98] .

While 3d metal films grown on fcc (001) oriented noble metal surfaces are well
investigated both experimentally and theoretically, little theoretical work has been
done on (111) oriented substrate. Recently, Kriiger et al . [KTMA00] studied 3d
transition metal monolayers on Cu(111) and Ag(111) . Bihlmayer et al . investigated
the Mn/Cu(111) system [BKB00], concentrating on the stability of surface alloys and
mono-atomic films against interdiffusion and clustering in different magnetic config-
urations, including also non-collinear magnetic states . We have also investigated the
non-collinear magnetism of monolayers of Cr and Mn on Cu(111) [KBB00] . Spisäk
and Hafner [SHOO] investigated the magnetic structure of the same system. However,
they come to a different conclusion than we do.

In this chapter we present results of ab-initio calculations for monolayers of the
early 3d transition metals V, Cr, Mn and Fe on the Cu(111) and the Ag(111) surface,
with the aim to find the magnetic ground state configuration, taking into account
collinear, non-collinear and also incommensurate magnetic structures . Until now,
there have been hardly any investigations of two-dimensional antiferromagnets on a
triangular lattice beyond model Hamiltonians . In contrast to the stacked triangular
antiferromagnets, like RbNiC13 , VC12 , or CuCr02 , which are localized spin systems, in
itinerant magnets, the electrons that are responsible for the formation of the magnetic
state do participate in the formation of the Fermi-surface and hop across the lattice.
Thus, it is by no means clear how far a short-ranged n.n. interaction or even how far
the Heisenberg model can go in giving a sufficiently good description of the physicsof itinerant magnets on a triangular lattice .

Since non-collinear calculations are computationally extremely demanding, westarted our study using unsupported monolayers as model systems for the monolayerson the substrate. Because of the small 3d-3d hybridization between the overlayersand the substrate, neglecting the substrate is a reasonable approximation. Hence, theUMLs represent a good starting point to investigate the magnetism of the monolayersystems. In Sec . 6 .1 we investigate the change of the total energy and the magneticmoment upon the rotation of the local moment in real space in different magneticunit cells. We find surprising results, which cannot be explained in terms of thenearest neighbor Heisenberg model. Therefore, in Sec . 6.2 we present a comprehensivestudy the Heisenberg model on the triangular lattice beyond the nearest neighborinteraction . We develop a T = 0 phase diagram of possible spin-structures anddiscuss also the relevant higher order spin interactions . In the light of these results
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we investigate in Sec . 6 .3 the magnetism of unsupported monolayers, but this time
in reciprocal space in terms of spin-spirals for spin-spiral q-vectors along the high
symmetry lines in the two-dimensional Brillouin zone . Particular multiple spin-wave
states have been taken into consideration . The accuracy of our results with respect to
the computational parameters is discussed in detail . From the results of Sec. 6.1 and
Sec. 6.3 exchange parameters are estimated in Sec. 6.4 and the results are classified
and discussed on the basis of these parameters. From this discussion we conclude
the existence of spin-spiral ground states for MnFe alloy films. Results of 3d metal
monolayers on actual Cu(111) and Ag(111) substrates including test of the accuracy
are presented and discussed in Sec. 6.5 . In Sec. 6.6 we suggest spin-polarized scanning
tunneling microscopy experiments to unravel the complex spin structures with fully
compensated magnetic moments in the unit cell of chemically identical atoms.

6.1 Unsupported monolayers : Rotation in real
space

We have performed self-consistent calculations of hexagonal unsupported monolayers
(UMLs) of 3d transition metals . These UMLs have the same geometry as monolayers
(MLs) on an (111) oriented fcc substrate and we used the lattice constant' of Cu and
Ag respectively. In order to find possible candidates for (non-collinear) ground state
configurations we investigate first the Heisenberg model. Localized spin systems are
well described by restricting the magnetic exchange interaction to nearest neighbors
(n.n.) . In this approximation the minimum energy configuration of a material with
antiferromagnetic exchange in this geometry is a two-dimensional non-collinear struc-
ture, where the moments of the individual atoms are aligned at 120° with respect to
each other (cf. Sec. 6.2) . This state is called the Neel state and is shown in Fig. 6.3 b.
The unit cell of the Neel state contains three atoms and is of (V3_ x ß)R30° struc-
ture (Fig . 6 .3 d) . Each atom forms a sublattice on which the magnetic moments
are ferromagnetically aligned. It has the same shape as the p(1 x 1) unit cell of the
ferromagnetic (FM) state, but it is rotated by 30° and the lattice constant is by a

factor of V3_ larger . In addition we considered a collinear row-wise antiferromagnetic

(RW-AFM) structure, which is shown in Fig. 6 .3 a. The unit cell of this magnetic con-

figuration (Fig . 6 .3 c) contains two atoms. We change the angle of the local moments
in small steps on continuous paths connecting the high symmetry states in both unit

cells . In the unit cell with two atoms we rotated one atom from the FM state to the

RW-AFM state according to Fig. 6 .3 c. In the unit cell containing three atoms we

rotated two atoms by the same angle a but in opposite directions . Thus, starting

from the FM state the moments are rotated towards the Neel structure (a = 120°)

and finally into a collinear ferromagnetic (FI) state (a = 180°) . The latter state has

a net magnetic moment, since two atoms have parallel moments and only one atom

points into the opposite direction .
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Figure 6.3 : (a) The row-wise antiferromagnetic structure (RW-AFM) . (b)
The non-collinear Neel state . The ferromagnetic structure can be transformed
by a continuous rotation into structure (a) via path (c) and into structure (b)
via path (d) . Since the calculations have been performed within the scalar-
relativistic approximation, which neglects spin-orbit coupling, the direction of
the magnetic moments with respect to the lattice is undetermined . They are
are drawn in plane only for better illustration.

6 .1 .1

	

Computational details
We performed self-consistent constrained local moment (CLM, cf. Sec. 4.1 and 5.4)calculations in the local density approximation (LDA) applying the parameteriza-tion according to Moruzzi, Janak and Williams [MJW78] . We chose the theoreticalCu and Ag lattice constants, ac. = 6.65 a.u . and aAS = 7.79 a.u . [MJW78] . Theplanewave cutoff for the basis functions was set to Kmax = 3.7 a.u . -1 for the UMLswith Cu(111) geometry and KmQx = 3.3 a.u .-1 for the UMLs with Ag(111) geometry.This corresponds to about 110 and 125 basis functions per atom for Cu(111) andAg(111), respectively. The charge density and the potential were expanded up toa cutoff Gmax = 9.0 a.u . -1 in both cases. The muffin-tin radii of the 3d transitionmetals was chosen as RMT = 2.35 a.u . and RMT = 2.75 a.u . for Cu and Ag, respec-tively. The wave functions as well as the density and the potential were expanded upto lmax = 8 inside the muffin-tin spheres . For the unit cell with two atoms we used135 k-points in the irreducible wedge of the two-dimensional Brillouin zone (IBZ)corresponding to 540 k-points in the full two-dimensional Brillouin zone . In the unit
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cell containing three atoms we used 70 k-points in the IBZ corresponding to 361 k-
points in full Brillouin zone . Both k-point set correspond to slightly more than 1000
k-points in the p(1 x 1) unit cell . With these k-point sets it is guaranteed that the
total energies of different unit cells are absolutely converged and directly comparable .

6.1 .2

	

Results for the real-space rotation
The moments and the total energy of the UMLs on Cu(111) are presented in Fig. 6.5 .
It can be seen that the magnetic moments of Cr, Mn and Fe are very large (cf. also
Tab. 6.1) . Due to the symmetry the size of the local moments of two atoms is equal for

Table 6.1: Magnetic moment of different magnetic states inside the muffin-tin
spheres for the UMLs Cu(111).

all angles along the rotation path according to Fig. 6.3 c. Similarly, during the second
rotation (Fig . 6.3 d), the size of the two outer atoms (down-triangles) that are rotated
is equal, but is generally different from the size of the third atom at the center of
the unit cell (up-triangles) . Only in the FM state and the Neel state, where all three
atoms are equivalent, all moments have the same size . Mn shows the largest moment
in agreement with Hund's first rule . This effect is well known from the work of the past
years. The moments calculated for the UMLs are in reasonable agreement with our
results including the substrate and also with earlier results of monolayers on the (001)
surface [Blii96], even though the substrate has been neglected here . This shows the

influence of the substrate on the size of the moments is not severe, since the magnetic

moments are already close to saturation . It should be noted that care is needed

when comparing the moments with other results, in particular comparing FLAPW

results with other methods . Unless stated otherwise, all local moments presented

in this work are moments inside the muffin-tin sphere . Hence, these moments are

always slightly smaller than the total moments per atom, since the contributions

from the interstitial region and the vacuum region are missing. As a consequence,

the moments calculated with the FLAPW method always depend on the choice of

the muffin-tin radii. To clarify the size of this difference, we present in Tab. 6.2 a

comparison between the muffin-tin moments and the total moments per atom for Mn

and Fe in the FM state. The comparison reveals that the difference between the total

moment and the muffin-tin moment depends strongly on the chemical element. For

Mn this difference is about 10%, while it is less than 2% for Fe. This is explained by

the different localization of the 3d wave functions. The localization decreases with

decreasing nuclear number, which reduces the ratio of d-charge inside the muffin-tin

UML Cr Mn Fe
FM - 3.06 I-LB 2.75 MB
RW-AFM 2.62 MB 3.08 fLB 2.58 IIB

Neel 2 .58 liB 3.06 MB 2.54 MB
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Figure 6 .4 : The total energy and magnetic moments of UMLs with Cu(111)geometry as function of the angle of the local moment . Shown are the cal-culated total energies relative to the respective ferromagnetic energies (cir-cles, left scale) and the magnetic moments (triangles, right scale) . Generally,the moments of the center atom (up-triangles) and the outer atoms (down-triangles) differ in the unit cell containing three atoms.

sphere, and thus the ratio of the magnetic moment, which is mainly produced by thed-electrons . We expect the same effect for other magnetic configurations . However, inthe antiferromagnetic and non-collinear configurations the contributions of differentatoms to the interstitial magnetization cancel partly or completely (RW-AFM Neel) .Thus, the total magnetic moment has to be estimated from the muffin-tin moment.
Coming back to Fig . 6.4, consider first Cr. In contrast to Mn and Fe the local
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Table 6 .2 : Comparison between the magnetic moments inside the muffin-tin
sphere (MT) and the total magnetic moment per atom in the FM state for
the UML Cu(111) .

103

moment of Cr depends very strongly on the angle . In fact, a ferromagnetic solution
does not exist. Starting from the row-wise antiferromagnetic solution (upper left
panel, a = 180°) and rotating towards the ferromagnetic structure the magnetic
moment decreases rapidly and finally disappears at a N 80° . Although the moment
changes drastically, the energy shows a cosine-like behavior in the region where a
magnetic solution exists, as the nearest neighbor (n.n.) Heisenberg model predicts
for an antiferromagnet . The total energy along the rotation path in the unit cell of

Fig . 6.3 d (upper right panel of Fig. 6.4) reveals a pronounced minimum at 120° .
This minimum and the shape of the energy curve matches the expectation from the

n.n . Heisenberg model with antiferromagnetic exchange interaction very well. It is

clearly visible that the 120° configuration is the lowest energy configuration among

all configurations studied here. Thus, for Cr(111) UML the Neel state is the magnetic

ground state predicted by the present investigation .

Now turning to Mn and comparing the results in the two-atom unit-cell (center

left panel of Fig. 6.4) with those of Cr we found that the behavior of Mn and Cr is

similar, i .e . the energy curve is also cosine-like and Mn prefers to be antiferromagnetic .

However, in contrast to Cr the ferromagnetic state exists and the magnetic moments

change only within a narrow range, (2 .9 I-tB - 3.05 1ciB), of the rotation. However,

the result of the rotation in the three-atom unit-cell is unexpected. The dependence

of the energy on the rotation angle E(a) reveals two surprises : First, the lowest

energy configuration among all magnetic structures investigated so far, is the row-

wise antiferromagnetic configuration. Secondly, the total energy of the Mn system

with 3 atoms per unit cell does not exhibit a minimum at 120°, as predicted by the

n .n . Heisenberg model, but a local maximum instead. Both results are clearly in

disagreement with the n.n . Heisenberg model.

Fe behaves completely different from Cr and Mn. Obviously, the FM state has the

lowest energy. Along the rotation path according to Fig . 6.3 c (lower left panel) E(a)
has a cosine-like shape, but the energy increases from the ferromagnetic configuration

to the antiferromagnetic one . Also the result for the second rotation (lower right

panel) is in agreement with the n.n. Heisenberg model with ferromagnetic coupling.

E (a) has the form of the mirror image of the energy of Cr (where a magnetic solution

exists) : at 120° the energy goes through a maximum. During the rotation the local

moments vary in a range from 2.3 11B to 2.7 ,LB-

The
results for the unsupported monolayers with the Ag lattice constant are

UML Mn Fe
MT
total

3 .06 AB
3 .40 AB

2.75 AB
2.80 I-tB
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presented in Fig. 6.5 . The local moments we found are even larger than those of
the UMLs with Cu(111) geometry (cf. also Tab. 6.3) . Cr, which does not have a

Table 6.3: Magnetic moment of different magnetic states inside the muffin-tin
spheres for the UMLs Ag(111).

ferromagnetic solution on the Cu lattice constant, has a ferromagnetic solution at
the Ag lattice constant . Even V, for which we did not find any magnetic solution
in the Cu(111) geometry, becomes magnetic in the Ag(111) geometry. The reason
for this is the larger lattice constant of Ag, which leads to weaker d-d hybridization,
and thus to a further narrowing of the d-bands. The moments of Mn and Fe are in
reasonable agreement with the results including the substrate. However, Cr and V are
more sensitive to their local environment. In particular, the effect of the substrate
on V is very strong. The moment of the V UML is much larger than that of the
ML on the Ag(111) substrate (cf. tab. 6.12) . A comparison between the muffin-tin
moments and the total moment (Tab. 6.4) of the ferromagnetic UMLs reveals two
trends . First, considering Mn and Fe, we found that the difference between the

Table 6 .4 : Comparison between the magnetic moments inside the muffin-tin
(MT) and the total magnetic moment per atom in the FM state.

total and the muffin-tin moment is less than 6% for Mn and less than 0.5% for Fe.
This difference is smaller than what we found on the Cu lattice constant . This isprobably due to the larger muffin-tin radius we used on the Ag lattice constant . A
larger fraction of the d-wave functions is inside the muffin-tin sphere, and thus thepolarization is the interstitial region is smaller. Secondly, the further we move to theright in the transition metal series, i.e . from V to Fe, the more the magnetization isconfined inside the muffin-tins. The reason is that with increasing nuclear numberthe d-wave functions become more localized, in fact the whole atom shrinks .Coming back to Fig. 6.5, the result of the V/Ag calculation is quite unexpected.In both unit cells the shape of E(a) is very unlike the other materials. In the two-atom unit-cell the energy shows a maximum around 60° and also in the three-atomunit-cell a tendency towards a local maximum around 40° is visible. The shape of the

UML V Cr Mn Fe
FM 2.78 MB 4.15 /IB 4.19 pB 3.18 PB
RW-AFM 2.63 MB 4.09 PB 4.17 AB 3.23 MB
Neel 2 .56 MB 4.00 IIB 4.22 AB 3.24 PB

UML V Cr Mn Fe
MT 2.78 PB 4.15 IUB 4.19 MB 3.18 btB
total 3.32 MB 4.61 IIB 4.44 ,uB 3.19
% 83.7 90 .0 94.4 99.6

MB .
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Figure 6 .5 : The total energy of UMLs with Ag(111) geometry as function of

the angle of the local moment. Shown are the calculated total energy relative

to the ferromagnetic energy (circles) and the magnetic moments (triangles) .

Generally, the moments of the center atom (up-triangles) and the outer atoms

(down-triangles) differ in the unit cell with three atoms.
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energy curve in the two-atom unit-cell can be reproduced by a superposition of a cos a
and a cos 2a term. However, a cos 2a term cannot be provided by the Heisenberg
model. Only higher order contributions beyond the Heisenberg model can explain
this behavior .

Apart from the fact, that the Cr moment is larger than on the Cu lattice constant
and varies only in a range from 4.0 AB to 4.2 I-LB, the result for the Cr UML with
Ag(111) geometry is very similar to that with Cu(111) geometry in the region of
angles, where a magnetic solutions exists on the Cu lattice constant . E(a) has
a cosine-like shape in the two-atom unit-cell and also in the three-atom unit-cell .
E(a) is in good agreement with the n.n . Heisenberg model, showing a pronounced
minimum at 120° . As on the Cu lattice constant, the Neel state is the lowest energy
configuration . The only qualitative difference to the result of the Cr/Cu(111) UML
is that in the case of Cr/Cu(111) the FI state has a lower energy than the RW-AFM
state, while for Ag/Cu(111) the energy of the FI state is slightly higher .

For the Mn UML with Ag(111) geometry we found that the moments hardly
change with the rotation (4.18 PB - 4 .24 ILB) . Also for Mn the result for Ag(111)
UML is in qualitative agreement with the Cu(111) UML . However, the total energy
difference between FM and RW-AFM is about a factor of three smaller than for
the UML Mn/Cu(111), while the energy differences between the Neel state, the FI
state and the RW-AFM state are only reduced by 30 - 40%. Again, the result is
in disagreement with the n.n . Heisenberg model, since the RW-AFM state has the
lowest total energy and E(a) has a local maximum at 120° when the moments are
rotated in the unit cell with three atoms.

In line with the findings for the other UMLs on the Ag lattice constant the mag-
netic moments of Fe vary only within a small range (3.17 AB - 3 .34 ILB) . The behavior
of the total energy, E(a), is extremely similar to the result of the Fe UML with the
Cu(111) lattice constant .

In summary, we found that the behavior of the UMLs of Cr and Fe on both, the
Cu and the Ag lattice constant, can be understood in terms of the nearest neigh-
bor Heisenberg model with an antiferromagnetic and ferromagnetic nearest-neighbor
exchange constant, respectively. However, the result of the Mn UMLs is in clear dis-
agreement with this widely used model . Though Mn prefers to be antiferromagnetic,
we do not find a minimum of the energy for the Neel state, but instead the row-wise
antiferromagnetic configuration has the lowest energy on both lattice constants . In
particular, the shape of the energy curve in the three atom unit cell, E(a), cannot be
explained within the Heisenberg model, even if terms beyond the nearest-neighbor
interaction are included . Considering a magnetic configuration characterized by anangle a in the three-atom unit cell on the path according to Fig . 6.3 d, it is obvious
that the moments of any pair of atoms in the monolayer span an angle of either a or2a. Hence, irrespective of how many neighbors are included in the Heisenberg model,the functional dependence of the energy on the angle contains only terms proportionalto cos a or cos 2a. However, to reproduce the shape of E(a) for Mn is is necessaryto include at least a term proportional to cos 3a, which cannot be derived from the



6.2 Model Hamiltonians: Heisenberg model and beyond

Heisenberg model. Thus, higher order interactions, that go beyond the Heisenberg
model, like the 4-spin interaction, have to be taken into account to explain the Mn
result .

6 .2 Model Hamiltonians : Heisenberg model and
beyond

In the past magnetic properties of antiferromagnets on the triangular lattice have
almost exclusively been discussed within the framework of model Hamiltonians, e.g .
[Wan50] . A very active research field is taking the quantum nature of the spin into
account, in particular within the framework of the Heisenberg model [LJNL86, CP97,
Kaw98, CTS99, CCT+99] . Since we are investigating 3d-metals, which are itinerant
magnets, on the triangular lattice, it is not a priori clear in how far the Heisenberg
model can give a good description of these systems . To investigate this point we start
with the classical Heisenberg Hamiltonian

H =E -Jij Si - Sj ,

	

(6 .1)
i, j

where the double sum is over all (magnetic) atoms in the system. We consider the
spins localized on the lattice sites as classical vectors, using the assumption that the
spins on all lattice sites have the same magnitude S:

SZ = S2, for all i .

	

(6 .2)

In a second step we include higher order corrections and investigate whether the
resulting model can account for the results of the ab-initio calculations .

6.2 .1

	

The Heisenberg model on a Bravais lattice

Since we investigate the magnetism on a periodic lattice it is very convenient to
express the quantities in terms of their Fourier components . We assume periodic

boundary conditions . The number of lattice sites in the crystal will be denoted N.

Thus, the spins on lattice sites can be written in terms of their discrete Fourier

components by: igRi

	

(6.3)Si =

	

Sq e

	

,
q

where the sum is over the reciprocal lattice vectors q and Ri is the real-space coor-

dinate of lattice site i. The inverse Fourier transform is given by:

1 igRiSq _=-.
N
E Si e_

	

.
i
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(6.4)

Since the spins Si are real quantities we can immediately conclude from Eqn. (6.4)

that the Fourier components of the spins fulfill the relation
S _ S* .	(6 .5)
q -	q
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Replacing the localized spin Si by their Fourier components in the Heisenberg Hamil-
tonian, Eqn. (6.1), yields

H =

	

E -Jz. . ~Sq " Sqr e igR i ei q'R~
~
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qq'
_

	

- Jij

	

Sq - Sq/ ei(q+q')Ri eiq'(Rj -Ri)
ij qq'

_

	

-NE Sq - S-q

	

J06 e-igRa
q

	

6

Here, the fact that the relation Ei ez(q+q')Ri = NJq,_gt holds for a sum over all lattice
sites and the definition R6 = Rj - R i have been used . The Fourier transform of the
exchange constants are defined by :

J(q) _

	

Jo6 e-igR6 = J(- q) = J(q)* .

	

(6.7)
6

They are real quantities . Here it has been used that Job = Jo_6, which is a conse-
quence of the translational symmetry and the fact that the interaction is symmetric,
Jib = J9i . With J(q) the Hamiltonian can be written in the simple form

H = -NY: J(q) Sq ' S_q.

	

(6.8)
q

In order to find the magnetic ground state, the energy (6.8) has to be minimized under
the condition (6.2) . This equation represents a system of N independent equations,
which is equivalent to a system of N equations for the Fourier components of the
spins:

q

(6 .6)

Clearly, the solutions are such that all Sq vanish, except for SQ and S_Q , where ±Q
are the values of q that maximize J(q) . The lowest energy is then given by

E = -NS2 J(Q) .

	

(6.l1)

In order to recover the spin structure that corresponds to SQ and S_Q we introducethe real and imaginary part of SQ , RQ and IQ , to express SQ as

Sq " S_q = S2
(6.9)

q
E Sq . Sgl_q = 0, « :/Z 0. (6.10)

SQ = RQ + iIQ , S_Q =RQ - iIQ . (6 .l2)

From the condition (6.9) and (6.10) we obtain

SQ - S_Q = RQ +1q = S2 (6 .13)
SQ ' SQ = RQ - IQ + 2iRQ - IQ = 0 . (6 .14)
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The second equation shows that RQ and IQ are perpendicular and have the same
magnitude. Thus, we finally obtain
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Hence, the fundamental solutions of the Heisenberg model on a Bravais lattice are
helical spin structures . Since no spin-orbit terms are included in the Hamiltonian,
we can assume the plane spanned by the two vectors Rq and IQ to be the xy-plane .
With that choice, the spins of the helix rotate around the z-axis in the xy-plane as
one moves from lattice plane to lattice plane in the direction of Q. This helical spin
structure can be easily identified as a special case of what we have introduced as spin-
spirals in Sec. 4.2 . It is a special case, because the angle between the rotation axis
and the magnetic moment, 9, is always 90° . It should be mentioned that for crystal
structures having more than two magnetic atoms per unit cell, it is difficult to give
a general prescription how to determine the spin structure . A good introduction to
the Heisenberg model can be found in the textbook by Yosida [Yos96] .

In order to find magnetic structures that are possible candidates for the ground
state we have to search the Brillouin zone of the two-dimensional hexagonal lattice
for the vector Q that maximizes J(Q) .

6.2 .2

	

The Heisenberg model on the 2D hexagonal lattice

Before we start to search the Brillouin zone of the triangular lattice for the q-vectors
that minimize the Heisenberg Hamiltonian, it is helpful to briefly review the geometry
of the two-dimensional triangular (hexagonal) lattice . Fig. 6 .6 contains an image of

both, the real-space (a) and the reciprocal lattice (b) . In the figure the primitive

vectors of the lattice al and a2 as well as the primitive vectors of the reciprocal
lattice bi and b2 are indicated. There are two options to choose the primitive vectors

either with an angle of 60° or 120° between the two vectors . Here, we have chosen

the first option . As a consequence, the primitive vectors of the reciprocal lattice span

an angle of 1200 . According to the coordinate frames shown in Fig. 6.6 the primitive

vectors of the (reciprocal) lattice are given in terms of cartesian coordinates by

a1 = a(1, 0),

	

a2 = a(2,

	

2)a, = a(l, 0),

	

a2 - a 2 1

	

2 OJ=21r(0
)2 - a

	

73
(6 .17)

where a is the lattice constant, which is equal to the nearest-neighbor distance . The

figure also contains the Wigner Seitz cell (real space) and the two-dimensional Bril-

louin zone (reciprocal space) . The irreducible part of the Brillouin zone (IBZ) is

marked in gray. The corner points of the IBZ are the high symmetry points I', K

RQ = IQ = S2/2 (6 .15)
RQ . IQ = 0

Substituting this into Eqn. (6.3) yields the spins on the lattice sites:

SZ = 2(RQcos (Q - Ri) - Iq sin (Q - Ri) ) . (f .16)
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a)

r
X

Figure 6.6: (a) The two-dimensional hexagonal Bravais lattice . a7, and a2
are the primitive vectors that span the lattice . The sketch also contains the
Wigner Seitz cell . (b) The corresponding reciprocal lattice . bl and b2 are the
primitive vectors of the reciprocal lattice . The black hexagon shows the first
Brillouin zone . The irreducible wedge is marked in gray. The IBZ is limited
by the high symmetry lines connecting the symmetry points I', K and M.

and M. In the Brillouin zone we find six M-points on the centers of the sides of the
zone boundary and six K-points at the corners of the zone boundary. However, someof these points are separated by reciprocal lattice vectors . Hence, they do not give
rise to distinct spin structures . The cartesian coordinates of the symmetry points are
given in Tab . 6 .5 .

From this knowledge of the two-dimensional Brillouin zone of the triangular latticeit is possible to construct the magnetic states that correspond to high symmetrypoints. Let us begin with the most simple case, the I'-point . This point alwayscorresponds to the ferromagnetic solution .

	

Since the vector Q is (0, 0) we obtainfrom Eqn. (6 .16) that the spins on all lattice sites are given by Si = 2RQ , i .e . allspins have the same direction . The direction of the spin RQ with respect to thelattice remains undetermined, because no spin-orbit term is included in the model .At the K-point we choose for example Q = 2ä (2/3, 0), -Q =

	

2ä (-2/3, 0) .This leads to three distinct kinds of lattice sites, e.g . a(1, 0), a(2, 0) and a(3, 0) .For these atoms the spins are given by Si	= 2(RQ cos(47r/3) - IQ sin(47r/3)),S2 = 2(RQ cos(87r/3) - IQ sin(87r/3)) and S3 = 2(RQ cos(12,7r/3) - IQ sin(121r/3)),respectively. The relative angle between the spins on the different sites is always120° . Hence, the magnetic structure that corresponds to the K-point is the 120° Neelstate. As in the ferromagnetic case, the direction of RQ and IQ is not determined,only the condition (6 .15) has to be satisfied .
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Table 6 .5 : The high symmetry points of the two-dimensional hexagonal lat-
tice and the cartesian coordinates in units of 2a . Points which are separated
by reciprocal lattice vectors are grouped together in one line .

At the M-point the situation is more involved, since there are three pairs of Q-
vectors that give rise to three distinct spin structures . The general solution can be
a linear combination of the three Q-vectors, which satisfies the conditions (6.9) and
(6.10) . In the case of the K-point there are also two sets of Q-vectors, but they do
not give rise to seperate solutions, because the condition (6 .5) has to be fulfilled and
q and -q are in different sets . To construct the magnetic structure we have the three
Q-vectors Q,, = 2

a'(07 1 /~), Q2 = 2a and Qs = a(1/2, -1/(2A/3)) .
Qi and -Qi (i = 1 ) 2, 3) differ by a reciprocal lattice vector . Therefore, it follows
from Eqn. (6 .5) that the Sq; are real. At all lattice sites the product of Qi " R; is a
multiple of 7r . Hence, the exponential of iQi - Rj takes only the value ±1, and thus

the spin on lattice site j can be written

Sj = RQ,. e'Q1*R' +RQ26iQ2'R' +RQ3eiQ3'R' .

	

(6.l8)

From the conditions (6.9) and (6 .10) it follows that the RQ4 are mutually orthogonal

and that RQ1+R.2Q2 +R'2Q3 = S2. Choosing for example RQ, = S2 andRQZ = Rqa =

0 leads to a structure with two distinct lattice sites with spin ±RQ, . This is the row-

wise antiferromagnetic configuration as shown in Fig. 6 .3 a. When all three RQi

are non-zero we obtain a structure with four distinct lattice sites . Let us choose the

direction of the RQt along the axis of the spin-coordinate frame, RQ, = Ax, RQZ =

By and RQ3 = Cz . With this choice these lattice sites have a spin of (A, B, C),

(A, -B, -C), (-A, -B, C) and (-A, B) -C) respectively (A2 + B 2 + C2 = S2). A

particular highly symmetric state is obtained for the special case A = B = C= S/V13- .

This state, which is presented in Fig. 6.7, is called the triple-Q (3Q) state because of

the three Q-vectors involved . Similarly, the RW-AFM state is commonly referred to

as the single-Q (1Q) state . The triple-Q (3Q) state represents a three-dimensional

spin structure on the two-dimensional triangular lattice . The relative angle between

all nearest-neighbor spins is the tetrahedron angle of 109 .47°. For completeness we

would like to add that there is also a double-Q (2Q) state. This is a particular high

symmetry state similar to the 3Q state but constructed from only two vectors RQ;

symmetry point cart . coordinate (units of a )
I' (0, 0)
K (2/3, 0), (1/3, 1/ ,43), (1/3, -1/V3-)

(-2/3, 0), (-1/3, -1/v/-3-), (-1/3, 1/-,,/3-)
M (0, 1/~,F3), (0 ) -1/vf3-)

(1/2, 1/(2N~3_)), (-1/2, -1/(2v/-3))
(1/2, -1 2vlr3- , (-1/2, 1/(2v/-3-))
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Figure 6 .7 : The triple-Q (3Q) state represents a three-dimensional spin struc-
ture on the two-dimensional triangular lattice . It is energetically degenerate
with the RW-AFM state (Fig . 6.3 a) within the Heisenberg model . The rel-
ative angle between nearest-neighbor spins is the tetrahedron angle . The net
moment per unit cell is zero . This structure differs from that show at the be-
ginning of this thesis by a rigid rotation of all spins with respect to the lattice .
Hence, when spin-orbit coupling is neglected, the two structures are equal .

according to Eqn. (6.18) . With the direction of RQl as chosen for the 3Q state and
assuming without loss of generality that RQ3 = 0 we find that the 2Q structure
also four distinct lattice sites . But in difference to the 3Q state, the 2Q state is a
two-dimensional (coplanar) magnetic structure . The four lattice sites have spins of
(A, B, 0), (A, -B, 0), (-A, -B, 0) and (-A, B, 0), respectively, with A = B = S/V2- .The net moment per unit cell of the 1Q, 2Q and 3Q state is zero . Since, all threestates originate from the same Q-vectors, they are degenerate within the Heisenbergmodel. However, this degeneracy is lifted, when higher order interactions are takeninto account . As we will show below, they favor either the 1Q or the 3Q state .
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6.2 .3

	

Energetics of high symmetry states on the triangular
lattice within the Heisenberg model

In this section we discuss the energetics of the most important magnetic states on the
two-dimensional hexagonal lattice within the Heisenberg model up the third nearest-
neighbor interaction, i .e . including the exchange constants J1 , J2 and J3. As we have
seen in the previous sections the crucial quantity for the description of the energetics
within the Heisenberg model is the Fourier transform of the exchange constants J(q)
(cf . Eqn. (6.7)) . Expanding the vector q into the primitive vectors of the reciprocal
lattice, according to q = glbi + g2b2, J(q) is given by

J(q)

	

=

	

Jl 2 [COs (27r(gl + q2)) + cos (27r qi) + cos (27r q2)]

	

(6.19)

+

	

J2 2 cos (2?r(2gi - q2)) + cos (2,7r(gl + q2)) + cos (27r(-qi + 2q2))]

+

	

J3 2 cos (27r 2q1 ) + cos (27r 2q2) + cos (21r(-2qj + 2q2))] .

Expressed in cartesian coordinates this becomes

J(q)

	

=

	

Ji [2 cos (aq.) + 4 cos (a
2
qx) cos

(a2qy)
	(6 .20)

+

	

J2
L
4 cos

Ca
qx) cos (a

2qy)
+ 2 cos (a~qy)

+

	

J3
L
2 cos Ca2gx) + 4 cos (aqx) cos

(a
V3-qy) ] .

As we have said before the maximum of J(q) determines the minimum of E(q), and

thus, the ground state magnetic structure . Due to their symmetry, the high sym-

metry points in the Brillouin zone are either local extrema or saddle points of E(q) .

Hence, the magnetic states that correspond to the high symmetry points are very

likely candidates for the the magnetic ground state. Using Eqn. (6.19) or (6.20) the

energy of the magnetic states, that correspond to the three high symmetry points in

the Brillouin zone of the two-dimensional triangular lattice, discussed in the previous

section can directly be calculated from Eqn. (6.11) . The results are given in Tab . 6.6 .

From these results it can be seen that, if all exchange constants are positive or if the

mag. state

	

sym. p . I Heisenberg energy

FM

	

I'

	

-S2(64 + 6J2+ 6J3)

Neel

	

K

	

-S2(-3Jl + 6J2- 3J3)

RW-AFM, 3Q

	

M

	

-S2(-2Ji - 2J2 + 6J3 )

Table 6 .6 : The energy per atom within the Heisenberg model of magnetic

states that . originate from high symmetry Q-vectors in the Brillouin zone .

nearest-neighbor coupling is dominant and positive, the ground state of the Heisen-

berg model is ferromagnetic. On the other hand, if the interaction is dominated by a
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negative J1 , the Neel state has the lowest energy. In the nearest-neighbor approxima-
tion only these two solutions are possible . However, when exchange integrals beyond
Jl become important, other magnetic configurations, like the RW-AFM state, can
become the ground state of the system . But before we continue with this discussion
we need to include other relevant magnetic structures into our analysis .

As a next class of magnetic states we will discuss helical spin structures (spin-
spirals) with q-vectors on the high symmetry lines in the Brillouin zone . We begin
with the lines I'-K and K-M. From Fig. 6.6 it can be seen that, if we follow the
symmetry line from I' _to K and continue in this direction beyond the K-point, we
end up on the line K-M of the next Brillouin zone . It is therefore convenient to
discuss these two lines together . The q-vectors on this line can be parameterized by
q = (q.,, 0), with 0 <_ q,, <_ 27r/a (q,, = 47r/3a corresponds to the K-point) . The
dependence of the energy (per atom) on the q-vector can directly be calculated from
Eqn. (6 .20) .

E(q) = -S2

	

Ji I2 cos (aq.,) + 4 cos (a
2q,l J

	

(6.21)

+

	

J2
L
4cos

Ca
2q.,) -I- 2J

+

	

J3
L
2cos (a2q.) -{- 4 cos (aq,,)

The q-vectors on the line P-M can be parameterized by q = (0, qy), with 0 < qy <
27r/v/-3-a. In that case the energy per atom is given by

E(q) = -S2

The contributions from the different Ji are shown in Fig. 6 .8 . All Ji are assumed to
be negative, since we are mainly interested in antiferromagnets . From Fig. 6 .8 the
large variety of possible ground states depending on the sign and the magnitude of
the Ji can be observed . If only Jl is present the K-point, i.e . the Neel state becomesthe minimum of the energy for antiferromagnetic materials. If, however, J2 is largeenough the M-point can become lower, corresponding to the RW-AFM state. If J2 or
J3 or both are large there is a possibility of spin-spirals on the lines r-K and P-M.The same is true, if, for example, Jl is positive (ferromagnetic) and J2 is negative .Having determined the energy of all the high symmetry magnetic states we areable to develop the zero temperature magnetic phase diagram in the (Ji, J2, J3)parameter space of the Heisenberg model on the two-dimensional hexagonal lattice.Cuts through the three-dimensional phase diagram presented in Fig. 6 .9 . The phasediagram in the J1-J2 plane, J3 = 0, (Fig . 6.9 a) can be calculated analytically. All

Ji 12 + 4 cos (a
2q.), (6.22)

+ J2 14 cos
(a
2

qy) -I- 2cos (aV3-qy)

+ J3 12 + 4 cos
(a
v/'3-qy) l l .
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Figure 6.8: Contributions of the different exchange constants up to the third
nearest-neighbor interaction (Ji solid line, J2 dashed line and J3 dotted line)
to the Heisenberg energy per atom for spin-spirals along high symmetry lines .
Since we are mainly interested in antiferromagnets all exchange integrals are
assumed to be negative (J1 = J2 = J3 = -1)-

the phase boundaries are straight lines . When J2 is positive the magnetic ground

state is either the FM state for positive Jl or the Neel state for negative Jl . For

negative J2 with a magnitude above a certain threshold a spin-spiral with q-vector

on the line P-m or the RW-AFM state can become the ground state . The phase

diagram in the J2-J3 plane (Fig . 6 .9 b and c) has first been calculated numerically

by searching for the lowest energy configuration on a mesh in the J2-J3 plane . In a

second step we investigated all the relevant phase boundaries analytically. For non-

vanishing J3 another possible ground state, a spin-spiral on the line I'-K, is found.

Again all phase boundaries are lines except for the boundary between the Neel state

and the spin-spiral state on the line P-K. This phase boundary has been determined

numerically. When Ji is positive the phase diagram is dominated by the FM state.

The N'eel state and the RW-AFM state only become the magnetic ground state for

rather larger values of J3 and J2, respectively. When Ji is negative this picture is

reversed . The FM configuration can only become the ground state, when both, J2

and J3 are large compared to Ji and the phase diagram is dominated by the N'eel

state and also the RW-AFM state.
It is very instructive to discuss the phase diagram in terms of the separate contri-

butions of Ji, J2 and J3 respectively (cf. Fig . 6.8) . Let us begin with the case that J3
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Figure 6 .9 : The three-dimensional
magnetic phase diagram of the
Heisenberg model on the triangu-
lar lattice including interactions up
to the third nearest neighbor . The
phase diagram is plotted (a) in the
Ji-J2 plane (J3 = 0) and in the J2-
J3 plane (b) and (c) . (b) and (c) are
normalized to J1 = 1 and J2 = -1,
respectively.
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is being neglected (Fig . 6.9 a) . When J2 is positive (opposite sign as in Fig. 6.8) the
corresponding contribution to the energy has two minima at the r-point and at the
K-point . Thus, it favors the FM or the Neel state. In this case, the magnetic ground
state is determined by Jl . However, small negative values of J2 of 1/3 or 1/8 of the
size of J1, are enough to change the magnetic ground state. When J2 is negative, it
disfavors the P and the K-point and either the -M-point (RW-AFM or 3Q state) or a
spin-spiral on the line P-M can become minimal. The latter state is stabilized by aminimum of the energy contribution of J2 on that symmetry line .

The most prominent change when J3 is present is the appearance of an additionalpossible ground state, a spin-spiral on the symmetry line r--R . When J3 is negative,the corresponding contribution to the energy possesses two minima, at K and anotherone in the middle of the line P-K. The second minimum leads to the stabilization ofthe new spin-spiral ground state over a large region of the phase space. The minimumat K stabilizes the Neel state, which can now be the ground state also if J1, is positive .



6.2 Model Hamiltonians : Heisenberg model and beyond

On the other hand, when J3 is positive, the third nearest-neighbor interaction energy
becomes minimal at the I' and the M-point. This can result in a stabilization of the
RW-AFM or 3Q state even if Jl is positive, or stabilize the FM state when Ji is
negative .

Finally, we need to investigate the dependence of the Heisenberg energy on the
angle a for the real-space rotation that we have performed in Sec. 6.1 . In this case
the energy per atom can be calculated directly form the Heisenberg Hamiltonian in
real space (Eqn . (6.1)) by summing over all atoms in the unit cell and calculating
Si - Sj for the 1st, 2nd and 3''d nearest neighbors of each atom and dividing by the
number of atoms in the unit cell . Applying this procedure to the rotation with two
atoms per unit cell according to Fig. 6.3 c we obtain

Etat (a) = -S2 { (Ji + J2) (2 + 4 cos a) + 6J31

	

(6 .23)

for the energy per atom . Similarly, for the rotation with three atoms per unit cell
according to Fig. 6.3 d the energy per atom is given by

E3at (a) = -S2 ~(Jl + J3) (4 cosa + 2 cos2a) + 6J2 1-

	

(6.24)

As we have pointed out before the results we obtained from our ab-initio calculations
for the unsupported monolayers of Mn are in disagreement with the shape of E3at(a) .

A term proportional to cos 3a, which cannot be provided by the Heisenberg model,
is needed to fit the result for Mn. Such a term can only be provided by high order
interactions .

6 .2.4

	

The four-spin and the biquadratic interaction

Exchange interactions beyond the Heisenberg model can be obtained from a pertur-
bation expansion of the Hubbard model. Assuming that the intra-atomic Coulomb
repulsion U is large compared to the transfer integrals between the sites tij , a per-

turbative treatment in the limit of small transfer integrals can be applied. Up to the
second order such a perturbation expansion reproduces the Heisenberg model with a

Hamiltonian proportional to Si - Sj . However, going beyond the second order yields

more complicated spin interactions . In addition to terms that are proportional to

Si - Sj , which can be incorporated into the Heisenberg model, the fourth order per-

turbation treatment yields two terms that have a different form . One is the four-spin

exchange interaction (4-spin) :

H4-spin = -E Kijkl [(SiSj)(SkS1) + (SjSk)(SISi) - (SiSk)(SjSI)1 .

	

(6 .25)

ijkl

The 4-spin interaction arises from the hopping of electrons over four sites, i.e . the

process 1 -4 2 -4 3 -+ 4 -+ 1 . The other term is the biquadratic exchange :
2

Hbiquadr - -	Bij(Si - Sj) (6.26)
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In this section we investigate how these two terms contribute to the energy of the
magnetic states that we have introduced in the previous sections . In both cases we
restrict ourselves to the nearest-neighbor approximation.

In the case of the 4-spin interaction nearest-neighbor approximation means that
the four sites i, j, k and l involved form a minimal diamond. Such a nearest-neighbor
diamond is a parallelogram, where each side is a line connecting two nearest-neighbor
atoms. Two examples of minimal diamond clusters are shown in Fig. 6 .10. Let us

Figure 6 .10 : Minimal diamond clusters on the triangular lattice .

consider the atom at the center of Fig. 6.10, which is labeled 1. There are 12 mini-
mal diamond clusters that contain this atom site . Hence, to calculate the contribu-
tion of the 4-spin interaction to the energy of a magnetic configuration according toEqn. (6 .25) we have to sum over the 12 diamonds and repeat that calculation for all
atoms in the magnetic unit cell . We start with the largest class of magnetic statesdiscussed so far, i.e . the states that can be described by a single vector Q accordingto Eqn. (6.16). This includes the spin-spirals but also the FM, the RW-AFM and theNeel state. Using Eqn. (6.15) and (6 .16) the product of a pair of spins is given by

S2 [ cos(Q - R?) cos(Q - Rj ) + sin(Q " Ri ) sin (Q - Rj)]
S2 cos(Q - (Ri - Rj )) . (6.27)

Next we consider the contribution of a single diamond cluster and simplify it :
(SiSj)(SkSI) + (SjSk)(S ISi) - (SiSh)(SjSI)
= S4

	

cos(Q * (Ri - Rj)) cos(Q * (Rk - RI))
+

	

cos(Q - (Rj - Rk)) cos(Q * (RI - R?))
-

	

cos(Q - (Ri - Rk )) cos(Q - (Rj - RI))]



6.2 Model Hamiltonians : Heisenberg model and beyond

= S4	[

	

cos(Q - (Ri - Rj)) cos(Q - (Rk - Rt))
+

	

cos(Q - (Rj - Rk)) cos(Q * (RI - Rk + Rk - Ri))
-

	

cos(Q . (Ri - Rk)) cos(Q ' (Rj - Rk + Rk - Ri))] .

	

(6.28)

Applying the the addition theorems for sin and cos three times this expression can
be simplified and we finally obtain

(SiS;)(Sk St ) + (SiSk)(SISi) - (SiSh)(SiSI) = S4 cos(Q - (Ri -R; +Rk - Rt)

	

=S4,
(6 .29)

i.e . all minimal diamond clusters add the same contribution to the magnetic energy.
For every two-dimensional Bravais lattice the four atom nearest-neighbor clusters
that have to be considered to calculate the 4-spin interactions are parallelograms and
Ri - R; + Rk - Rt = 0 . Hence, the result, that the contribution of each nearest-
neighbor cluster to the energy is K1 S4 , is valid for any two-dimensional Bravais
lattice. On the triangular lattice there are 12 minimal diamond clusters for each
atom. Thus, the 4-spin contribution to the energy of all magnetic states that are
represented by a single vector Q is given by

E4-spin 1Q = -12 K1 S4' (6.30)

where K1 is the nearest-neighbor 4-spin interaction constant . This result implies that
the 4-spin interaction does not change the energy of any of the states characterized by
a single Q-vector relative to each other. In particular, the energy difference between
spin-spirals with different q-vectors is not changed, i.e . the functional form of E(q)
is not changed by the 4-spin interaction.

Next we turn to the 3Q state. The magnetic states that are generated by (su-
perposition of) Q-vectors that correspond to the M-point have been discussed in
Sec. 6.2.2 . There it has been shown that the 3Q state is formed out of four distinct
lattice sites. The four sites are labeled 1-4 in Fig. 6 .10 . Starting with site 1, e.g.
the atom at the center of the figure, and performing the summation over the twelve

minimal diamonds yields the contribution from this site to the energy due to the

4-spin interaction :

-4K1 [(S1S4)(S2S3) + (S1S2)(S3S4) - S1S3

	

S2S4

	

.

	

(6.3l)

The other three atoms in the unit cell give exactly the same contribution . Using

that the spins of the four sites are given by S 1 = (A, B, C), S2 = (-A, -B, C),

S3 = (A, -B, -C) and S4 = (-A, B) -C) (cf. Sec. 6.2.2) the energy per atom due to

the 4-spin interaction can be written

-4K1 [4(A4 +B4 + C4) - S4] .

	

(6.32)

For the RW-AFM state, where A2 = S2 , B = C = 0, Eqn. (6.32) reproduces the result

of Eqn. (6.30) E = -12 K1 S4 . The 3Q state is obtained for A = B = C = S/V3.
Thus, the 4-spin contribution to the energy of the 3Q state is

E4-spin,3Q = -3
K, S4. (6 .33)
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For completeness we also state the 4-spin contribution to the energy of the the 2Q
state, which is obtained for A = B = S/,v/2-:

E4-spin,2Q = -4 Ki S4.

	

(6.34)

The 4-spin contribution to the energy of real-space rotations is calculated by the
same procedure, taking into account that the relative angle between two nearest-
neighbor spins is 0 or a in the two atom unit cell and a or 2a in the three atom unit
cell . For the rotation in the two atom unit cell according to Fig. 6 .3 c we obtain

E4-spin,2at (a) = -Ki S4 (8 + 4 cos 2a)

and for the rotation in the three atom unit cell according to Fig . 6 .3 d we find

(6.35)

E4-spin,3at(a) _ -Ki S4 (4 + 8cos 3a) .

	

(6.36)

Here E(a) is the energy per atom . In both cases we find a functional dependence
of the energy on the angle a that can not be explained within the Heisenberg model
irrespective of how many neighbors are taken into account . In particular the term
proportional to cos 3a is the unit cell with three atoms is very important, since it
allows a much better description of the Mn results. This implies that the inclusion
of the 4-spin interaction allows a better modeling of the results from the ab-initio
calculations .

The calculation of the energy - due to the biquadratic exchange involves pairs of
spin . Consequently, the meaning of the nearest-neighbor approximation is exactly
same as in the Heisenberg model. Also the procedure determining the energy of
the magnetic states is less complicated as in the case of the 4-spin interaction . Theenergy is computed straight forwardly from Eqn. (6 .26) by summing over the six
nearest neighbors of each atom in the unit cell . For spin-spirals with q-vectors alongthe symmetry line P-M (q = (0, qy)) the energy due to biquadratic exchange amountsto

Ebiquadr (q) = -Bi S4	2+4cos2

	

a~qy

	

= -Bi S4 (4 + 2 cos (a~qy)) ,

(6.37)where B l is the biquadratic nearest-neighbor exchange constant . On the line P-K(q = (q,, 0)) we have

Ebiquadr(q)

	

=

	

-Bi S4
C4 cost Ca Iqxl + 2 cost (aqx))

	

(6.38)
=

	

-Bi S4 (3 + 2 cos (aqx) + cos (a2gx )) .
The energy of the FM state, the Neel state and the RW-AFM state can be obtainedfrom Eqn. (6.38) by substituting q. = 0, qx = 47r/3a and qx --. 27r/a, respectively. Ofcourse, the FM state and the RW-AFM state can be calculated from Eqn. (6 .37) bysubstituting qy = 0 and qy = 27r/tea, respectively, which gives the same result . The
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energy of the 3Q state has to be calculated directly from Eqn. (6.26) . The results are
listed below :

For the rotations with two and three atoms per unit cell we obtain :

Ebiquadr,2at (a)

	

_

	

-BI S4(2+4 cost a) = -Bl S4 (4 + 2 cos 2a)

	

(6.40)

Ebiquadr,3at (a)

	

_

	

-Bi S4(4 cost a + 2cost 2a) = -BI S4 (3 + 2 cos 2a + cos 4a) .

At the end of this section we summarize the energies of all relevant magnetic states
within the Heisenberg model up to the third nearest-neighbor interaction including
in addition the contributions due to the 4-spin interaction and biquadratic exchange .

Ess

. EFM

ENdel

ERW-AFM

E3Q

r-M(q)

Ess f--R(q)

E2at (a)

E3at (a)

Ebiquadr,FM = -6BIS4

	

(6.39)

Ebiquadr,Neel
3

= -
2B1S4

Ebiquadr,RW-AFM = -6B0

Ebiquadr,2Q = -2B1S4.

Ebiquadr,3Q
2

= -3B1S4 .

=

	

_s2 6J, + 6J2 + 6J3 }

	

-S4{12K1 + 6B1 }

	

(6.41)

=

	

-S2{ - 3J1 + 6J2 - 3J3} - S4{12K1 + 3Bi}

=

	

-S2{ - 2J1 - 2J2 + 6J3} - S4 12K1 + 6B1}

= -S2{- 2J1-2J2+6J3}- S413K+2B1}
3

-S2 {Jl (2 + 4 cos (a~qy)) + J2 (4 cos (a

	

qy) + 2 cos (a~qy)
2

+J3(2 + 4 cos (avf3-qy) )

-S4 {12K1 +B, (4 + 2 cos (av qy) )

-S2 {Jl (2 cos (aqx) + 4cos (aIqx) ) + J2 (4 cos (a2 qx) + 2)

+J3 (2 cos (a2gx) + 4 cos (aqx) )
_s4 12K, + Bl (3 + 2 cos (aqx) + cos (a2gx))

-S2 { (Jl + J2)(2 + 4 cos a) + U31 _s4{(2K1 +BI ) (4 + 2cos 2a)

-S2 { (Jl + J3)(4 cos a + 2 cos 2a) + 6J2

-s4~Kl (4 -}- 8 cos 3a) +Bl (3 + 2cos 2a + cos 4a)
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6.3 Unsupported monolayers : Spin-spirals and
the 3Q-state

In Sec. 6.1 we presented the results of self-consistent non-collinear calculations, where
we rotated the magnetic moments in real space on paths that connect high symmetry
magnetic states, i.e . the ferromagnetic (FM) state, the row-wise antiferromagnetic
(RW-AFM) state and the Neel state. The results that we obtained from the ab-initio
calculations where surprising, in particular for the case of Mn, and cannot be under-
stood within the framework of the nearest neighbor Heisenberg model. The inves-
tigation of the Heisenberg model in the previous Sec . (6.2) up to the third nearest-
neighbor interaction and also higher order exchange interactions, i.e . the four-spin
interaction and the biquadratic exchange, showed that, in order to gain a thorough
understanding of itinerant magnetic materials and to predict the magnetic ground
state of such materials on the triangular lattice, it is necessary to take further mag-
netic configurations into account that we omitted in Sec. 6 .1 . The additional magnetic
states that need to be investigated are spin-spirals (SS) with q-vectors along the high
symmetry lines of the Brillouin zone and the triple-Q (3Q) state. From our previous
analysis of the 4-spin interaction and the biquadratic exchange, the 2Q state can
be excluded . The 3Q state is particularly important in the case of Mn, because the
calculations of Sec. 6.1 show that the RW-AFM state has the lowest energy among all
magnetic states investigated for the unsupported monolayers (UMLs) Mn/Cu(111)
and Mn/Ag(111) . Within the Heisenberg model the RW-AFM state and the 3Q state
are degenerate, and therefore the 3Q state is a possible candidate for the ground state
of these systems.

In this section we present the results of self-consistent ab-initio calculations of spin-
spirals with q-vectors on the three high symmetry lines, P-M, r-K and K-M, in the
Brillouin zone of the two-dimensional hexagonal lattice. We also present calculations
for the 3Q state, in particular comparing the energy to that of the RW-AFM state.

6 .3 .1

	

Computational details

Both the spin-spiral calculations and the calculation of the 3Q state were performed
self-consistently in the local density approximation. The exchange correlation po-tential and a computational parameter were chosen as described in Sec. 6 .1 .1 . Onlythe k-point sets differ from those described in Sec. 6.1.1 because of the different unitcells used . The spin-spiral calculations were carried out using the implementationexplained in Sec. 5 .5 . At this point we would like to remind the reader that due tothe existence of the q-vector in spin-spiral calculations the symmetry is reduced andthe k-points have to be distributed in the full Brillouin zone . The p(1 x 1) unit cellof the spin-spiral calculation contains only one atom. We checked the k-point conver-gence for each system separately and found that the size of the k-point set necessaryto converge the energy differences between the magnetic configuration is quite differ-ent for the different systems. To obtain converged energy differences we needed 256
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k-points in the full Brillouin zone for Cr/Ag, 529 k-points for Cr/Cu, Mn/Cu and
Fe/Ag and 1024 k-points for V/Ag, Mn/Ag and Fe/Cu. With these k-point sets it is
also guaranteed that the energy differences obtained from the spin-spiral calculation
between for example the FM and the RW-AFM state or the FM and the Neel state
agree with the corresponding energy difference calculated in real space with two and
three atoms per unit cell . The unit cell of the 3Q state contains four atoms and we
used a k-point set that corresponded to 256 k-points in the full Brillouin zone . Once
more this k-point set allows a direct comparison with the energies calculated in other
unit cells.

6.3 .2

	

Results for the spin-spirals

In Fig. 6.11 the local magnetic moment and the total energy of the UMLs with
the Cu lattice constant are shown as function of the spin-spiral q-vector . The top
panel contains the result of the Cr/Cu(111) UML. From the rotations in real space
we know that the ferromagnetic solution does not exists for this system . Thus, we
expect to find no magnetic solutions with spin-spiral q-vectors close to the I'-point .
The calculations confirm this conjecture. It can clearly be seen that the magnetic
moment decreases and finally disappears when the q-vector approaches the I'-point
on the symmetry line I'-M or P-K. In the region where a magnetic solution exists the
energy is in agreement with the expectation from the nearest neighbor Heisenberg
model, though a comparison with the Heisenberg model is difficult to justify because
of the strong change in the magnetic moment . The energy has a pronounced minimum
at the K-point. The K-point corresponds to the 120° Neel state, which we have
already found to have the lowest energy among the configurations we calculated for
the real-space rotations .

In the case of Mn we find stable magnetic solutions over the whole range of q-
vectors . In fact, the magnetic moment is almost independent of the q-vectors . As we
know already from the calculation rotating the magnetic moments in real space, the
energy at the M-point, which corresponds to the RW-AFM state, is lower than the
energy at the K-point, which corresponds to the Neel state . A feature of E(q) that

cannot be anticipated form_the results in real space is the surprising local minimum of
the energy between P and K. This corresponds to a spin-spiral state with a q-vector
of q �; 0.7K. The energy of this minimum is only about 21 meV higher than that
of the RW-AFM state . A reason for this feature could be a strongly negative second

nearest-neighbor exchange integral J2 (cf. Fig. 6.8), which would also explain that

E(q) shows a local maximum at the K-point .
The magnetic moment of Fe is slightly smaller than that of Mn and not as stable .

Still, the variation is almost negligible . The range of the variation is smaller than

for example during the rotation with three atoms per unit cell . This is also true

for Mn/Cu. This could possibly be a consequence of the fact that the spin-spirals

are highly symmetric states, while the intermediate states of the real-space rotation

have a lower symmetry. An indication of the lower symmetry are the different local
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Figure 6.11: The total energy and magnetic moment of 3d-UMLs withCu(111) geometry as function of the spin spiral q-vector . Shown are the cal-culated total energy relative to the RW-AFM energy (circles, left scale) andthe magnetic moments (triangles, right scale) .

moments of the atoms in the three-atom unit cell . The shape of the energy curve ofFe/Cu seems to be dominated by a ferromagnetic nearest-neighbor coupling, showinga minimum at the P-point and a maximum at the K-point . A very interesting aspectof the Fe/Cu system is the shape of E(q) in the region around the T-point . In thatregion E(q) is almost independent of the q-vector . One consequence of the energycurve having such a flat shape could be an instability of the Fe film against magneticfluctuations . In terms of the Heisenberg model this shape of E(q) can be accountedfor by a negative J2 and/or J3 . A negative J2 can also explain the pronounced
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Figure 6.12 : The total energy and magnetic moments of 3d-UMLs with

Ag(111) geometry as function of the spin spiral q-vector . Shown are the cal-

culated total energy relative to the RW-AFM energy (circles, left scale) and

the magnetic moments (triangles, right scale) .
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maximum at the K-point (cf. Fig . 6.8) .
The results of the UMLs with the Ag lattice constant are presented in Fig. 6.12 .

All materials, V, Cr, Mn and Fe, have stable magnetic solutions for all q-vectors
along the high symmetry lines and the local magnetic moments vary only within a
very small range . Only V shows a slightly stronger variation of the moment in a
range of about 2.6 - 2 .8 /-LB . This result is not unexpected, since the variations of the
moments of the UMLs with the Ag lattice constant during the real-space rotation are
also small.

At first glance the result of the spin-spiral calculation for V looks surprising .
However, the unusual form of the energy curve can be reproduced by the Heisenberg
model, if Ji is negative and J2 and/or J3 are positive and about the same order
of magnitude as Jl . The energetics of Cr appear to be dominated by the nearest-
neighbor coupling . E(q) is extremely similar to the contribution of_ Jl (in Fig. 6 .8) .
The minimum at the K-point is not as pronounced as on the Cu lattice constant .
The result for the Mn UML with the Ag lattice constant is similar to that on the
Cu lattice constant . _Th_e local maximum at the K-point and the local minimum at
q -- 0 .6K on the line T-K appear more pronounced . However, E(q) varies in a much
smaller energy range than in the case of Mn/Cu(111) . This means, that increasing
the lattice constant from Cu to Ag reduces Jl more strongly than J2 . The opposite
seems to be the case for Fe. The influence of exchange beyond nearest neighbor is
reduced with the Ag lattice constant . As a consequence, the maximum at the K-point
is not as clear-cut as in the case of Fe/Cu(111) and E(q) has a much larger curvature
around the I'-point .

As a last magnetic configuration we consider the 3Q state (cf. Fig. 6 .7) . In par-
ticular, we consider the energy difference between the 3Q state and the RW-AFM
state . This energy difference has a special significance, because the two magnetic
configurations are degenerate within the Heisenberg model irrespective of how many
nearest neighbor shells of atoms are taken in to account . This energy difference is
purely due to higher order spin interactions . According to Eqn. (6 .41) the energy
difference per atom is given by

E3Q - E'RW-AFM = 3S4 {2Ki + Bi} . (6.42)

E3Q - ERW-AFM per atom is plotted as a function of the 3d-element in Fig . 6.13 . Firstof all, it can be seen that the difference between the 3Q state and the RW-AFM stateis in the order of 20 meV and thus generally smaller than the difference between the
FM state and the RW-AFM state . That means that the energy differences due tohigher order interactions are roughly one order of magnitude smaller than the firstorder effects for the system investigated here . At the Ag lattice constant the energydifference E3Q - ERW-AFM is positive for all UMLs, which means that the RW-AFMstate is preferred over the 3Q state. The size of the energy difference depends stronglyon the material . The largest value of 36 meV is found for V and the smallest valueof 9 meV is found for Fe . On the Cu lattice constant the 3Q state has a lower energyfor Cr and Mn, but a higher energy for Fe. In the case of Cr this does not have any
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Figure 6.13 : The total energy difference between the 3Q state and the RW-
AFM (1Q) state as a function of the 3d-element . The plot contains results
for UMLs with the Cu (circles) and Ag (squares) lattice constant . Negative
values mean that the 3Q state has a lower energy.

consequence for the magnetic ground state of the system, since the energy of the Neel
state is clearly lower than that of both, the 3Q and the RW-AFM state . However,
for Mn the RW-AFM state has the lowest energy of all configurations investigated
so far . Since E3Q - ERw-AFM is negative, the 3Q state has the lowest energy among

all magnetic configurations . Thus, the 3Q state is the magnetic ground state of the

Mn/Cu(111) system . The calculated magnetic moments in the RW-AFM and 3Q
state are almost identical for all materials .

Table 6.7 : Energies of the different magnetic configurations relative to the

energy of antiferromagnetic (1Q) configuration in meV. The Cr/Cu system

does not have a stable ferromagnetic solution.
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The energies of all relevant magnetic states of the unsupported monolayers are

summarized in Tab. 6.7 . The energies are relative to the energy of the RW-AFM

UML FM FI SS Neel 3Q ground state

Cr/Cu - -26 - -97 -6 Neel
Mn/Cu 358 44 21 68 -15 3Q

Fe/Cu -174 47 - 73 33 FM

V/Ag 35 -16---16 36 FI or Neel

Cr/Ag 273 10 - -39 18 Neel

Mn/Ag 128 26 15 48 28 RW-AFM

Fe/Ag -164 35 - 49 9 FM
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state. Thus, negative values mean that the corresponding magnetic configuration
has a lower energy than the RW-AFM state. If all energies listed are positive, as for
Mn/Ag, the RW-AFM state has the absolutely lowest energy and is the ground state
of the system . In the case of Mn we found a local minimum of the energy for spin-
spirals with q-vectors on the line P-K. The energy of this configuration is provided in
the column denoted SS and was calculated only for Mn. The corresponding q-vectors
are q -- 0.7K for the UML Mn/Cu(111) and q -- 0.6K for the UML Mn/Ag(111) (cf.
Fig. 6.11 and 6.12) .

An amazing characteristic of these results is the large variety of predicted ground
states, including the FM, the RW-AFM, the 120° Neel, the 3Q and possibly (in the
case of V) the FI state. The UMLs of Cr reach their lowest energy in the Neel state
on both, the Cu _and the Ag, lattice constants. The Neel state is generated by q-
vectors form the K-point . In the case of Mn the energy becomes minimal for the 3Q
state (Mn/Cu) and the RW-AFM state (Mn/Ag), respectively. Both configurations
correspond to the M-point in the Brillouin zone . The Fe UML are ferromagnetic
on both lattice constants, i.e . J(Q) becomes maximal at the P-point. Thus, the
ground states of these three systems already cover all high symmetry points in the
two-dimensional Brillouin zone . For the UML V/Ag the magnetic ground state can
not be predicted with certainty, because two states, the ferrimagnetic (FI) state and
the Neel state, are very close . The accuracy of the calculation does not allow to
decide which of the two states has the lower energy.

6.3 .3

	

Tests of the convergence with respect to numerical cut-
offs

The two most important numerical parameters, which also have the strongest influ-
ence on the computer time needed for a calculation, are the number of basis func-
tions controlled by the the planewave cutoff kmax and the number of k-points used
for the Brillouin zone sampling . Our aim was to achieve an accuracy of about 1 -2 meV/atom of the calculated total energy differences . The biggest absolute varia-
tions of the total energy differences are of course expected between those states, forwhich the total energy difference is largest. Between those states the required absoluteaccuracy of 1- 2 meV/atom corresponds to the smallest relative error. Therefore, wedecided to consider the energy difference between the FM and the RW-AFM state,for most of our convergence tests. For the convergence tests with respect to the k-point set and the planewave cutoff for the basis functions we have also included theenergy difference between the Neel state and the RW-AFM state . As expected, thechanges of the latter energy difference with respect to the computational parameterswere always smaller than that of EFM - ERW-AFM

We performed systematic tests of the k-point convergence for the spin-spiral cal-culations. These calculations have the smallest unit cell and cover a large variety ofmagnetic states . In fact, most of the energies presented in Tab. 6.7, except the ener-gies of the 3Q and FI state, are obtained from spin-spiral calculations . We calculated
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EFM - ERW-AFM for different k-point sets and increased the number of k-points until
the desired accuracy was reached . Fig . 6.14 shows the energy difference as a function
of the number k-points in the full Brillouin zone for two examples . We have chosen

529 1024
Number ofk-points

Figure 6 .14 : Test of the convergence of the total energy difference with
respect to the number of k-points for the UMLs Fe/Cu (squares) and Mn/Ag
(circles) . The plot shows the energy difference between the FM and RW-
AFM state (solid symbols) and between the Neel and the RW-AFM state
(open symbols) . All energy differences are relative to the corresponding energy
difference with the largest k-point set of 1936 k-points in the full Brillouin zone .

the UMLs Fe/Cu and Mn/Ag, as they are two examples for the systems that required

the largest k-point sets (cf. Sec . 6.3.1) . The energy differences in Fig. 6.14 are normal-

ized to the value obtained with the largest k-point set (1936 k-points), i .e. we actually

plotted the quantity AE(Nkpt) - DE(1936), where Nkpt is the number of k-points . It

can be seen that ENM - ERW-AFM converges faster than EFM - ERW-AFM " For both

cases we have used the k-point set with 1024 k-points for all further calculations .

In order to test the convergence of the energy differences with respect to the

planewave cutoff we have increased kmax from 3 .7 a.u .-1 to 4.1 a.u .-1 (from 115 to

160 basis functions per atom) for the UMLs with the Cu lattice constant and from

3.3 a.u .-1 to 3 .7 a.u .-1 (from 125 to 180 basis functions per atom) for the UMLs

with the Ag lattice constant . The change of the energy difference was always clearly

smaller than 0.5 meV per atom. Only for the Mn/Cu system we found a change of

0 .8 meV per atom for both EFM - ERW-AFM and ENeel - ERW-AFM "

For some selected systems we have also increased the planewave cutoff for the

expansion of the density Gma,, and the number of the radial mesh points for the

representation of the radial basis functions inside the muffin-tin sphere . In all tested

cases the changes were negligible.
Due to the approximation of a collinear magnetization inside the muffin-tin
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spheres (cf. Chap. 5 and Fig. 5 .1) it is very important to investigate how a change
of the muffin-tin radius RMT affects the results of a non-collinear calculation. Such
a test has already been presented in Sec. 5.4.2 where we have tested the implemen-
tation of the constrained local moment method. We used the real-space rotation of
a Cr/Ag(111) UML in the unit cell with two atoms . The calculation was performed
with two different muffin-tin radii, 2 .75 a.u . and 2 .00 a.u . In Sec. 5 .4.2 we focused
on the change of the constraint field and the total (parallel) magnetic moment in the
muffin-tin . Here we are mainly interested in the change of the calculated total energy.
The total energy is shown in Fig. 5 .4 . Let us consider the energy difference between
the ferromagnetic state and the antiferromagnetic state, EFM- ERW-AFM, and between
the ferromagnetic state and the configuration where the angle a between the rows
of magnetic atoms is 90°, EFM - Ego. . Setting the muffin-tin radius to 2.75 a.u . we
obtain EFM - ERW-AFM = 272 meV/atom and EFM - Ego. = 153 meV/atom. When
RMT is reduced to 2 .0 a.u . these energy differences change by 2.3 and 1 .9 meV/atom
respectively. It should be noted, that reducing RMT from 2.75 to 2.00 a.u . means a
radical change, because the volume of the spheres is reduced by a factor 2 .6 . And, in
addition, the planewave cutoff k,,,,, has to be increased, when RMT is decreased . A
remarkable consequence of this result is that apparently for the 3d transition metals
the approximation of a collinear magnetization in the muffin-tin spheres does not in-
troduce a significant error for a total energy calculation. The FM and the RW-AFM
state are collinear magnetic configurations, i .e . the magnetization of the Cr UML is
exactly collinear everywhere in space. Only the 90° state is non-collinear and replac-
ing the magnetization inside the sphere by a collinear one is an actual approximation.
However, the change of the energy differences EFM - ERW-AFM and EFM - Ego. has
almost the same size . Hence, the approximation of a collinear magnetization in the
muffin-tin spheres is not crucial for the systems considered here .

6.4

	

Discussion of the results for the unsupported
monolayers

In this section we will discuss the result all ab-initio calculations for the unsupportedmonolayers, the real-space rotations of the magnetic moments (Sec . 6 .1) as well as thespin-spiral calculation and the 3Q state (Sec . 6 .3) . We will first determine estimatesof the exchange integrals by fitting the results to the Heisenberg model. Afterwardswe will discuss the trends for the different 3d elements in term of the magnetic phasediagram of the Heisenberg model.

6.4.1

	

Estimate of exchange parameters

6 . Magnetism of 3d-monolayers on Cu and Ag (111)

In order to gain a better understanding of the results of our ab-initio calculations wefitted the data using the functional dependence of the energy within the Heisenbergmodel. The equations for the energy as a function of the spin-spiral vector and the
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angle a, respectively, in the Heisenberg model including higher order terms have
were in Sec. 6.2 (Eqn. (6 .41)) . The aim of the fitting procedure was to obtain only
an estimate of the parameters of the model Hamiltonian J1, J2 , J3, K1 and B 1 . To
achieve this with simplest possible fitting procedure we chose E3at (a) and Ess r-x (q)
for our fits, because the fit to Esat(a) allows the determination of S2 (Jl + J3), S4K1
and S4B1 and the fit to Ess r-K(q) allows us to calculate S2Ji, S2J2 and (2S2J3 +
S4B1). In contrast, fits to E2at (a) and Ess r-M(q) only allow the determination of
two independent parameters .

Table 6.8 : Exchange constants including K1 and B1 as obtained from a fit
to E3at(a) . The last column contains the energy difference between the 3Q
and the RW-AFM state as calculated from the fitted values of K1 and B1
according to E3Q - ERW-AFM = 16/3S4 12K1 -I- B1} .

The parameters obtained from the fit of E3at (a) are presented in Tab . 6 .8 . We did
not perform a fit for the Cr UML with the Cu lattice constant, because of the strong
change of the magnetic moment. The Heisenberg exchange parameters are much
larger than the exchange parameters of the higher order spin interactions in agreement
with the results obtained for the energy difference between the 3Q and the RW-AFM
state. The magnitude of K1 is mostly very small. Only the values computed for the
Mn UMLs stand out. The 4-spin interaction provides a term proportional to cos 3a
in E3at(a) . Thus, the size ofK1 is the origin of the local maximum at a = 120° found
for the Mn UMLs.

Table 6.9 : Exchange constants including B1 as obtained from a fit to

Ess r-x(q).

UML S2 (j, + J3) S4K, S B 1 E3Q - ER,w-AFM
Mn/Cu -34.6 -2 .6 3.7 -8 .0
Fe/Cu 28 .1 -0.2 -1 .0 -7.5
V/Ag -6 .8 0.1 2.6 14.9
Cr/Ag -33.3 0.3 -2.6 -10.7
Mn/Ag -10.6 -1 .1 3.2 5 .3
Fe/Ag 24.9 -0.1 -2.5 -14.4

UML S J1 S!J2 (2S J3 +SB1)
Mn/Cu -31.2 -l3.9 -6.3
Fe/Cu 29 .8 -8.8 -5.1
V/Ag -14.4 9.9 17.1
Cr/Ag -38.7 4.4 7.9
Mn/Ag -9 .6 -7.0 -0 .3
Fe/Ag 25.1 -4.9 -3 .6



132 6. Magnetism of 3d-monolayers on Cu and Ag (11.1)

Tab. 6.9 contains the parameters determined from a second fit to Ess F-K(q). This
fit allows a direct calculation of Ji and J2 . It can be seen that, though J7, represents
the largest parameter in all cases, the contribution of J2 is substantial. J2 is clearly
larger than the terms due to higher order spin interactions . Taking the results of the
two fits together we can also calculate the missing parameter J3, e.g . from J7, and
(Ji + J3) . It is of cause also possible to use S'BI and (2S2J3 + S'Bj) instead. All
parameters including J3 are summarized in Tab. 6 .10.

Table 6.10: Exchange constants calculated from 6.8 and 6.9 . S2J3 has been
calculated according to S2 J3 = S2 (Ji+J3) -S2Ji taking the values of S2(Ji+
J3) and S2 j, from tables and 6.8 and 6.9, respectively. Similarly, S4B1 has
been calculated according to S4B 1 = (2S2J3 +S4B1) - 2S2 J3, in addition to
the direct determination from a fit in Tab. 6.8 . The last column contains the
energy difference between the 3Q and the RW-AFM state as calculated from
the fitted values of Kl and Bi according to E3Q - ERw-AFM = 16/3S4{2K1 +
Bl} using the new value of S4Bi .

In Tab. 6.8 and 6 .10 we present two different values of B 1 . The values in table 6 .8
have been directly determined from the fit of E3at (a), while the values in Tab. 6 .10
have been calculated indirectly from (2S2 J3 +S4B 1) and 2S2J3 , which itself has been
calculated indirectly (cf. Fig. 6.10) . Therefore, we expect the values in Tab. 6.8 to
be more accurate, since the second values of B1 determined in Tab. 6 .10 accumulate
the errors of Jl , Jl + J3 and (2S2J3 +S4B 1 ) . The comparison of the two results
for Bl can serve as test for the applicability of the fit procedure. In all cases the
sign of the two calculated values of B i agrees, but the size of B 1 differs significantly.
In particular for Mn/Cu, but also Mn/Ag, this difference is very large . A different
check of the quality of the calculated values of B i and K1 is a comparison with the
total energy difference between the 3Q and RW-AFM state. This energy differenceis given in terms of the higher order exchange parameters by E3Q - ERw-AFM =1613S412K, -I- B,I, i.e . E3Q - ERw-AFM can be calculated from Ki and B 1 and aredirectly comparable to the total energy differences presented in Tab.6.7 . The valuesof E3Q - ERw-AFM that correspond to Ki and B 1 obtained from the fits, using thetwo results for Bl given in Tab 6 .8 and 6.10, are presented in the last column ofTab. 6.8 and 6 .10, respectively. The outcome is rather disappointing. Only half thevalues of E3Q - ERw-AFM obtained from K1 and Bi have the correct sign, and evenwhen the sign is correct, the magnitude is usually quite far off. The reason for this

UML S2 J, S2 j2 S2 j3 S4K1 S Bl E3Q - ERw-AFM
Mn/Cu -31.2 -13.9 -3.4 -2.6 0 .5 -25 .1
Fe/Cu 29.8 -8.8 -1.7 -0.2 -1 .7 -11.2
V/Ag -14.4 9.9 7.6 0.1 1 .9 11 .2
Cr/Ag -38.7 4.4 5.4 0.3 -2 .9 -12.3
Mn/Ag -9.6 -7.0 -1.0 -1.1 1 .7 -2 .7
Fe/Ag 25.1 -4.9 -0.2 -0.1 -3 .2 18 .1
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inconsistency of the results could be the neglect of further exchange integrals, J4 , J5 ,
. . . , but also higher order terms like K2 , B2 , . . . If such terms contribute to E3at (a)
and Ess f_K (q) in a similar way like Jl-3, K1 and Bl the outcome of the fit might
be inaccurate .

	

Looking at Ji-3, S2 j4 can be expected to be comparable to S4K7,
and S'Bl . On the other hand, the contribution of Ki to E3at (a) is proportional to
cos 3a, which cannot be provided by any Ji . Thus, the values of Kl are problably
more reliable than Bl .

In conclusion we can say that the parameter B1, but also Kl , were not deter-
mined consistenly and sufficiently reliably by our calculations . In order to determine
these parameter more accurately it is probably necessary to include further exchage
parameters J4 , J5 , . . . and perhaps also K2 , B2, . . . into the study. It might also
be helpful to choose real-space spin rotations or spin-spirals specifically selected to
determine certain model parameters . However, we can say with certainty that higher
order terms, i.e . Ki and B1 , play an important role for the 3d-metals, since their
magnitude is comparable to J2 , J3 , . . .

	

This last statement is independent of the
fits to E3at (a) and Ess r-x(q) .

	

The importance of the higher order terms can be
appreciated directly from the energy difference between the 3Q and the RW-AFM
state, because the two states are degenerate within the Heisenberg model irrespective
of how many nearest neighbors are taken into account. To stress once more, it is not
our total energy calculations which are in question, but the quality of the fit to the
exchange parameters due to an insufficient data set of self-consistent calculations .

6.4.2

	

Discussion and classification of the results in terms of

the exchange parameters

For fcc and bcc bulk transition metals it is well know [THOA82] that the exchange
integrals are rapidly oscillating functions of the band filling. Since we have not per-
formed calculations for all elements of the 3d transition metal series, we cannot discuss
in detail this dependence of exchange parameter Jl to J3 , Kl and Bl for the (111)

oriented UMLs. From Ref. [THOA82] we conclude that the exchange parameters Jn

have at least 2n zeros as function of the band filling, ignoring zero and full band

filling. K1 and Bi are expected to behave similar to J2 . Despite the deficiencies

of the fit of Jr to J3 and in particular Kl and Bi discussed in the previous section

several trends are for the exchange parameters are clearly visible in Tab. 6.10. One

is certainly the change of the sign as function of the band filling represented here

by the different elements of the 3d transition metal series . It can be seen that Jl

is negative for V, Cr and Mn, and changes sign between Mn and Fe . A closer look

reveals that the magnitude of Ji first increases from V to Cr and then decreases

again from Cr to Mn, and as said changes sign and becomes positive between Mn

and Fe showing again a large magnitude for Fe . It nicely resembles an oscillatory

function on a coarse grid . J2 changes sign between Cr and Mn. In contrast to Jl

it is positive for V and Cr and negative for Mn and Fe. J3 and Kl show basically

the same behavior as J2 , but the magnitude of J3 for Fe/Ag is already quite small.
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An additional change of sign for J3 is expected for a band filling slightly larger than
Fe. B1 changes sign for every element. B1 is positive for V and Mn and negative for
Cr and Fe. So far, the discussion on the signs holds for the UMLs on the Cu(111)
an well as the Ag(111) lattice constant and we speculate that it is intrinsic to the
electronic structure of the UMLs . In a second step we compare the magnitude of the
different exchange parameters . It can be seen that in general the exchange integrals
decrease from J1 to J3 . K1 and B1 are typically one order of magnitude smaller than
J, but comparable in magnitude to J3 , and thus cannot be neglected. Comparing the
exchange parameters of Mn and Fe on the Cu(111) lattice with those of the Ag(111)
lattice several observations can be made : in general the magnitudes of J2 , J3 and K1,
and to some extend also J1, are significantly larger at the Cu lattice constant than
at the Ag lattice constant, irrespective of the size of the magnetic moments, which
are larger on the Ag lattice constant . We attribute this trend to the larger overlap
of the 3d wave functions of neighboring atoms due to the smaller lattice constant of
Cu. The exchange parameter for the biquadratic exchange B1 does not follow the
trend of J1 - J3 and K1 . Instead B1 is in general larger for the unsupported tran-
sition metal monolayers on the Ag lattice constant than on the Cu lattice constant .
If might be that the biquadratic exchange is more strongly dependent of the size of
the local moment or the intra-atomic exchange, i .e . the local Coulomb interaction,
respectively. We have not investigated this point, but we see that the ratio of K11B1changes significantly between the monolayers on Cu and Ag lattice constant . This
change has an important effect of the magnetic ground state. For Mn/Cu(111) and
Mn/Ag(111) the RW-AFM state has the lowest energy among all spin-spiral states,
but the ground state of the Mn/Cu(111) is the 3Q state since 2K1 > B1, while
the ground state of Mn/Ag(111) is the RW-AFM state since 2K1 < B1 (actually
2K1 ,: B1 within the accuracy of the calculation) . We suspect that the ratio K1/B1depends sensitively on the hybridization with the substrate. Finally, we would like to
mention a further apparent trend, the decrease of J2 and in particular J3 from V toFe. This trend could reflect that with increasing nuclear number the localization of
the 3d wave function increases, which leads then to a smaller overlap of the 3d wavefunction with the second and third nearest neighbor atoms. On the other hand thevalues given in Tab. 6 .10 may exaggerate this effect, since the maxima of J2 and J3as function of the band filling might be at fractional values of the nuclear number,which we have not calculated .

As a next step it is very interesting to discuss the calculated exchange integrals interms of the phase diagram of the Heisenberg model that was derived in Sec. 6 .2 .3 .Let us begin with the two-dimensional phase diagram (J3 = 0, Fig. 6.15 a) . V andCr have a negative J1 and a positive J2 . Thus, they are found in the upper leftquadrant of the phase diagram as indicated in Fig. 6 .15 a, which corresponds to theNeel state. Mn has a negative J2 and the magnitude of J2 is between 1/8J1 and J1 onboth lattice constants . Thus, Mn lies in the region of the RW-AFM ground state. Fehas a positive J1 and a negative J2 , which is larger than -1/3J1 . Hence, it lies in theregion of the FM ground state . However, for the UML Fe/Cu(111) the magnitude of



6.4 Discussion of the results for the unsupported monolayers

	

135

J2 is almost 1/3 of the magnitude of Jl , i .e . Fe/Cu(111) is very close to the border
between the FM and the spin-spiral ground state. If we assume continuously varying
exchange coupling constants as function of the band filling the lines connecting the
points in Fig. 6.15 a are interpreted as paths of the band filling in the phase diagram .
It is interesting to notice that the path from Mn to Fe crosses the region of the
spin-spiral state on the high symmetry line I'-M. Including J3 modifies the phase
boundaries and an additional phase, the spin-spiral state on the symmetry line P-K,
is crossed . Thus, slight changes of the band filling, and hence the electronic structure
and the exchange parameters, may lead to a drastic change of the magnetic ground
state . Therefore, without accurate ab-initio total energy calculations including spin-
spirals, predictions of the magnetic ground state of films made of MnFe alloys will be
impossible . We will return to this point below .

As said before, when J3 is included in the discussion the problems get slightly
more involved . Fig . 6 .15 b and c show magnified details of Fig . 6 .9 b and c . The
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exchange integrals have been normalized to J1 = 1 and Jl = -1 respectively. V
and Cr are found in the Neel region, though Cr is very close to the border of the
RW-AFM state. Mn/Cu and Mn/Ag are both extremely close to the border between
the RW-AFM and the spin-spiral state on the symmetry line I'-M. In fact, the UML
Mn/Ag is just in the region of the spin-spiral ground state in disagreement with our
ab-initio results (Tab . 6.7 and Fig. 6 .12) . A similar problem is found for Fe. Fe/Ag
lies in the FM region, but Fe/Cu lies in the region of the spin-spiral, again very close
to the border of that region . The tendency towards a spin-spiral ground state can
be seen for both these systems, Fe/Cu and Mn/Ag, in Fig. 6.11 and 6.12 . In the
case of Fe/Cu Ess (q) has an extremely flat shape around the I'-point. In particular,
the first 2-3 points on the line I'-M have almost the same energy as the I'-point.
A slightly more negative value of J2 would create a minimum in that region and
the corresponding spin-spiral state would become the ground state of the system . A
similar feature is found close to the M-point of Mn/Ag. Here, the first three points
on the line M-I' are practically on one level and again a stronger contribution of J2
would lead to a new ground state.

As we have discussed previously, the exchange integrals are oscillating functions
of the band filling. We found that Jl changes sign between Mn and Fe, but J2 is
negative for both elements . Therefore, we expect Jl to become small compared to
J2 for a band filling in between Mn and Fe . Such systems can be realized by an
alloy of the two metals. In the theoretical calculation we can also model 'this kind
of alloy by using fractional nuclear numbers. In order to investigate the properties
of a possible Mn/Fe alloy we have performed a spin-spiral calculation of an UML
with a nuclear number of Z = 25.5 (cf. ZMn = 25, ZFe = 26) . The result of this
calculation is presented in Fig. 6 .16 . The energy is a global minimum for a spin-
spiral with a q-vector of about 0 .6 M. Hence, the ground state is in fact a spin-spiralon this symmetry line . On the other hand, this q-vector is six-fold degenerate inthe Brillouin zone of the two-dimensional hexagonal lattice. Thus, due to higherorder spin interactions a particular high symmetry superposition of several spin-spiral states might be the magnetic ground state. Another pronounced minimumis found at about 1/3 K on the line P-K. The energy of the second minimum isonly about 12 meV (-- 150 K) higher than the ground state. For temperaturesbelow 150 K we expect that only spin-waves with spin-wave modes around the localminimum between P and M will also be excited. For higher temperatures around150 K and higher, spin-wave around the second minimum will be excited. In thiscase the dynamical and thermodynamic properties of the magnetic film become morecomplex which requires a treatment by a mode-mode-coupling theory. This is beyondthe scope of this work. As a side remark, I would like to remind the reader that forultrathin films the critical temperature of the magnetization is determined by theinter-atomic exchange interaction and the magnetic anisotropy. The latter is notconsidered here and the critical temperature cannot be determined . However, in casethe critical temperature comes in the order of 150 K or higher, the second minimummust be taken in consideration to reliable predict the Neel temperature. If such an
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Figure 6.16: The total energy of an UML with the nuclear number Z = 25.5
with Cu(111) geometry as function of the spin spiral q-vector . Shown are
the calculated total energy relative to the RW-AFM energy (circles) and the
magnetic moments (triangles) .

alloy can be grown in an actual experiment, it might even be possible to influence the

ground state and the q-vector of the ground state by changing the composition . A

thorough investigation of the exchange constants as function of the nuclear number

Ji (Z) represents a very interesting project for the future . Not only as a model for

possible alloys, but also to compare with the theoretical predictions of Terakura et

al .[THOA82]

6.5

	

Results for monolayers on substrate

So far we have considered unsupported monolayers as model system for monolayers

(ML) on an actual noble metal substrate . In order to confirm the results from the

UMLs and to obtain reliable predictions for the more realistic systems, the monolayer

on the substrate, we repeated the calculations including the substrate . However, due

to the enormous computational expenditure of such calculations, we concentrated on

the most important magnetic states . We performed this investigation in two steps .

First we established the geometry of systems by atomic force calculations . We relaxed

all atoms in a symmetric film with 7 layers of substrate and 3d-metal monolayers on

top of both film surfaces . The relaxations were carried out for the ferromagnetic MLs,

except for the case of Cr on Cu, where the antiferromagnetic ML was used, because

a ferromagnetic solution does not exist . These calculations were carried out in the
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generalized gradient approximation (GGA). The GGA is known to greatly improve
the lattice constants of 3d-metals, when the exchange and correlation potentials are
treated beyond the atomic sphere approximation [ASH+99]. Therefore, we applied
the GGA during the force calculations . In the second step we calculated the magnetic
energies for the different configurations using the local density approximation (LDA) .
Due to the large computational effort of these non-collinear calculations we used
asymmetric films with 4 layers of substrate and 1ML of the 3d metal on only one side
of the film. The atomic positions obtained from the structural optimization in the
first step were used for all magnetic configurations .

6 .5.1

	

Structural optimization of 3d-monolayers on Cu(111)
and Ag(111)

During the structural optimization we used a symmetric 9-layer film . The structural
optimization was performed for the ferromagnetic configuration . Thus, the surface
unit cell contained only one atom. Only for the Cr/Cu(111) system we relaxed the
atoms in the antiferromagnetic configuration, since no stable ferromagnetic solution
could be found. Forthe lateral lattice constants we used the values obtained from bulk
calculations of the respective substrates . We determined a lattice constant of acu =
6 .83 a.u . for Cu, which in very good agreement (+0.2%) with the experimental value
(aCu,exp = 6.81 a.u.), while the value we obtained for Ag, aAg = 7.84 a.u. is slightly
to large (+1.4%), compared to the experimental value aCu,exp = 7.73 a.u.) . Starting
from the atomic positions of an truncated fcc Cu or Ag crystal, respectively, all
atoms in the film where relaxed using the atomic forces . These forces were calculated
according to Yu et al . [YSK91] .

Our calculations are based on the density functional theory in the generalized
gradient approximation (GGA) as formulated by Perdew et al . [PW92] . Using a
scalar-relativistic Hamiltonian, we employed a planewave cutoff of kmax = 4 .0 a.u .-1for the MLs on Cu(111) and kmax = 3.5 a.u .-i for the MLs on Ag(111), respectivley .Both cutoffs correspond to about 95 basis functions per atom. For the expansion ofthe charge density we used a planewave cutoff of Gmax = 12.0 a.u . -1 for the MLs onCu(111) and Gma,, = 10 .5 a.u . -1 for the MLs on Ag(111), respectively. The muffin-tinradii were chosen 2.15 a.u . for both Cu substrate atoms and the 3d-metals of the MLsand in the case of the MLs on Ag 2.60 a.u . for the Ag substrate atoms and 2.40 a.u .for the 3d-metals. The angular momentum expansion of the charge density inside themuffin-tins spheres was truncated at lmax = 8 . For the k-space integration 40 specialk-points were used in the irreducible wedge of the two-dimensional Brillouin zones ofthe unit cells containing one surface atom, which corresponds to 361 k-points in thefull Brillouin zone . For the calculation with two atoms in the surface unit cell, i.e .for Cr/Cu(111), 45 k-points in the irreducible wedge, corresponding to 180 k-pointsin the full Brillouin zone, were used . A structure was considered relaxed, when allthe forces on the atoms were smaller than 1 mRyd/a.u .

The relaxed atom positions are presented in table 6.11 . All relaxations are given
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Table 6 .11 : Calculated relaxations of 3d-monolayer on Cu(111) and A(111).
The Ad2j are the relative change of the interlayer distance with respect to the
theoretical GGA values of fcc Cu and Ag.
'The relaxation of the ML Cr/Cu(111) was calculated in the RW-AFM con-
figuration, since no stable ferromagnetic solution was found for this system .
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in terms of the relative change of the interlayer distance compared to a truncated fcc
Cu and Ag crystal, respectively. The layers are numbered 1 (surface) to 5 (center
of the film). Thus, for example the relative change of the interlayer distance for the
MLs on Cu(111) between the surface and the subsurface layer is defined as Ad12 =

(d12 - dcn)/dcu, where d12 is the relaxed interlayer distance and dc" is the interlayer

distance of the Cu ideal bulk crystal . Comparing the results with the Cu(111) and

the Ag(111) substrate shows a clear difference . While on Cu all 3d-monolayers relax

outwards compared to the bulk interlayer distance (Ad12 > 0), the opposite is true

for the ML on Ag. This is a consequence of the larger lattice constant of Ag. There

is an obvious trend for the different 3d-metals on the same substrate . The distance

between the ML and the first substrate layer decreases monotonously from V (Cr) to

Fe. The reduction of the interlayer distance with increasing nuclear number of the ML

is also visible below the surface . In particular for the distance between the first two

substrate layers (Ad32) this tendency becomes very obvious. Generally, the size of the

relaxations decreases from the surface to the bulk, though there are some oscillations,

e.g . in the Fe/Cu system. In the Ag substrate this decline is much faster than in Cu,

probably due to the larger lattice constant of Ag. Only in the case of Cr/Cu and

V/Ag the relaxations reach far into the substrate . At the first glance the monotonic

decrease of the interlayer distance between the monolayer and the substrate when

we move across the period from V to Fe is a surprise . It is well known that the

lattice constant of the bulk 3d metal is smallest at the center of the transition metal

series, i.e . around Cr and Mn, as most of the bonding states are filled and most of

the anti-bonding states are empty. But magnetism has a very strong influence on the

relaxations of these monolayers and changes the picture . From the comparison to

a calculation of a non-magnetic Mn ML on Cu(111) [BKB00], which hardly relaxes

compared to the atomic position of the truncated Cu crystal, we know that the

outwards relaxation of Mn is driven by magnetism. Calculations for Mn/Cu(100)

ML Ad12 Ad23 Ad34 Od45

Cr/Cu' +7.3 +3.1 +2.5 +2.4
Mn/Cu +4.4 +1.6 +1.7 +1.1
Fe/Cu +2.0 +1.0 +1.6 +1.0
V/Ag -2.9 +2.8 +2.1 +2.1
Cr/Ag -3.0 +1.0 +0.1 -0.3
Mn/Ag -5.0 +0.9 -0.1 -0.1
Fe/Ag -8.8 +0.4 +0 .1 +0.2
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show the same effect, but much more strongly, since the number of nearest neighbors
is smaller [B1ä96] . The influence of magnetism can also directly be perceived from
our calculated relaxations on Ag(111) . While the interlayer distance between the ML
and the substrate reduces by 2% from Cr to Mn and by 3.8% from Mn to Fe, V and
Cr have almost the same distance between the first and the second layer. This is a
consequence of the fact, that the V atoms have much smaller magnetic moment than
in particular Cr and Mn.

Tab. 6 .12 contains the magnetic moments of the monolayer atoms in the relaxed
positions . The largest magnetic moments are found for Mn as expected from Hund's

Table 6 .12: Local magnetic moments of the ferromagnetic monolayers on
Cu(111) and Ag(111) .
'Moment of the RW-AFM configuration

rule. The moments calculated including the substrate show the same trend and are
in fairly good agreement with those of the unsupported monolayers (cf. Tab . 6 .2
and 6.4) . V and Cr react more strongly to the substrate than Mn and Fe (cf. the
discussion in Sec. 6 .1.2) . However, comparing the results of the UMLs with those of
the MLs on the substrate it has to be taken into account that the calculations on the
substrate were performed applying the GGA, which is known to increase the magnetic
moments compared to the LDA . In addition we used the slightly larger GGA lattice
constant for the substrate, which also causes a larger magnetic moment. Thus, if the
calculations with and without the substrate were performed using the same exchange
correlation potential and the same substrate lattice constants, the difference between
the magnetic moments would be somewhat larger .

6 .5 .2

	

Results for the monolayers on the Cu(111) and Ag(111)
substrate

With the structural parameters determined in the previous section we repeated the
investigation of the different collinear and non-collinear magnetic states including thesubstrate. Because of the enormous computational expenditure of the non-collinearcalculations we used asymmetric five-layer films with four layers of substrate and onemonolayer of the 3d-metal . In addition, we repeated the calculations only for therelevant magnetic states, i.e . FM, Neel, RW-AFM, 3Q, the spin-spiral state in thecase of Mn and the FI (ferromagnetic) state in the case of V . Most of these magneticconfigurations, FM, Neel, RW-AFM and the spin-spirals, are described by a singleq-vector . Therefore, these states can be explored by a spin-spiral calculation. Thismethod has the advantage that only one atom in the surface unit cell is needed,

ML V Cr Mn Fe
Cu(111)
Ag(111)

- 2.58'
1 .98 3.75

3.05
3.94

2 .69
3 .09
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which reduced the computational effort . Only the 3Q state and the FI state have to
be calculated in real space using surface unit cells containing four and three atoms,
respectively. Due to the complexity of the magnetic states no symmetry operations
could be applied to reduce the size of the irreducible wedge of the two-dimensional
Brillouin zone . In fact, some of the states, e.g . the Neel state, do have a larger sym-
metry according to the spin space group (SSG) (cf. Chap. 4 Eqn. (4.5)) . However,
the current version of our FLAPW program can only deal with space group oper-
ations of the type {Ij0R jt}, i.e . operations that leave the spin invariant . For the
spin-spiral calculations we used the same k-point sets as as for the UML calculations
(cf . 6.3.1), which ranged between 256 and 1024 k-points depending on the system .
For the calculations of the 3Q and the FI state we used 256 in the full Brillouin
zone . The calculations are based on the local density approximation (LDA) apply-
ing the parameterization according to Moruzzi, Janak and Williams [MJW78] . The
planewave cutoff' for the wave functions was set to kma,, = 3 .7 a.u .-1 for the MLs
on Cu(111) and km,, = 3 .3 a.u .-1 for the MLs on Ag(111) . For the expansion of
the charge density we chose a cutoff of Gmax = 13.2 a.u .-1 for the MLs on Cu(111)
and Gmax = 11.1 a.u . -1 for the MLs on Ag(111). The muffin-tin radii were 2.18 a.u .
for both, the Cu substrate atoms and the 3d-metals of the ML, and in the case of
the MLs on Ag, the muffin-tin radii for the Ag substrate atoms were 2.60 a.u . and
2.40 a.u . for the 3d-metals . The angular momentum expansion of the charge density

inside the muffin-tins spheres was truncated at lmax = 8.
Tab. 6.13 lists the energies of all relevant magnetic states of the 3d-monolayers .

For all MLs we found the same ground state as for the corresponding UMLs (cf. Tab.

Table 6 .13 : Energies of the different magnetic configurations relative to the

energy of row-wise antiferromagnetic (1Q) configuration in meV/atom. The

Cr/Cu system does not have a stable ferromagnetic solution .

6.7), except for the ML of V on Ag, where the Neel becomes clearly lower than the

FI state when the substrate is included . Furthermore, the energetic ordering of the

magnetic states of the MLs is the same as that of the UMLs with only two exceptions:

the energy difference between the 3Q state and the RW-AFM state of Cr/Cu and

Fe/Ag changes sign, when the substrate is taken into account . It should be noted

that these two systems showed the smallest energy difference between 3Q and RW-

ML FM FI SS Neef 3Q ground state

Cr/Cu - - - -53 --1.5 Neel

Mn/Cu 261 - 21 77 -17 3Q

Fe/Cu -l05 - - 35 19 FM

V/Ag 98 -26 - -44 16 Neel
Cr/Ag 311 - - -22 8 Neel

Mn/Ag 94 - 15 20 10 RW-AFM

Fe/Ag -l27 - - 10 -3 FM
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AFM of all UMLs and this difference becomes even smaller for the MLs. E3Q - EjQ
is plotted as a function of the 3d-element in Fig . 6.17 . Comparing this plot to the

80

60

40

20
W

0a
W

-20

V Cr Fe

Figure 6.17 : The total energy difference between the 3Q state and the RW-
AFM (1Q) state as a function of the 3d-element . The plot contains results for
MLs with the Cu (circles) and Ag (squares) lattice constant . Negative values
mean that the 3Q state has a lower energy.

result of the UMLs Fig. 6.13 shows, that, apart from Cr/Cu and Fe/Ag, the most
prominent change is found for V/Ag. The rather large value ofE3Q - EjQ is reduced
significantly due to the inclusion of the substrate . The largest change compared to the
UML results (cf. Tab. 6.7) is found for V/Ag. This result is not surprising, becausethis system also shows the most drastic change of the magnetic moment when the
substrate is included . In the case of the UML the FM state and the 3Q state have
practically the same energy, while the energy of the ferromagnetic ML is clearly thelargest of all magnetic states . In most other cases the substrate does not only reducethe magnetic moment, but also reduces the energy differences between the magneticconfigurations . However, the qualitative result remains unchanged . The magneticmoment of all system in the different magnetic configurations are listed in Tab. 6.14 .

The UMLs of Mn show a local minimum in the total energy for spin-spirals withq-vectors on the symmetry line I'--K for both substrates . Since, the energy of theseminima are close to the energy of the RW-AFM state, we have performed calculationswith q-vectors close to the minima including the substrate . The results are presentedin Fig . 6.18 . The ML results are marked by solid symbols and include the highsymmetry points in addition to the q-vectors around the minima. The comparisonwith the results of the UMLs shows again how the substrate reduces the magneticmoments and also the energy difference between the FM state and the RW-AFMstate. In both cases the energy of the minima remains above the energy of that at
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Table 6 .14 : Magnetic moment of different magnetic states inside the muffin-
tin spheres for the MLs on Cu and Ag(111) .

the M-point. The position of the minima is slightly different for the ML_s . In the case
of Mn/Cu with substrate the spin-spiral minimum shifts towards the I'-point, from
q 0 .7K to q N UK, while it shifts in the opposite direction, from q �; 0.6K to
q ti MK, for Mn/Ag.

Although, we found no qualitative difference between the results of the UMLs and
the MLs on an actual substrate, we performed test calculations with seven layer films,
to make sure that the results are not affected by the film thickness . To save computer
time we used k-point sets with 256 k-points instead of 529 k-points in the full Brillouin
zone . This k-point set is not large enough to calculate highly accurate energies, but

it suffices to investigate the effect of the film thickness . The interlayer distance of the

two additional substrate layer has been set to the value of the corresponding bulk

metals . We restricted the calculation to three magnetic states, the FM, the Neel

and the RW-AFM state . We chose two systems, Mn/Cu and Mn/Ag, for this test .

Tab. 6 .15 contains the calculated energies and magnetic moments of the different

configurations . The results of the seven layer calculations confirms those obtained

ML I EFM EN4el- /-AFM /Adel /-NRW-AFM

Table 6.15: Comparison between results obtained with five and with seven

layer thick films . Shown are the energy differences with respect to the RW-

AFM state in meV/atom and the local magnetic moments in AB .
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with five layers . The energy differences change quantitatively, but the changes are

small . The changes of the magnetic moments are negligible . From this result we

would not expect any qualitative change if thicker films were used .

We also carried out tests to investigate whether the choice of the exchange corre-

lation potential has an effect on our results . Spisäk and Hafner [SHOO] performed cal-

ML FM RW-AFM Neel 3Q
Cr/Cu - 2 .09 MB 2.35 ILB 2.20 MB
Mn/Cu 2.78 PB 3 .00 I-LB 3.00 MB 2 .74 MB
Fe/Cu 2.63 PB 2 .43 MB 2 .43 MB 2 .43 PB
V/Ag 1.74 pB 2 .21 MB 2 .19 MB 2.10 fLB
Cr/Ag 3.73 /-LB 3.69 MB 3 .65 MB 3.64 MB
Mn/Ag 3.88 MB 3.91 I-LB 3 .99 PB 3.88 MB
Fe/Ag 3.02 MB 3.03 MB 3 .05 tLB 3.02 MB

Mn/Cu 51 259 69 2 .78 2.98 2.98

Mn/Cu 71 246 72 2 .85 2.98 2.97

Mn/Ag 51 103 22 3 .89 3.98 3.91

Mn/Ag 71 95 21 3 .92 3.98 3.91
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Figure 6 .18: The total energy (solid circles) and the magnetic moments
(solid triangles) of the relevant spin-spiral states of Mn MLs on Cu(111) (top
panel) and Ag(111) (bottom panel) . The results for the UMLs are included
for comparison (open symbols) .

culations on the Mn/Cu(111) system using a real-space tight-binding LMTO method
and came to a different conclusion than we do. They found that the Neel state has
a lower energy than the RW-AFM state . The 3Q state was not included in their
study. They claimed that the difference between their results and our results is due
to the choice of the local density approximation (LDA) in our investigation, rather
than in the generalized gradient approximation (GGA) in their study. However, the
results of our GGA calculation (Tab. 6.16) clearly shows that this is not the case .
All parameters were chosen exactly as during the LDA calculation of the five layer
Mn/Cu film . The only difference is the application of the GGA exchange correlation
potential according to Perdew et al . [PW92] . It can be seen that the use of the GGA
does not change the energetic order of the three magnetic configurations considered .
In fact, the energy difference between the RW-AFM and the Neel state becomes even
larger when the GGA is applied. The GGA increases both, the magnetic moments
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Table 6.16 : Comparison between results obtained with the local density
approximation (LDA) and the generalized gradient approximation (GGA) .
Shown are the energy differences with respect to the RW-AFM state in
meV/atom and the local magnetic moments in AB .
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and the energy differences, though the changes are not drastic. The conclusion, that
the Neel state is not the ground state of the Mn/Cu system remains valid . Very re-
cently Hobbs and Hafner submitted results that confirm our findings [HH00] . These
results were obtained with a projector augmented planewave method different from
the method of Spisäk and Hafner [SHOO] .

In summary we can say that the calculations of the MLs on an actual substrate
confirm the results obtained for the unsupported monolayers . The energy differ-
ence between the magnetic configurations do change quantitatively, but the physical
picture developed during the investigation of the UMLs remains unaltered .

6 .5 .3

	

Tests of the convergence with respect to numerical cut-

offs

In addition to the test calculations described in the previous section we tested the
convergence with respect to the numerical cutoffs, i.e . the k-point sampling and the

planewave cutoff for the basis functions.
During the force calculation the aim was to determine the positions of the atoms

of the relaxed surface. Therefore, we applied the following test : At the end of the

calculation of the relaxations, when all forces were smaller than 1 mRyd/a.u., we

performed self-consistent calculations with larger cutoffs verifying the forces once

more. We increased the planewave cutoff kma,, from 4.0 a.u .-1 to 4.4 a.u . -i , i.e . from

85 to 115 basis functions per atom, for the MLs on Cu(111) and from 3.5 a.u .- to

3.9 a.u .-I, i .e . from 85 to 120 basis functions per atom, for the MLs on Ag(111).

In separate calculations we increased the number of k-points from 40 to 70 for both

substrates . We found that in all cases the forces stayed smaller than 1 mRyd/a.u.

Another parameter that can be critical is the choice of the vacuum boundary.

If the vacuum boundary is too close to the outmost atom the total energy becomes

inaccurate . This problem typically occurs when the distance between the vacuum

boundary and the outmost muffin-tin sphere becomes smaller than 0.5 a.u . A char-

acteristic symptom of this problem is that the atomic configuration that corresponds

to the minimum of the total energy and the configuration for which the forces vanish

do not coincide . During our force calculations this happened twice, for Cr/Cu and

V/Ag. In both case increasing the distance between the outmost muffin-tin sphere

ML EFM ENeel AFM NNeel [tRW-AFM
Mn/Cu LDA
Mn/Cu GGA

261
296

77
89

2.78
2.88

3.00
3.10

3.00
3.10
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and the vacuum boundary removed the problem.
With our non-collinear calculations we investigated the energetics of various mag-

netic configuration . Therefore, we tested the convergence of selected energy dif-
ferences between magnetic states with respect to the number of k-points and the
planewave cutoff. The tests were carried out in the same way as described in Sec . 6 .3.3
for the unsupported monolayers . We chose the energy difference EFM -ERw-AFM and
in some cases EN&1 - ERw-AFM for the test calculations . As in Sec. 6.3 .3 we tested
with spin-spiral calculations, since they have the smallest unit cell . During the tests
we began with a small k-point set and then increased the number of k-points . Since
we found no significant change of the convergence behavior of the MLs on the sub-
strate compared to the UMLs we did not go beyond the maximum k-point set used
for the UMLs. In order to test the planewave cutoff convergence we increased kmax
from 3.7 to 4.1 a.u .-1 (80 to 110 basis functions per atom) for Mn/Cu(111) and from
3.3 to 3.7 a.u.-1 (85 to 120 basis functions per atom) for Mn/Ag(111) . Due to the
large cost of the non-collinear calculation we performed the planewave cutoff test only
for the Mn monolayers . The change of the energy difference was 0.4 meV for Mn/Cu
and 0.8 meV for Mn/Ag.

6.6

	

Calculated STM images of non-collinear mag-
netic states

All of the ground state spin-structures that have been presented in the last sections
are spin-structures on the atomic-scale . This is a length scale below the resolution
of current experimental techniques for the investigation of surface magnetism. How-
ever, the real-space observation with high spatial resolution is of great importance
to determine the magnetic structure of complex magnetic systems and to verify our
theoretical predictions . In general a method that combines magnetic sensitivity and
atomic resolution would provide an experimental tool to gain an understanding of the
magnetic interaction in these nano-magnets. Unfortunately, such a technique com-
bining surface sensitivity and magnetic resolution on the atomic scale is at present
unavailable. In this section we propose the spin-polarized scanning tunneling micro-
scope used in the imaging mode to be the experimental tool of choice .

The scanning tunneling microscope (STM) is one of the key tools in the nano-
sciences and in nano-technology. It has revolutionized our approach to surface science,
as atomic resolution of semiconductor and metal surfaces is now routinely available.
Recently, the use of a spin-polarized STM (SP-STM), which is realized for example
using magnetic coated tips, has opened the field of nano-magnetism . The topological
antiferromagnetism of Cr(001) [WGG+90, KBRW00], ferromagnetic domains o£ thin
films [BGW98] domains at the surfaces of ferromagnetic materials [WK99], and Bipo-
lar antiferromagnetism of Fe nano-wires on W(110) [PKBW00] have been investigated
with SP-STM. On the atomic scale these magnetic structures are ferromagnetic and
may couple antiferromagnetically on a mesoscopic or microscopic scale of 10 nm to
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1000 nm. The magnetic order, i.e . the domains, in these structures has been visu-
alized with the SP-STM using the spectroscopy mode in most cases, i.e . measuring
the spin-dependent differential conductivity. By comparing a map of the differential
conductivity with the simultaneously measured topography of the sample domain
boundaries and other features can be correlated to the morphology. The magnetic
resolution of this method has been reported down to 1 nm . Only one of the SP-STM
studies mentioned above [WGG+90] applied the STM in the topography mode .

In the following we introduce an approach to image complicated magnetic struc-
tures of surfaces directly on the atomic scale by SP-STM [HKW+00] . By generalizing
the Tersoff-Hamann model to the case of SP-STM and applying the expansion of the
STM image into two-dimensional planewaves [HBP+98] we show that in general the
SP-STM image of any magnetic superstructure within an arrangement of chemically
equivalent atoms leads to an SP-STM image displaying a pattern corresponding to
the magnetic configuration . This is in contradiction to the intuitive expectation
that spin-polarization is a small effect, and consequently the non-spin-polarized STM
image reflecting the chemical structure is only slightly modulated in the SP-STM
experiment. This approach extends the use of STM from the exploration of the topo-
logical, chemical and ferromagnetic structure of surfaces to the inherently much more
difficult investigation of antiferromagnetic surfaces and surfaces with non-collinear
spin structures with ultimate, atomic resolution.

The approach has been already verified experimentally. Very recently the SP-
STM has been used successfully to prove the existence of collinear two-dimensional
antiferromagnetism in monolayer Mn films on W(110) [HBK+00] . Here, we explain
how the SP-STM can be applied to resolve arbitrary laterally periodic spin-structures,
e.g . complex non-collinear spin structures . Taking the Neel state of Cr/Ag(111) and
the 3Q state of Mn/Cu as an example, we discuss the expectations for the STM

picture and thus show how the magnetic ground state of a magnetic surface can be
verified experimentally .

6 .6 .1

	

Principle of the SP-STM on the atomic scale

In the derivation of the tunneling current by Tersoff and Hamann [TH83] the spin

of the electron has been taken into account only by the double occupation of single-

particle states . However, in order to describe the tunneling in the set-up of the spin-

polarized STM (SP-STM) we need to take the spin-polarized electronic structure of

both tip and sample explicitly into consideration . The SP-STM can be realized by

coating a common STM tip with a magnetic material, for example Fe or Gd have been

successfully used [PKBW00, BGW99], and using this spin-sensitive probe to scan the

surface of the magnetic sample . In the following we assume the coated tip to be

ferromagnetic with a spin-polarized band structure of spin-up (f) and spin-down (~)

states with respect to a quantization axis given by the magnetization axis MT of the

tip . This means that we assume a collinear tip magnetization, which is certainly an

excellent approximation for tips with ferromagnetic coating. The orientation of the
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magnetization axis MT of the tip with respect to the geometric axis of the tip depends
on the tip material and the actual geometric structure of the tip [PKBW00, BGW99] .

To understand the working principle of the SP-STM we go one step back to the
Transfer Hamiltonian Method of Bardeen [Bar6l], which is the basis of the Tersof
Hamann model. The Transfer Hamiltonian Method is based on several assumptions .
First of all, the electron tunneling is treated as a one-particle process, i .e . it is ne-
glected that electrons can interact while tunneling. In particular loss of spin infor-
mation by scattering processes connected with a spin-flip in the tunneling barrier is
not considered. For the vacuum tunneling of STM this can be excluded to a high
degree since the only scattering processes are given by many-particle processes which
seem to play a minor role in most cases. Further, we assume elastic tunneling, i.e . no
energy loss of the electrons by interaction with quasi-particles of the electrodes, e .g .
plasmons or phonons, is considered . And finally, a direct interaction of tip and sam-
ple resulting in the formation of coupled electronic states is not taken into account .
In this approximation the tunneling current between a magnetic tip at position RT
and a magnetic sample can be calculated using Fermi's Golden Rule :

l(RT, V)

	

=

	

h

	

E f (ES - Es ) - f (ET - EF)] x

8 (Evv - Es - eV) IMVQ,ß(RT) I 2 ~

	

(6.43)

where V is the applied bias voltage, f is the Fermi distribution function, EF and ET
are the Fermi energies of the sample (S) and the tip (T), and E' and ET are the
energies of a sample state it and tip state v with spin v, respectively. The S-function
guarantees the energy conservation . Eqn. (6.43) contains only one spin summation
over the spins of the tip. As a consequence of the assumption of a collinear tip
magnetization the tip states can be written as pure spin-up and pure spin-down
state. However, we do not make this assumption for the sample states, to allow
the treatment of samples with a non-collinear magnetic state. Thus, the sample
states are written as general Pauli-spinors that can contain contributions in both
spin components :

,0tc (r) =

	

~()�~(r)
(6.44)

In the following we drop the r dependence of the wave functions. The key problem
is to calculate the matrix elements given by:

Mvo,,u(RT) = C`lwv JUTjOS ,

	

(6 .45)

where UT is the tip potential. The integration is over the volume of the tip, which is
separated by an hypothetical boundary surface from the volume of the sample.

In order to simplify the calculation of the tunneling current further we apply the
Tersof Hamann model. Tersof£ and Hamann introduced several approximations to
allow the calculation of the matrix elements Mva,u(RT) . All of the approximations
concern the electronic structure of the tip . First, they assume that the tip can be
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replaced by a single atom with spherical wave functions . Since both, the sample and
the tip wave functions, decay exponentially into the vacuum, the main contributions
to the matrix element come from a region between sample and tip where both wave
functions still have finite values' . Therefore, the wave function of the tip can be
replaced by the solution of the vacuum Schr8dinger equation, which is given by the
Bessel function ko :

u(r) = C,. ko(r.,P) X, = C,
exp ( -~~P)

XU7

	

(6 .46)
~~P

where p = Ir - RT I and nQ is the decay constant of the tip states that depends on
the energy of the tip state and the tip potential . Now the matrix elements can be
calculated: 2

Mv0,,~(RT) =:

	

vv
I UT1,0s) = -2~cm (x,)*~s(RT) .

	

(6.47)

We assume that the spin-up and spin-down s-wave states can be characterized by
the same decay constant n = nt = n~ and the same coefficient C = Ct = C~.
At this point, we can already see that the projection of the spin-polarized sample
wave function onto the magnetization direction of the tip, (X,) *,0,S, enters into the
equation . In the next step we assume that the density of states (DOS) of the spin-up
nT(e) and spin-down nT(e) tip states is constant in energy. However, For a magnetic
tip the DOS of spin-up and spin-down states are non-equal. Inserting the matrix
elements into the equation for the tunneling current, Eqn . (6.43), leads to :

_ 2~re
I (RT V)

	

_

	

f de 9VT (e)	S(e~- e) x

[nT I Mu,vt(RT) I2 + nT IMJL,v~(RT) I 2 J
(6.48)

where the summation over the tip and sample states has been replaced by an energy

integration, and 9VT(e) = f (e -EF) - f(e+eV - EF) . Inserting the matrix elements
in the Tersofl-Hamann approximation into Eqn. (6 .48) and after some algebra we

arrive at the final result of the current in the case of SP-STM :

47r3C2h3 e

	

(

	

(6.49)I(RT, V) -

	

~2m2

	

x [nTNs(RT, V) + mTMS R'r, V)],

where nT is the density of states (DOS) of the tip, given by the sum of n.~ and

nT, nT = nT + nT . mT is the spin-polarized density of states (SDOS), which is

given by the difference of nT and of , ImT J = nt - of , and has the direction of the

magnetization of the tip . In addition, we have introduced the integrated local density

of states (ILDOS) of the sample NS(R',V) and the integrated local spin density of

'The integration over the volume of the tip can be replaced by an integration over the boundary

surface between the sample and the tip using Green's theorem. This shows that only the value of

the tip wave function on the boundary surfaces is important for the matrix element. A detailed

discussion of the derivation can be found in the original paper or e.g . in [Hei00]
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states (ISLDOS) of the sample Ms(RT, V) given by an energy integral of the SLDOS,
ms (RT, e)

Ms(RT,V)

	

-
f

degVT(E)EJ (ENI - E) ,0'51 (RT) o-,OS(RT)

-

	

f de 9VT(6) ms(RT, e) - (6.50)

The ILDOS of the sample Ns(RT,V) is also defined by Eqn. (6 .50) if we replace 0-

by the unity matrix.
Eqn. (6.49) states that the tunneling current can be separated into a non-spin-

polarized part depending on the local density of states of the sample at the position
of the tip and a contribution due to the spin-polarization of tip and sample given by
the projection of the vector of the local spin-density of states to the magnetization
direction of the tip. In the case of a non-spin-polarized STM experiment, i .e . using a
non-magnetic tip, the second part vanishes and the current reduces to the result of the
Tersoff-Hamann model. The important question to be answered now is, whether or
in which cases the spin-polarized contribution can become dominant which is desired
in order to observe large magnetic contrasts in the measurements .

The ILDOS of a periodic surface can be written in terms of a two-dimensional
Fourier expansion :

Ns(r 11 , z, V) = ENC� , (z, V) exp (iGlir li ) .

	

(6 .51)

GII

GPI denotes the reciprocal lattice vectors in two dimensions, and NG11 (z, V) are the
tip-sample distance (z) and bias-voltage (V) dependent expansion coefficients . A
similar expansion is possible for the three components of the SLDOS . As we have
described in Sec. 3.5 the plane waves of symmetry related reciprocal lattice vectors
G' can be summarized to a two-dimensional star function 02D(r11) . Inserting into the
tunneling current, Eqn. (6.49), we obtain:

I(rll , z , V)ocnTEN(z,V)o2D(ru)+mTEMs(z,V)02D (ru), (6 .52)
s

with a representative vector G' for each star function 02D . Due to the tunneling of
electrons through the vacuum barrier these coefficientsdecrease exponentially with
increasing length Gil [HBP+98], and to a good approximation the topographic STM
image or, to be more precise, the constant current STM image, is determined by
the lowest star function 02D, which is laterally non-constant, corresponding to the
smallest non-vanishing Gel-vector:

AI(r II , z, V)

	

I1(V)4'1D (rII) x eip -2z

	

2m/ ZIEP -~- eVI -I- (G
(
h)/2)2

.

	

(6.53)

Since in this context we are only interested in the dependence of the exponential
decrease on the representative reciprocal lattice vector Gil the kll-point dependent
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exponential term has been replaced by the dominating high symmetry point of the
two-dimensional Brillouin zone, i.e . k1l = -G11 1 /2 .

Any magnetic superstructure lowers the translational symmetry, and the addi-
tional tunneling current, DI oc MT - ms , due to spin-polarized electrons, is sensitive
to the unit cell of the superstructure . Therefore, star coefficients of stars formed by
smaller reciprocal lattice vectors become relevant for the STM image. Since these
new star functions possess exponentially larger coefficients they dominate the STM-
image, even in the case of small effective spin-polarization mTMS, for example if the
angle between the sample magnetization and the tip magnetization is close to 90° .
Thus the corrugation amplitude Az (the maximum difference in tip height while it
scans the surface) is directly proportional to the effective spin-polarization .

These arguments are quite general and in principle applicable to any magnetic
superstructure . The electronic structure, contained in I,,l (V) of Eqn. (6.53), of a
specific surface can still compete with this effect, and first-principles calculations need
to be performed in order to interpret the experiments unambiguously.

6.6 .2 Calculated SP-STM images of Cr/Ag(111) and
Mn/Cu(111)

To demonstrate the potential of the SP-STM to unravel the non-collinear magnetic
structures predicted in the preceding sections we apply our theory to two monolayers
with two different non-collinear magnetic ground states : the planar N'eel state and
the three-dimensional 3Q-state . The Neel state is predicted as the ground state of
a Cr monolayer on the Ag(111) surface and for the Mn/Cu(111) system we found
the lowest energy for the 3Q state (cf. Tab. 6.13 Sec. 6.5.2). For these two systems

we have calculated the SP-STM image for the magnetic ground state and the most

important competing magnetic state. Comparing the result of an actual experiment

with the theoretical STM images will allow to determine the magnetic state of such

systems experimentally. For the STM calculations we used monolayers on an actual

substrate as in Sec. 6.5, after all atom positions have been relaxed. All computational

parameters have been chosen as discussed in Sec. 6.5 .
We begin with the STM images of the RW-AFM state and the Neel state of

Cr/Ag(111) . Fig. 6.19 shows the calculated STM images for the RW-AFM structure.

The left panel shows an image as it wouldbe produced by conventional STM without

magnetic contrast . The light areas correspond to a large (I)LDOS, i.e . protrusions of

the topographic map obtained from an experiment in the constant current mode. All

atoms are imaged equivalently as protrusions . The superimposed schematics of the

unit-cell shows the positions of the atoms as well as the orientation of the magnetic

moments at each atom site . The right panel of fig. 6.19 displays the STM image

calculated for an magnetic tip with a magnetization direction parallel to the mag-

netization direction of the sample . The equivalence of the atoms with opposite spin

direction is lifted and the two different types of atoms can clearly be distinguished .

The atoms that have a magnetic moment parallel to the moment of the tip are im-
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a) non-magnetic tip
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Figure 6.19: Calculated STM images for the RW-AFM structure. Both the
image for conventional STM (non-magnetic tip, panel a) and for SP-STM
(magnetic tip, panel b) are shown. The atomic positions and the magnetic
moments are superimposed on the STM image.

aged as protrusions while the atoms with opposite magnetic moment are shown as
depressions. This setup obviously provides maximal magnetic contrast as the angle
between the direction of the magnetization of the tip and the magnetization of the
sample is zero . A different angle would simply lead to a reduction of the magnetic
contrast without changing the stripe pattern. If the magnetization of the tip was
exactly perpendicular to the magnetization of the monolayer, the magnetic contrast
would disappear, and the magnetic tunneling current would be determined only by
the non-spin-polarized contribution . Thus, one would obtain the same STM image as
with a non-magnetic tip (fig . 6.19 left panel) . However, a small parallel component
of the tip magnetization is enough to find the stripe pattern, as we have discussed in
the previous section .

The second magnetic state we consider is the Neel state, which is a non-collinear
configuration . The magnetic moments of all atoms lie within one plane. Hence, a tip
with a magnetic moment in this plane would result in the strongest magnetic contrast
and the magnetic contrast vanishes when the tip magnetization is perpendicular to
the plane. Different orientations of the tip magnetization in the plane of the magnetic
moments of the monolayer result in qualitatively different images, all of which show a
magnetic contrast . Therefore, we have calculated the STM image using two different
in-plane tip magnetizations . Analogously to Fig. 6.19 panel a of Fig. 6 .20 shows the
STM image as expected for a non-spin-polarized tip showing all atoms equivalently as
protrusions. Panels b and c of Fig. 6.20 correspond to STM images with magnetic tips
for two different in-plane angles of magnetization . The arrows in the superimposed
structure represent the projection of the magnetization at the atom sites on the
direction of the magnetization of the tip. Panel b shows the image that is obtained
if the tip magnetization is parallel to the magnetic moment of one of the three atoms
in the magnetic unit cell . Consequently, this atom appears as the highest protrusions
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a) non-magnetic tip b) tip magnetization+ c) tip magnetization-0-

Figure 6.20 : Calculated STM images for the Mel structure . The image for
conventional STM (non-magnetic tip, panel a) and for two different directions
of the tip magnetization, parallel (panel b) and perpendicular (panel c) to one
of three different magnetic moment directions, are displayed . The superim-
posed arrows represent the projection of the magnetization at the atom sites
on the direction of tip magnetization.

(large bright spots) in the SP-STM image . The projection of the magnetic moment
of the other two atoms onto the direction of the tip magnetization is equal, i.e .

MTMS(RT, V) (cf. Eqn. (6.49)) has the same value for both atoms . Hence, they

appear with the same "height" in the STM image . The bright spots of the atoms with

the parallel magnetic moment mark the corner points ofthe (fix ,\,F3) superstructure,

which can therefore be clearly identified from the STM image . This (V3- x V13_)

superstructure can also be found in the right STM image displayed in Fig . 6.19 .

However, in this geometry the projection of the magnetic moments of the atoms on

the direction of the magnetization of the tip reveals three different types of atoms

and hence the STM image differs from the one discussed above.

As a final example we present SP-STM images of the 3Q state of a Mn monolayer

on Cu(111) . Fig . 6.21 a shows the STM image for a non-magnetic tip, where all

atoms appear equivalently as protrusions (red and yellow) . The 3Q state is a three-

dimensional spin structure . Therefore, a magnetic contrast is obtained independent

of the direction of the tip magnetization . The 3Q state is shown in Fig . 6.21 b. Since,

we performed the calculation in the scalar-relativistic approximation, i.e . spin-orbit

coupling has been neglected, the relationship between the lattice and the magnetic

moments is undetermined. However, this is not crucial, because only the relative angle

between the magnetic moments and the direction of the tip magnetization, which is

also unknown, is important for the STM image . In fact, the magnetic configuration

shown here is rotated with respect to that presented in Fig. 6.7 on page 112 . Here two

of the four moments in the magnetic unit cell are in the x-z-plane and the other two

moments are in the y-z-plane . All moments span the same angle with the x-y-plane,

but the projection of the moments in the x-z-plane onto the z-axis has the opposite
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show the same part of the surface, which is indicated by the

dashed line in panel b . The solid line shows the magnetic unit cell . Panels c
f show SP-STM images for tips with different directions of the magnetiza
As a result of the varying relative angle different patterns are observed .

u .

-plane. Consequently, an STM
don (Ft. 611 c) would image the atoms with the moments

in the x-z-plane as protrusions (red and yellow) and the atoms with the moments in
the Y-z-plane as dopressions (violet and blue), resulting in a stripe pattern .

i{ , n is in y-direction (Ft. 611 d) the two atoms with moments
the x-z-plane appcar with the same "height" in the, STM image. One of the atorns
in the y-z-plane has positive projection on the y-axis and is therefore image

bright red spots in the image, that mark the corner points
init cell . The other atom in the y-z-plane comes out as a

With a more general direction of the tip magnetization (Fig . 6.21 e and f
c(, ',! appear at `a different, "height" in the SP-STM image,

feel state of Mn/Cu(l11)
(Fig . 6 .19 and 6 .20) .

generally possible to distinguish
not true for all direct
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be mistaken with the image of the RSV-AFM state in Fig . 6.19
In conclusion, we can say that the SP-STM is a powerful tool for the

of magnetic surfaces . Depending on the direction of the tip magnetization we expect
SP-STMT images with different patterns that reflect the magnetic super-structure .
general, the magnetic unit cell can be identified from these patterns, which will allow
to distinguish between the different magnetic states . Hence, with the SP-STM it
becomes possible to determine the ground state of surfaces with complex magnetic
structures on the atomic scale, which allows to verify the predictions of our total
energy calculations experimentally.
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Chapter 7

Magnetism and electronic
structure of hcp Gd and the
Gd(0001) surface

The rare earth metals are of great practical interest because of their role in hard
magnetic intermetallics [FHLB93] and high density storage media [Whi85] . They are
distinguished by their unique magnetic, electric and optical properties . The open shell
of highly localized 4f electrons is responsible for their large magnetic moments. How-
ever, the overlap of the 4f shells on neighboring lattice sites is negligible . Therefore,
the 6s, 6p and 5d states play an essential role in the magnetism, because they me-
diate the magnetic interaction by a Ruderman-Kittel-Kasuya-Yosida (RKKY)-type
exchange, although their contribution to the magnetic moment is small. This com-
plicated coupling mechanism leads to exotic magnetically ordered structures like like
helical spin structures [JM91, NM00] . The rare earth metals are strongly correlated
materials . Due to their localized f electrons that lie in the same energy range as the
itinerant s, p and d electrons they represent a challenge for first-principle theory.

In particular Gd, one of the four ferromagnetic elementary metals (Fe, Co, Ni

and Gd) known to occur in nature, has been studied intensively by experiment and

theory. It has become a model system for the application of new relativistic theoretical

methods [KH77, SK85, KS89], because of the unique combination of ferromagnetism

and relativistic effects . Experimentally many of the magnetic properties of Gd metal

are well understood . The half filled 4f shell (S = 7/2, L = 0) leads to the formation of

awell-localized spin-only magnetic moment. These moments couple via a RKKY-type

exchange to form a ferromagnetic Heisenberg system with a bulk Curie temperature

of TC = 293 K. The f electron moment polarizes the valence electrons resulting in a

magnetic moment of 7.63 AB . However, the appropriate treatment of the localized 4f

electrons in first-principle calculations is still a matter of debate . Several approaches

have been suggested in addition'to the treatment of the 4f bands as valence state,

including the treatment as core states, the application of Hartree Fock exchange

[BK94c, BK94b, BK94a] and the LDA+U method [SLP99, SPF00] .
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The 4f-core model has already been introduced by a very early study [DF64] .
Within the 4f-core model the 4f electrons are treated as core states, i.e . hybridization
of the 4f states with other (valence) states and also with any states from other lat
tice sites is neglected. Much later Sticht and Kübler [SK85] performed self-consistent
calculations in the local density approximation (LDA) comparing the 4f-core model
and the 4f-band model, where the 4f electrons are treated as valence states . They
obtained an much larger value for the magnetic moment (8.43 AB) from their 4f-core
model calculation and concluded that this model was not an acceptable approxima-
tion . However, the large magnetic moment has not been reproduced by latter 4f-core
model calculations, e.g . [AWJE93] . From their 4f-band model calculation Sticht and
Kübler found a magnetic moment of 7.52 AB in better agreement with experiment.
By a comparison of the density of states (DOS) at the Fermi energy to specific heat
experiments they found that the calculated DOS was too large. They noted that the
subtraction of the 4f contribution to the DOS results in a much better agreement.
They also remarked that the binding energy of the majority 4f states was to small
(4 .5 eV) compared to photoemission data . Singh [Sin91] carried out a detailed study
using the 4f-band model, also finding that the DOS at the Fermi energy was too
large. In accord with Sticht and Kübler he assigns a significant part of the DOS to
minority 4f states . However, he concludes that the band model is more appropri-
ate for Gd, because he found Fermi surface sections in agreement with de Haas van
Alphen experiments [SSHK76, MY77] that depend on the hybridization of the 4f
bands with other valence bands. This conclusion was contradicted by Ahuja et al .
[AAJB94], who stated that they believe that one does not need to explicitly include
the f-d hybridization in the calculation in order to describe the small orbits (of the
Fermi surface) .

The first total-energy FLAPW calculation of the magnetic ordering at the
Gd(0001) surface [WLFF91] using the 4f-core model reported an antiferromagnetic
coupling of the surface layer with respect to the bulk, in agreement with an early
interpretation of experimental data [WAG+85] . This result stimulated a number of
theoretical studies by several authors, investigating the magnetic coupling of Gd,
both at the (0001) surface and in the bulk . Subsequently Bylander and Kleinman
published a series of studies [BK94c, BK94b, BK94c], concentrating on the adequacy
of LDA for the Gd 4f states . By comparing Hartree-Fock with LDA atomic calcu-
lations [BK94c] they concluded that the minority 4f resonance in the metal right
above EF, which is responsible for the enhanced N(EF), is an artifact of the LDA. In
a second paper the authors suggested a new approach, treating the majority 4f states
as localized and fully occupied and the minority states in the band Hamiltonian. The
effective potential in the latter calculations was constructed from Hartree-Fock theory
for the core density and from LDA for the valence charge density. A single parameter
was used to fit the calculated bulk magnetic moment to the experimental value . This
constraint on the calculation has the effect of pushing the minority 4f states to higher
energies . In fact, the authors found the minority 4f states at a much higher energy
(8.4 eV above EF) than an inverse photoemission (IPE) experiment [LBC77] (4.3 eV) .
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With this method they found a much smaller value of N(EF) and also an equilibrium
lattice constant in good agreement with experiment . Motivated by a paper of Heine-
mann and Temmerman [HT94], who found ferromagnetic coupling for hcp Gd with
LDA and antiferromagnetic coupling with the generalized gradient approximation
(GGA), using the linear muffin-tin orbital (LMTO) method in the atomic sphere ap-
proximation (ASA), Bylander and Kleinman also performed total energy calculations
for the AFM bulk phase. However, they found the correct FM ground state. They
extended their study to the Gd(0001) surface [BK94a], using the same method as in
the previous publication. In contrast to a former study [WLFF91], which predicted
an outward relaxation by 6.3% for the ferromagnetic surface, they found a contrac-
tion by 3.4% in agreement with a low-energy electron-diffraction (LEED) experiment
[QLJF92] . Comparing FM and AFM coupling of the first layer to the bulk they
discovered a lower total energy for the FM configuration, which also contradicted the
results of [WLFF91] . Eriksson et al . [EAO+95] investigated the magnetic coupling for
hcp bulk Gd and the Gd(0001) surface. They applied the full-potential linear muffin-
tin orbital (FP-LMTO) method. Applying the 4f-band model they found an AFM
ground state for bulk Gd irrespective of whether they used LDA or GGA. However,
the application of the 4f-core model led to the prediction of the correct FM ground
state. Thus, Eriksson et al . adopted this approach for their surface calculation, also
finding FM coupling of the first layer and an inwards relaxation of 4.4% in reasonable
agreement with the results of Bylander et al . Another approach has been used by
Shick et al . [SLP99, SPF00] . They apply the so-called LDA+U energy functional
[AAL96] for the description of the localized 4f electrons . Within this method the
strong intra-atomic interactions of the localized states is introduced and treated in a
Hartree-Fock-like manner. One effect of this method is that the occupied and unoc-
cupied 4f state split apart . The minority 4f states are shifted away from the Fermi

energy to higher energies, removing the artifact from the LDA. At the same time the

majority 4f states are shifted to lower energies. In contrast to the 4f-core model,

using the LDA+U description the majority 4f states still hybridize slightly with the

states of the neighboring atoms. They found the correct FM ground state for hcp

Gd and also FM coupling of the first layer of Gd(0001) . In addition they reported

that surface relaxation led of to a 90% enhancement of the FM surface to bulk effec-

tive exchange coupling, resulting in a 30% increase of the surface Curie temperature,

in agreement with several photoemission and photoelectron diffraction experiments

[TWW+93, VCR93, WSLM+96, TPY+98] .

A very interesting contribution has been made by Sandratskii and Kübler

[SK93, SK98] . There has been an ongoing discussion about which of the two physical

pictures, the Stoner mean-field picture or the picture of local magnetic fluctuations

(often referred to as spin-mixing), is more appropriate for the description of the mag-

netism of the valence electrons (s, p) d) of Gd at finite temperature . Within the Stoner

picture the size of the local moments decreases with temperature and with it the ex-

change splitting of the electronic states with up and down-spin character, while all mo-

ments stay parallel . The spin-mixing picture allows for both, fluctuations of the size
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and the direction of the local moments. In this description it is not a priori clear what
happens to the spin-splitting at finite temperature . Still, the question which picture
is more suitable is commonly discussed in terms of the experimentally observed spin-
splitting. Recent photoemission experiments [LPB+95, WSLM+96, DGP96] found
that the spin-splitting of certain valence bands vanish when the temperature ap-
proaches the bulk Curie temperature. These results are interpreted as support for
the Stoner picture. On the other hand, optical experiments [KT75, BEG84, KS91]
observe a spin-splitting that stays constant with changing temperature. Thus, the
topic is controversial. Sandratskii and Kübler argued that the different experiments
are governed by different parts of the electronic states, i.e . they probe the bandstruc-
ture of the sample in different regions of the Brillouin zone . They modeled the effect
of temperature by performing calculations in various non-collinear magnetic config-
urations, including spin-spirals as a model for magnons but also "random" magnetic
states that resemble the paramagnetic state of Gd metal above the Curie tempera-
ture . They used calculations with different relative angles between neighboring atoms
to model different temperatures . The results showed that, as expected, the large 4f
local magnetic moment is very stable in size and does not change significantly with
the magnetic configuration . They also found that the valence local moment stays
finite for all magnetic states . It reduces by no more than about a factor of 2 even
for the largest relative angles between the atoms. The magnetic configuration has a
strong influence of the electronic structure, i.e . the bandstructure and the density of
states (DOS), of Gd. In the FM state all atoms have a definite spin projection onto
the global spin quantization axis and both, the bandstructure and the DOS, show
an exchange splitting of 0.8 - 0.9 eV. When the angles between the local moments
increase states of different spin character hybridize, and thus cannot be assign to one
spin character anymore. The spin-splitting of the DOS decreases. At large angles
between neighboring atoms a spin-splitting of the DOS cannot be observed . In fact,
the DOS becomes very similar to that of (hypothetical) non-magnetic Gd. By a
detailed analysis of the bandstructure Sandratskii and Kübler can account for both,
the results of the photoemission experiments as well as the optical experiments .

The experimental results at the Gd(0001) surface are even more controversialthan in the bulk . An early study [WAG+85] suggested a possible AFM coupling of
the surface layer to the underlying bulk . This finding was subsequently supportedby the calculations of Wu et al . [WLFF91] . However, more recent photoemissionexperiments [MGE92, TWW+93, LPB+95] did not confirm AFM coupling . Instead,the in-plane component of the surface magnetization was observed to be parallel tothe bulk, although one study [TWW+93] found an additional perpendicular compo-nent of the surface magnetization . Another controversial topic is the possibility thatthe Curie temperature of the surface TC is larger that the bulk Curie temperature .Such an enhancement of has only been observed for three ferromagnets, including Tband FeNi3 , and leads to unusual critical behavior . In general the Curie temperatureis lower at the surface due to the reduced coordination . At the Gd(0001) surfacethe enhancement of the Curie temperature was first found by Rau et al . [Rau83] .



7. 1 hcp bulk Gd

This effect has been studied by several authors using different techniques, including
photoemission [TWW+93, VCR93, LPB+95, WSLM+96, TPY+98], inverse photoe-
mission [DGP96] and magneto-optic Kerr effect measurements [WAG+85]. Most of
the studies, but not all [DGP96], found an enhanced surface Curie temperature .
However, the values of the enhancement vary between 10 - 85 K.

Similarly to the bulk, the temperature dependence of the spin-splitting of dx2

surface states of Gd is very controversial. This surface state has been observed by
various techniques, including photoemission (PE) [MGE92, LPB+95, WSLM+96],
inverse photoemission (IPE) [WSLM+96, DGP96] and also scanning tunneling spec-
troscopy (STS) [BGH+98, GBH+98, GBHW99] . All experiments agree in that the
surface state is spin-split . At low temperatures the majority part of the surface state
is occupied and is located about 200 - 250 meV below the Fermi energy (EF) . The
unoccupied minority part of the surface state is found at about 400 - 500 meV above
EF. Some of these experiments have been performed at temperatures as low as 29 K.
While the position of the majority state is in reasonable agreement with the calcu-
lation of Wu et al . [WLFF91], the theoretically predicted position of the minority
state is . much higher (1 eV) than found experimentally. The experimental results
agree not only upon the position of the surface state at low temperature, but also
in the fact that both parts of the surface state approach EF and the spin-splitting
decreases. It should be noted here that the PE and IPE experiments can only observe
the occupied (majority) and unoccupied (minority) part of the surface state, respec-
tively. Therefore, two experiments, often carried out with different samples of even
by different groups, are necessary to determine the spin-splitting . The question that
remains controversial is whether a finite splitting of the surface state remains at large
temperatures . While, for example, Weschke et al . [WSLM+96] found a collapse of the
spin-splitting at about 350 K by a combined PE and IPE study, the STS experiments
[BGH+98, GBH+98, GBHW99] still observed two distinct peaks, which were split by
400 meV, at the same temperature .

In the following section we present a study similar to that of Sandratskii and
Kübler, however for the Gd(0001) surface . We simulate the effect of temperature
on the electronic structure and in particular the dx2 surface state by non-collinear

calculations . But before we turn to the surface we investigate hcp bulk Gd.

7.1

	

hcp bulk Gd

As we have discussed in the previous section, the treatment of the 4f states in first

principles calculations has been amatter of extensive debates in the literature . There-

fore, before we started to investigate the Gd(0001) surface we performed bulk cal-

culations in order to find out which method was most appropriate for our study.

We investigate the effect of the application of the different methods on the ground

state properties such as the lattice constant, the magnetic moment and in particular

the ground state magnetic configuration . We also studied how the different ways of

treating the 4f states affected the s, p and d valence states . The study includes the
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application of LDA as well as GGA potentials and a comparison between the 4f-band
and the 4f-core method

7.1 .1

	

Computational details

We performed self-consistent calculations in the local density approximation (LDA)
applying the parameterization according to Moruzzi, Janak and Williams [MJW78]
and also in the generalized gradient approximation (GGA) of Perdew and Wang
[PW91] . We chose the experimental Gd lattice constant, aGd = 6.858 a.u . and the
experimental c/a ratio of 1 .597 [BLS54] . During the calculation of the lattice constant
the c/a ratio was kept at the experimental value. The planewave cutoff for the
basis functions was set to Kyn,ax = 3.0 a.u . -1 . This corresponds to about 100 basis
functions per atom. The charge density and the potential were expanded up to a
cutoff Gmax = 9.0 a.u . -1 . We set the muffin-tin radii to RMT = 2.80 a.u. The wave
functions as well as the density and the potential were expanded up to 1"'ax = 8 inside
the muffin-tin spheres. The 5s and 5p semi-core states were treated in a separate
energy window. We have used k-point sets that correspond to 320 and 1152 k-points
in the full Brillouin zone in the semi-core and the valence window, respectively.

7.1 .2 Results

First we present results o£ a LDA calculation in the 4f-band model, where the 4f
electrons are treated as valence electrons on the same footing as the 6s and 5d states .
The bandstructure calculated at the experimental lattice constant is shown in Fig. 7.1 .
The most prominent feature are the majority 4f bands about 4 .5 eV below the Fermi
energy (left panel) and the minority 4f bands directly above the Fermi energy (right
panel) . The result is in good agreement with previous first principle calculations
that used the 4f-band model, e.g . [KS89, Sin91] . However, these studies used fully
relativistic methods, while we applied the scalar relativistic approximation, which
neglects the spin-orbit coupling. The spin-orbit coupling leads to a splitting of the
4f bands. Therefore, the bandwidth of the 4f band, in particular the majority
part, we found is smaller than in previous studies. Experimentally the majority and
minority 4f bands are found at about 8 eV below and 4.5 eV above the Fermi energy,
respectively.

	

Thus, the wrong energetic positions of the 4f bands are an artifact
of the local density approximation. The LDA overestimates the itinerancy of the
4f electrons . The minority 4f state, located just above EF , leads to an additional
density of states at EF . Close to the Fermi energy the 4f states hybridize with the d
states in that energy region . In fact, we found about 0 .12 electrons with f character
inside the muffin-tin spheres (cf. Tab . 7.1). Hence, parts o£ the minority 4f, or the f-d
hybridized, bands are occupied, which is unphysical, and has direct consequences on
the magnetic order, as we will discuss below. Another band that has been observed
by photoemission is the spin-split A2 band, which is the second lowest minority band
at the I'-point and its majority counterpart. The calculation shows that it has mainly
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Figure 7.1 : LDA bandstructure of hcp bulk Gd, calculated within the 4f-
band model. The majority spin states are shown in the left panel and the
minority states in the right panel.

r

d, but also considerable s character. At the P-point we found the majority state A2T
at the at 2.4 eV and the minority state A2 1, at 1 .4 eV below the Fermi energy, in
agreement with earlier calculations [KS89, Sin91] . Experimentally the A2t and 021,
bands are found 2.4 eV and 1.7 eV below EF, respectively [MGE92] .

The difference between the results obtained in LDA and GGA are marginal, when
the calculations are performed at the experimental lattice constant . The majority 4f
bands are found about 0.2 eV lower than in the LDA calculation. The changes of
the other bands are much smaller than this . Therefore, we will not present the GGA
bandstructure .

Next we present the result of an LDA calculation with the 4f-core method . Within

this method, the majority 4f electrons are treated as core electrons, i.e . they are not

allowed to hybridize with any other states on neighboring atoms . Thus, the bonding

of the 4f electrons is neglected . At the same time we have to prevent the majority

and minority 4f bands from appearing in the valence window. This is done by

moving the all 4f energy parameter to a value far above the Fermi energy. In all

4f-core calculations presented here the valence f energy parameter has been set to

about 9.5 eV above EF. Thus, we have practically removed the f functions from

the basis set.

	

The calculated bandstructure is shown in Fig. 7.2 .

	

The 4f states

are not in the valence bandstructure any more. If the core electrons were included

into the bandstructure plot, the majority 4f electrons would appear at almost the

same energy as in Fig. 7.1 as a dispersion less straight line . Another difference to

the result of the 4f-band calculation is that the Fermi energy is shifted upwards by

about 0 .2 eV. In the 4f-band method EF was pushed down by the large density of

states of the minority 4f states . Due to the change of EF the A2'ß band is now found
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Figure 7.2: LDA bandstructure o£ hcp bulk Gd, calculated within the 4f-core
model . The majority spin states are shown in the left panel and the minority
states in the right panel .

r

at 2.6 eV below EF at the P-point and the 6Qi is found at 1 .6 eV below EP. Apart
from this shift the bandstructure of the valence bands is largely unchanged . Only the
minority d bands that are in the region of the 4f states right above the Fermi energy
in the 4f-band calculation differ from those of the 4f-core calculation by typically
less than 0 .2 eV. This is probably a consequence of the unphysical hybridization with
the 4f states . As in the 4f-band calculation the GGA results are very similar to the
LDA results and therefore the GGA bandstructure is not shown here .

Tab . 7 .1 gives an overview over the calculated magnetic moments and the 4f
charge obtained with the different methods. The total magnetic moment per atom

Table 7.1 : Magnetic moment and 4f charge calculated at the experimental
lattice constant with different methods. The first three columns contain the
magnetic moment in the muffin-tin sphere and the valence and d electron
contribution to it . The fourth column contains the total magnetic moment
per atom, including the interstitial contribution . All moments are in units of
lzB . The last two columns contain the majority and minority 4f charge in
units of electrons .

method -
I
M (wB) I Val . (11B) d (ItB) tot . (I-IB) f fi (e

_
) f T

(e-)

LDA 4f-band 7.21 7.21 0.34 7.63 6 .94 0.127~
4f-core 7.41 0 .41 0.36 7.80 - -

GGA 4f-band 7.22 7.22 0 .34 7.65 6.65 0 .116
4f-core 7.41 0.41 0.35 7.81 - -
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is given in the fourth column . All other quantities are integrated only over the
muffin-tin region . In the FLAPW method the muffin-tins do not cover the whole
volume of the unit cell, i.e . the contribution from the interstitial region adds to
these quantities . The size of this difference can be appreciated from a comparison
of the first column, which contains the magnetic moment in the muffin-tin spheres,
and column four, which contains the total moment per atom. The total moment
per atom is in excellent agreement with other recent LDA 4f-band model results,
e.g . [SLP99, JTA+00], and also the experimental value of 7.63 pB . However, the
4f-core method yields a slightly larger value, which has already been observed by
other authors, e.g . [EAO+95] . The moment of the 4f-core calculation is in nearly
perfect agreement with the LDA+U calculation of Shick et al . [SLP99] . Irrespective
of the method used, the d moment in the muffin-tins is always .:: 0.35 /-,s . The total
moment in the sphere using the 4f-band model is 7.21 I,tB. This is smaller than
one would expect from the 7 AB of the 4f electrons and the polarization of the s
and P electrons . In the 4f-core model the valence moment in the sphere amounts to
0.41 /-LB (here the 4f-electrons are excluded from the valence), i.e . the total valence
moment is larger than the d moment due to the contribution of the s and P electrons.
The difference between the 4f-band and the 4f-core results is mainly due to the
minority 4f occupation in the 4f-band model, which reduces the total 4f moment.
The majority 4f states are always fully occupied . However, the majority 4f charge
in the muffin-tins (fifth column of Tab. 7.1) is slightly smaller than 7 e- , because
the majority 4f states are not completely localized inside the muffin-tin sphere in
both, LDA and GGA. In general it can be said that the differences between LDA
and GGA are marginal irrespective of whether the 4f-band or the 4f-core model is
used. The only difference that might be important is that the unphysical minority
4f occupation in the 4f-band model is slightly reduced, when the GGA is applied.

In the next step we investigated the magnetic ground state of hcp Gd. We per-
formed total energy calculations to determine the equilibrium lattice constant in the
ferromagnetic and antiferromagnetic configurations . The antiferromagnetic configu-

ration consists of antiferromagnetic layers in the (0001) direction, i.e . the magnetic

moments of the two atoms of the hcp unit cell are aligned anti-parallel. The total en-

ergy as a function of the lattice constant obtained using the LDA4f-band method, the

GGA 4f-band method and the LDA 4f-core method are presented in Fig. 7.3 . The

4f-band method calculations predict an AFM ground state irrespective of whether

the LDA or the GGA is applied. This result is in agreement with previous full-

potential calculations [EAO+95, SLP99] . However, it was reported [HT94, JTA+00]

that using the GGA 4f-band model in combination with the LMTO method in the

atomic sphere approximation (ASA) yields the correct ferromagnetic ground state.

The picture changes when the 4f-core model is used (right panel) . The LDA 4f-core

method predicts the FM ground state. This is also true for the GGA 4f-core method,

which is not shown in Fig. 7.3 .

All calculations that use the 4 F-band model agree in that they found the minority

4f states very close to the Fermi energy. This leads to density of states at the Fermi
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Figure 7.3 : Energy as function of the lattice constant for hcp bulk Gd in
the ferromagnetic (diamonds) and antiferromagnetic (circles) states . The solid
lines are parabolic fits that have been used to determine the equilibrium lattice
constant . The left and the center panel show the results of LDA and GGA
calculations, respectively. In both cases the 4f-band model has been applied.
The right panel contains the result of an LDA calculation within the 4f-core
model.

energy, which is too large compared to experiment and to an unphysical partial
occupation of the 4f states . From the discussion of the 3d metals [THOA82] we
know that the d-d hybridization at half band filling causes a strong antiferromagnetic
susceptibility . These arguments are quite general and can also be applied to the 4f
states . Due to the 4f-minority states close to the Fermi energy we expect a direct 4f-
4f hybridization with a strong antiferromagnetic susceptibility. This suggests that
the incorrect description of the these states in the LDA (GGA) is the reason for the
prediction of the wrong magnetic ground state. In fact, methods that have the effect
of pushing the 4f states away from the Fermi energy, like the Hartree-Fock treatment
of the exchange between the core and the valence electrons [BK94b] of the LDA+U
method [SLP99], or methods that do not allow for 4f electron in the valence region
like the 4f-core model [EAO+95] found the correct ground state. To substantiate the
argument on the role of the minority 4f states presented above states we performed
a further calculation using a "hybrid" approach, where we treat the majority 4f
electrons as valence electrons, but remove the minority 4f electrons form the valence
region by shifting the minority f energy parameter far above the Fermi energy as
in the 4f-core calculation . In fact, this calculation predicts the FM ground state.
The total energy difference between the FM and AFM state is very close to that
calculated with the 4f-core model (cf. Tab . 7.2)

Tab. 7.2 summarizes the calculated lattice constants, the magnetic moments at
the equilibrium lattice constant and the energy difference between the ferromagnetic
and the antiferromagnetic configuration . As we have already pointed out, the 4f-
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Table 7.2: Equilibrium lattice constants (relative to the experimental value),
magnetic moments and the energy difference between the ferromagnetic and
the antiferromagnetic state for hcp bulk Gd, calculated using different methods
to treat the 4f states .

167

band model predicts the incorrect magnetic ground state . In contrast, the 4f-core
model and also the hybrid approach, which treats the majority 4f electrons as band
electrons but removes the minority 4f electrons from the vicinity of the Fermi energy,
yield the FM ground state. Apparently, the half occupied 4f band that crosses the
Fermi energy is the reason for the antiferromagnetic coupling, in analogy with half
occupied 3d bands that have a strongly antiferromagnetic susceptibility. Thus, it is
the unphysical partial occupation of the minority 4f bands that causes the incorrect
description of the magnetic ground state of Gd in the LDA/GGA 4f-band model.

The LDA/GGA 4f-core model and the hybrid approach predict almost the same
energy difference between the FM and AFM state . These energy differences are also

in reasonable agreement with other methods that remove the minority 4f states from

the region close to the Fermi energy (Hartee Fock valence-core exchange : -0 .12 eV

[BK94b]; LDA 4f-core: -0.08 eV; GGA 4f-core : -0.10 eV [EAO+95] ; LDA+U: -

0.06 eV [SLP99]) . In addition to the incorrect description of the magnetic coupling,

the LDA 4f-band method yields a lattice constant that is 3 .9% too small, which is

more than the usual LDA error . This is a result of the fact that LDA overestimates

the itinerancy of the 4f states and thus the 4f bonding . With the hybrid approach

this error becomes smaller . The 4f-core model yields a value with is only 1 .4% smaller

than experiment. However, in the latter method all 4f bonding is neglected . The

lattice constant calculated using the GGA 4f-core method is 1.5% to large . A similar

deficiency of the GGA was found for the 4d and 5d transition metals [ASH+99] .

7.2

	

Results for the Gd(0001) surface

We began our study of the Gd(0001) with the determination of the atomic structure.

We focus first exclusively on ferromagnetic Gd(0001) . Using self-consistent total

energy calculations we determined the relaxation of the surface layer, applying three

different methods, the LDA/GGA 4f-band method and the LDA 4f-core method.

The surface calculations were performed using a symmetric 10 layer Gd film . All

method ao,FM MFM ao,AFM MAFM EFM -EAFM
4f-band -3.9% 7.15 pB -4.6% 7.10 AB +0 .07 eV

LDA 4f-core -1 .4% 7.41 I-tB -1 .7% 7.32 AB -0.11 eV
hybrid -2.7% 7.38 AB -2.8% 7.29 AB -0.12 eV

GGA 4f-band -0.0% 7.22I-~B -0.9% 7.13
04f-core +1 .6% 7.41 I-tB +1 .5% 7.34 AB -0.11 eV

a
o,exp - 3.629 [BLS54]
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cutoff parameters were chosen as during the bulk calculations . The integrations over
the two-dimensional Brillouin zone were carried out using k-point sets that correspond
to 81 and 361 k-points in the full two-dimensional Brillouin zone for the semi-core and
the valence window, respectively. We started form the ideal bulk atomic positions
of the respective bulk calculation, i.e . the LDA/GGA 4f-band result and the LDA
4f-core result . We then varied the interlayer spacing between the surface and the
subsurface layer to find the equilibrium position of the surface layer. Fig . 7.4 shows
the total energy per surface atom as function of the interlayer distance . With the

-0.3 -0 .2 -0.1 0 .0

	

-0.3 -0.2 -0 .1 0 .0

	

-0.3 -0.2 -0.1 0 .0
Surface layer relaxation (a.u.)

	

Surface layer relaxation (a.u .)

	

Surface layer relaxation (a .u .)

Figure 7.4 : Energy as function of the interlayer distance between the surface
and subsurface layer of the ferromagnetic Gd(0001) surface. The solid lines
are parabolic fits that have been used to determine the equilibrium interlayer
distance . The zeros of the energy scales were chosen at the equilibrium con-
figuration . The left and the center panel show the results of LDA and GGA
calculations respectively. In both cases the 4f-band model has been applied .
The right panel contains the result of an LDA calculation within the 4f-core
model .

GGA 4f-band method we obtain an inwards relaxation of 3.5% of the bulk interlayer
distance and with the LDA 4f-band/4f-core method we obtain a 3 .0% and 2.9%
relaxation, respectively. These results are in good agreement with the experimental
LEED result of 3 .5 ± 1.0% [QLJF92] . Recent first principle calculation found a
relaxation of 4 .4% [EAO+95] and 3 .4% [BK94a] .

Tab. 7.3 summarizes the relaxation and also contains the magnetic moments of
all atoms in the 10 layer film . The magnetic moments have been calculated with the
surface atom in the relaxed position . However, the moment do not depend critically
on the relaxation . In fact, we found exactly the same moment of the surface atom
with the ideal bulk truncated position, e.g . for the LDA 4f-core calculation . A major
difference between the 4f-band calculations and the 4f-core calculation is found for
the magnetic moment of the surface atom . While the 4f-band model does not show
an indication of an enhanced surface moment, the 4f-core model predicts a surface
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Table 7.3: Relaxation of the surface layer of the Gd(0001) surface and the
magnetic moments of the different layers (S = surface, S - 1 = subsurface,
. . . ) . Od12 is the relative change of the distance between the surface and the
subsurface layer with respect to the respective bulk value .
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moment enhancement of about 0.15 /-1B, in good agreement with previous calculations
[EAO+95, SPF00] . We attribute this enhancement of the surface moment to the
increase of the d moment due to the d band narrowing as result of the reduced number
of nearest neighbors at the surface . The enhancement of the d moment is cancels by
an increased occupation of the minority 4f bands in the 4f-band calculation .

In addition to the ferromagnetic surface we also performed calculations for the
surface layer coupling antiferromagnetic to the underlying bulk using the LDA 4f-

core model. These calculations were carried out with the surface atom in the ideal

bulk position as well as in the equilibrium positions of the ferromagnetic surfaces . In

Table 7.4: Energy difference (in meV per surface atom) between ferromag-

netic (FM) and antiferromagnetic (AFM) coupling of the surface layer of the

Gd(0001) surface . The energies were calculated with the surface atom in the

ideal truncated bulk position (unrelaxed) and in the relaxed position using the

4f-band, the 4f-core and the hybrid method, respectively.

both cases we found that the ferromagnetic surface has a clearly lower energy. In the

relaxed position we obtained an energy difference of 108 meV per surface atom (cf.

Tab . 7.4) in good agreement with the result of Eriksson et al. (95 meV). However,

Shick et al . found a larger energy difference in the relaxed position (135 eV) . In the

ideal bulk position Shick et al . found a much smaller value of 72 meV. Upon this large

energy increase between ferromagnetic and antiferromagnetic coupling in the relaxed

position of the surface layer they argued that the increased magnetic coupling strength

between the surface and the subsurface layer is the origin of the enhanced surface

Curie temperature that has been observed by many experiments . This result of an

enhancement of the ferromagnetic coupling for the relaxed surface is also supported

method EAFM - EFM
unrelaxed

EAFM - EFM
relaxed

4f-band 25 20
LDA 4f-core 100 108

hybrid 99 106

method Ad12 MS MS-1 MS-2 MS-3 MS_4

LDA 4f-band -3.0% 7.21 11B 7.19 11B 7.20 AB 7.18 AB 7.20 /-tB
4f-core -2 .9% 7.55 MB 7.41 AB 7.40 AB 7.42 AB 7.41 AB

GGA 4f-band I -3.5% 7.20 AB 7.21 AB 7.22 AB 7.22 MB 7.24 AB
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Figure 7.5 : LDA bandstructure of the Gd(0001) surface, calculated within
the 4f-band model. The majority spin states are shown in the left panel and
the minority states in the right panel.
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by the work of Jenkins et al . [JTA+00], who found a clear dependence of the magnetic
coupling on the c/a ratio for hcp bulk Gd using the 4f-band model. According to
their results a smaller interlayer distance favors a ferromagnetic coupling . We found
only a small reduction of the energy difference at the ideal bulk position (100 meV) .
Likewise the results of Eriksson et al ., who applied the 4f-core model, do not show a
reduction of the energy difference between the FM and AFM surface. This could be
an indication that the hybridization of the majority 4f states, which is neglected in
the 4f-core model, is the origin of the dependence of the magnetic coupling strength
on the interlayer distance . However, subsequent calculations within the 4f-band
model and the hybrid approach (cf. Tab. 7.4) do not support this hypothesis. In
both cases we did not find an enhanced ferromagnetic coupling, though both method
treat the majority 4f electrons as valence states and thus allow for hybridization of
these states . Even within the LDA 4f-band method we obtained a lower energy for
the ferromagnetic surface. However, the energy difference between the ferromagnetic
and the antiferromagnetic configuration is much smaller than calculated with the
4f-core or the hybrid method. Thus, the surface results confirm the result of the
bulk calculations, i.e . that the minority 4f-states right above the Fermi energy act
in favor of antiferromagnetic coupling .

After the determination of the ground state structure we investigated the elec-
tronic structure of the Gd(0001) surface. As in the case of hcp bulk Gd we present the
bandstructure determined within the LDA 4f-band method (Fig. 7.5) and the LDA
4f-core method (Fig . 7.6) both calculated in the respective equilibrium structure.
The most important feature of the bandstructure is the surface state that is found in
a gap of the projected bulk bandstructure around the I'-point . The occupied majority
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Figure 7.6: LDA bandstructure of the Gd(0001) surface, calculated within
the 4f-core model . The majority spin states are shown in the left panel and
the minority states in the right panel .
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part of the surface state (left panel of Fig. 7.5) is found 0.15 eV below the Fermi en-
ergy. This surface state has been investigated experimentally by various techniques,

including photoemission and scanning tunneling spectroscopy, and is found a 0.20 -

0 .25 eV below the Fermi energy. The unoccupied minority part of the surface state

can be seen in the right panel of Fig . 7.5 . It lies directly above the minority 4f bands .

At the r-point we found it at 1.04 eV above the Fermi energy. Experimentally it is

found at 0 .40 - 0.50 eV above the Fermi energy. Both, the minority and the majority

part of the surface state, are strongly localized at the surface . Our calculations show

that over 70% of their charge density is found in the surface layer and the vacuum

region . An analysis of the surface state in the muffin-tins shows that is has mainly

d-character . Our bandstructure is in excellent agreement with the results of Wu et

al . [WLFF91], who also found the minority part of the surface state more than 1 eV

above the Fermi energy. However, they used a six layer Gd film . As a consequence, a

splitting of the surface state due to the finite size of the film is clearly visible in their

calculation . With a ten layer film such a splitting is not visible around the P-point .

Fig . 7.6 shows the bandstructure obtained within the 4f-core model. The 4f

states that are clearly visible in Fig . 7.5 have been removed from the valence band

region. Similar to the bulk case the main difference between the two methods to

treat the 4f electrons is a shift of the Fermi energy. At the surface this shift amounts

to about 0.1 eV. Thus, at the I'-point the majority and minority part of the surface

state are now found at 0.24 eV below and 0.95 eV above the Fermi energy, respec-

tively. The spin-splitting of the surface state remains unchanged. Hence, the binding

energy of majority part of the surface state is in even better agreement with experi-

ment . However, the minority part is still found about 0 .40 eV higher than observed
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experimentally. As said above the surface state is mostly localized in the surface and
vacuum region, which causes the interaction with the Gd substrate to be small. This
argument is further substantiated by the very small dependence of the binding energy
of the minority and majority part of the surface state upon the interlayer relaxation .
In the ideal bulk truncated structure the two parts of the surface state are at 0.22 eV
below and 0.98 eV above the Fermi energy, respectively. However, the dependence on
the in-plane lattice constant could be different. Therefore, we have repeated the LDA
4f-core model calculation on the experimental lattice constant using the calculated
relaxation (2 .9%) of the surface layer. The experimental in-plane lattice constant
is 1 .4% larger than in the LDA 4f-core calculation. Using the experimental lattice
constant the majority and minority part of the surface state at the r-point are found
at 0.21 eV below and 0.98 eV above the Fermi energy, respectively. Hence, also the
variation of the binding energy with changing in-plane lattice constant is also small.
Still, all results that follow in this chapter have been obtained using the experimental
lattice constant .

The density of states (DOS) obtained from the LDA 4f-core calculation is pre-
sented in Fig. 7.7 for all atoms in the film . It can clearly be seen that the main
contribution to the DOS comes from d electrons . The DOS of the s and P electrons
is very small. Moving from the surface (S) to the subsurface layer (S-1) the DOS
changes rapidly becoming more and more bulk-like . The DOS of the inner six (S-2,
S-3, S-4) layers of the film are very similar to the bulk density of states . The ma-
jority part bulk DOS shows a pronounced depression (pseudo bandgap) at the Fermi
energy. Due to the spin-splitting the minority counterpart of this gap is found about
1 .2 eV above the Fermi energy. The two spin components of the surface state fall
exactly into this energy region (cf. Fig. 7.6). The density of states due to the surface
state fills these gaps . Consequently, these gaps are not visible in the DOS of the
surface layer. However, already in the subsurface layer the gaps are clearly visible,
which shows again the strong surface localization of the surface state.

Within the TersofiHamann model the tunneling current of a scanning tunneling
microscope (STM) is proportional to the local density of states at the position of the
tip (cf. Sec. 6.6.1) . Thus, to allow a comparison with scanning tunneling spectroscopy
(STS) experiments, we investigate the local density of states (LDOS) in the vacuum
region of the Gd(0001) film . This quantity is shown in Fig. 7.8 for several distances
from the surface layer. The two spin components of the surface state are clearly
visible as two pronounced peaks in the majority and minority LDOS respectively.
These peaks are directly observed in a STS experiment, e.g . [GBH+98], which probes
the total LDOS . However, as we have pointed out before, the minority peak is found
much closer to the Fermi energy experimentally than in our calculation . Fig. 7.8 also
contains density plots of both, the occupied majority surface state and its unoccupied
minority counterpart. From this plot the .surface state can be identified as a dx2 state.
Also the strong surface localization is clearly visible. A large fraction of the charge
density of the surface state is found above the surface layer.
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Figure 7.7: Density of states due to s (dotted), p (dash-dotted) and d (solid

line) electrons inside the muffin-tins spheres of the different layers (S = surface,

S-1 = subsurface, . . . ) of a 10 layer Gd(0001) film, calculated using the LDA

4f-core method. The density of bulk hcp Gd has been added for comparison .

7.2 .1

	

Spin-spirals at the Gd(0001) surface

The temperature dependence of the electronic structure of the Gd(0001) surface has

been a matter of extensive debate, as we have pointed out in the introduction of

this chapter . In particular, the change of the binding energy of both, the majority

and minority part of the dz a surface state, with temperature has been discussed

controversially in the literature . While some experimental studies, e.g . [WSLM+96],

found a collapse of the spin-splitting of the surface state at a temperature of 350 K,

which is taken as support for the applicability of the Stoner picture for the Gd surface,

other authors [BGH+98, GBH+98, GBHW99] observed a finite splitting of 400 meV

at the same temperature .
To reveal trends in the temperature variation of the conduction-electron states

of the Gd(0001) surface we studied non-collinear magnetic configurations . We per-

formed spin-spiral calculations with q-vectors parallel to the surface along the high



Figure 7.8 : Local density of states at different distances (2.9 - 9.5 A) from
the, surface layer in the vacuum region of a 10 layer Gd(0001) film calculated
using the LDA 4f-care method . A plot of the density of the majority and

or-, t ,, part of the surface state is shown at the right and left, respectively.
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all values of q. For all magnetic configurations we found a finite valence magnetic
moment, being always larger than 0 .30 AB at the surface and 0.25 AB at the center
of the film, even for the largest values of q. In their study of non-collinear states
in hcp bulk Gd, Sandratskii and Kübler [SK98] also found that a finite value of
the valence moment remains for large spin-spiral q-vectors. However, the absolute
value of the magnetic moment cannot be compared to our results, since they use
space filling spheres around the atoms . To verify that the stability of the induced
moment is not a consequence of the high symmetry of the spin-spiral configuration
they carried out calculations for disordered magnetic configurations, which confirmed
the stability of the valence moments . Therefore, we expect the magnetic moments
of disordered configurations at the surface to be of similar size as found for the spin-
spiral calculations .

The total energy as function of the spin-spiral q-vector E(q) is plotted in the
lower panel of Fig. 7.9 . E(q) possesses a pronounced minimum at the I'-point, cor-
responding to a ferromagnetic ground state. With growing q, i.e . increasing angle
between the magnetic moment of neighboring atoms, the energy increases quickly.
In contrast to the results of the 3d monolayers on the Cu and Ag(111) surface (cf.
Chap. 6), which have the same two-dimensional Brillouin zone, the energies at the
two M-points at the right-hand side and the left-hand side of the plot are not equal.
The actual q-vectors of these two points that have been used for the calculations are
different. For the calculation of E(q) along P-K-M we used q-vectors on a straight
line in reciprocal space . The point M' at the end on this line is not on the border of
the first Brillouin zone but on the border of a neighboring cell in reciprocal space (cf.
Fig. 7.10) . The magnetic atoms of a monolayer on a (111) oriented fcc surface form a
two-dimensional triangular lattice (Bravais lattice) without a basis. In this case the
energy of E(q) at the two MM-points is always the same. However, in the case of the
(0001) surface of Gd there are two magnetic atoms in the unit cell, i.e . it is a lattice
with a basis. To clarify the consequences we discuss the classical nearest neighbor
Heisenberg model for the hcp (0001) surface in the following section.

7.2 .2

	

The nearest neighbor Heisenberg model for hcp bulk
and the hcp (0001) surface

In this section we present a brief discussion of the classical nearest neighbor (n.n.)
Heisenberg model (cf. Sec. 6.2) for the hcp lattice and the hcp (0001) surface . We
do not attempt to rigorously derive the magnetic ground state or the elementary
magnetic excitation of hcp materials. In contrast to the 2D hexagonal lattice dis-
cussed in Sec. 6.2 the hcp lattice has two atoms per unit cell . Therefore, a second
parameter, the angle 9 between the magnetic moments at the inequivalent sites in
the unit cell, is needed in addition to the q-vector to define the magnetic states . In
order to find the magnetic ground state within the Heisenberg model the energy has
to be minimized with respect to both, the q-vector and the angle 0. Depending on
the exchange parameters J2j very interesting magnetic ground states can occur . In
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a)

Figure 7.10 : (a) The two-dimensional Bravais lattice of the hcp (0001) sur-
face . a, and a2 are the primitive vectors that span the lattice . The sketch also
contains the Wigner Seitz cell. (b) The corresponding reciprocal lattice . bi
and b2 are the primitive vectors of the reciprocal lattice . The black hexagon
shows the first Brillouin zone . The irreducible wedge is marked in gray. The

IBZ is limited by the high symmetry lines connecting the symmetry points I',

K and M. Following the line P-K beyond the K-point leads to an M-point of

a neighboring cell denoted MX .
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the case of Gd, where the nearest neighbor coupling is dominant and ferromagnetic,

the ground state is obviously ferromagnetic and 0 = 0. However, for the magnetic

states with q 0 0, 0 should be determined by minimizing the energy for each q-vector .

Nevertheless, we restrict ourselves to the special case of 0 = 0, as we have done for

the ab-initio spin-spiral calculations, since the aim of our study is to model the effect

of the magnetic excitation on the electronic structure rather than determining the

elementary magnetic excitations exactly.
We begin with bulk hcp. First we define the primitive vectors of the hcp Bravais

lattice and the reciprocal lattice :

ai	=

	

a(V3-/2, -1/2, 0),

	

a2 = a(V3-12, 1/2, 0),

	

as = c(0, 0 ) 1)

	

(7.1)

bi

	

=

	

27r (1/

	

,

	

-1,
	0),

	

b2 = 2a	0),

	

ba

	

2c
(0, 0,

	

1) .
a

Naturally, we will later use ai and a2 as the primitive vectors of the two-dimensional

Bravais lattice of the Gd(0001) surface . The two-dimensional lattice and reciprocal

lattice including the primitive vectors are shown in Fig . 7.10 .

In order to calculate the Fourier transform of the exchange constants according to



178

Eqn. 6 .7, we need to sum over all nearest neighbors of the magnetic atoms and, since
we study a lattice with a basis, over the atoms in the unit cell . For the actual ab-initio
calculations we chose the atom positions (p) such that we obtain an inversion center
at the origin . Here, we make the same choice again:

Writing the q-vector as

7. Magnetism and electronic structure of Gd

p = ±(1/3a1 + 1/3a2 + 1/4a3) .

	

(7.2)

Egn.,6.7 contains the distance vectors (Rs) from each of the two atoms in the unit
cell to its 12 nearest neighbors. Each atom has 6 neighbors in the a,,-a2-plane, as
well as 3 neighbors above and 3 neighbors below this plane. In the following we list
all vectors Ra for the two atoms in the hcp bulk unit cell .
Atom1 : RS to the 6 neighbors in the a1-a2-plane :

ai, a2, -a,, -a2, ai - a2, a2 -a,

	

(7.3)
Atom1 : Ra to the 6 neighbors above and below the a,-a2-plane:

3 ai

	

Ia2 ± 1a3'

	

2a, - Ia2 ± Ia3~

	

-3a, + 3a2 ± 2a3,

	

(7.4)3 2 3 3 2
Atom2: Ra to the 6 neighbors in plane the a1-a2-plane :

ai, a2, -a,, -a2, ai - a2, a2 - ai

	

(7.5)
Atom2 : Ra to the 6 neighbors above and below the al-a2-plane:

1 1 1 2 1 13a, + 3a2 ± 2a3,

	

-3a, + 3a2 ± 1a3,

	

1a, - 2a2 ± Ia3,

	

(7.6)2 3 3 2

q = grbi + g2b2 + g3bi,

	

(7.7)
we obtain for the Fourier transform of the exchange integrals Jhcp(q) :

Jhcp(q)

	

=

	

Ji [4 cos(27rgl) + 4 cos(27rg2) + 4 cos(27r(q,, - q2 )

	

(7.8)
+ 2cos(27r(-

3

	

2
qi + 3q2 - -q3)) +2cos(27r(3gl + 3q2 + 1q3))2

+

	

2cos(27r( 2gi - 3q2 + 1q3)) +2Cos(27r(2g1 - 3q2 - 1q3))
2

+

	

2Cos(27r(-
3

	

2
q1 - 3q2 - -q3)) + 2Cos(27r(3gr - 2q2 + 1q3)) ] .3 2

After Jh,,p(q) has been determined the energy of spin-spiral states can be calculatedas function of the q-vector using Eqn. 6.11 . We consider first the symmetry line r-K-M' of the three-dimensional Brillouin zone . As mentioned above the M'-point isnot on the border of the first Brillouin zone, but on the border of a neighboring cell inreciprocal space. All three symmetry points are in the bi-b2-plane (q3 = 0) . Hence,
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this symmetry line corresponds exactly to the line r--7K---V shown in Fig . 7.10 . The
line I'-K-M' can be parameterized by, e.g . (cf. Fig . 7.10)

On this symmetry line we obtain

179

q = -xbl + xb2,

	

0 < x < 0.5,

	

(7.9)

i .e . qi = -x and q2 = x. Substituting into Eqn. 7.8 and using Eqn. 6.11, we obtain
the energy as function of the q-vector :

Eh,p(q) = -S2Ji [4 cos(47rx) + 16 cos(27rx) + 4] ,	(7 .l0)

which is 27r-periodic . Thus, Eh,.p(q) has the periodicity of the reciprocal lattice . The
symmetry line P-M can be parameterized by, e.g .

q =xb2 , 0<x<0.5.

	

(7.l1)

Eh,p(q) = -S2 Ji [8 cos(27rx) + 4 cos( 3r x) + 8 cos(3 x) + 4,

	

(7.12)

for Eh,p(q) . This function is 67r-periodic, i.e . Eh,,p(q) has a larger periodicity than the
reciprocal lattice for q-vectors along the direction P-M. However, since we investigate
the temperature dependence of the electronic structure of Gd we are mainly interested
in small q-vectors . Therefore, we will not discuss Ehcp(q) beyond the M-point . At
this point, we can already see that the energy at M and M' are in fact different within

the n.n. Heisenberg model.
To calculate Efilm(q) for the Gd(0001) surface we make the simplifying assumption

that the n .n . exchange constant J1 is the same for all pairs of atoms, even at the

surface . Using this assumption, Efilm (q) for the 10 layer film used in our ab-initio

calculation is simply given by five times Ehcp minus the terms that are missing because

of the reduced coordination of the surface atoms. Thus, we obtain

for the energy of the 10 layer Gd(0001) film as function of the spin-spiral q-vector

along the lines P-K-MI and I'-M, respectively. We performed a fit of these functions

to our ab-initio results . The fitted function is shown as dashed line in Fig . 7.9 . From

this fit we obtained a value of S2 J1 = 5 .5 meV for the n.n . exchange integral .

1 1
Jfilm(q) I -= 5Jh,:p(q) - 2J1 cos(27r( 3

g1 + 3 q2 2qa)) (7.13)

2 1
2J1 cos(27r( 2g1 - Iq2 + 2qa))

3 3
1 2 1

- -- 2J,, cos(21r(3gi 3q2 2g3))

for the Fourier transform of the exchange integrals, and hence,

Efilm(q) = -S2 J1 [20 cos(47rx) + 76 cos(27rx) + 18] (7.14)

and

Efilm(q)
+36 x) +

= -S2Ji [40 cos(27rx) + 18 cos(
47r3x) cos(

27r3 20] (7.15)



180 7. Magnetism and electronic structure of Gd

7.2 .3

	

The electronic structure of the Gd(0001) surface as
function of the spin-spiral q-vector

In this section we investigate the electronic structure of the Gd(0001) surface as
function of the spin-spiral q-vector : to model the temperature dependence of the
electronic states . In particular, we are interested in the change of the binding energy
of the surface state. Therefore, and to be able to compare the results with the
scanning tunneling spectroscopy (STS) experiments, we calculated the local density
of state in the vacuum region . Within the Tersoff-Hamann model this is exactly the
quantity measured by a (non-spin-polarized) STS experiment (cf. Sec. 6 .6.1) .

In Fig . 7 .11 we present the calculated local density of state (LDOS) in the vacuum
region for different spin-spiral q-vectors on the high symmetry lines r-K and r-M.
Since the electronic states are generally spin-hybridized in non-collinear magnetic
configurations and are therefore not of pure spin-up or down character any more, we
present only the total LDOS . The LDOS for q = 0 is identical to the result of the
collinear ferromagnetic calculation (cf. Fig. 7.8) . First of all it can be seen that the
behavior of the LDOS is very similar for q-vectors on both symmetry lines, I'--K and
r-M. Though, it should be noted that the "step size" of the q-vector grid is slightly
different on the two lines, since the distance from r to K in reciprocal space is by a
factor of 2/V3 (k-, 15%) larger than the distance from P to M.

At q = 0, the two peaks of the LDOS due to the spin-split surface state are
clearly visible. With increasing q the spin-splitting decreases. In particular the un-
occupied minority surface state moves towards the Fermi energy. For larger values
of q (q = 2/8K to 4/8K and q = 2/8M to 5/8M) the intensity of the peaks de-
creases and two double peak structures can be observed . For even larger q's again
two pronounced peaks emerge. However, the occupied peak below the Fermi energy
is now much smaller than for small q-vectors and finally disappears for q = 6/8K
and q= 6/8M, respectively. At the same time the intensity of the peak in the unoc-
cupied region, which is now only about 300 meV above the Fermi energy, increases.
These trends are in good agreement with temperature dependent STS experiments
[BGH+98, GBH+98, GBHW99], which also found a decrease of the splitting of the
two peaks with temperature and a decreasing intensity of the peak below the Fermi
energy for high temperature . However, the initial splitting at 20 K is found to be
700 meV, which is much smaller than our result of 1.1 eV for the ferromagnetic
configuration .

In Fig. 7.12 the positions of the two peaks in the occupied and unoccupied region
of the vacuum LDOS (circles) are plotted versus the energy of the corresponding spin-
spiral per atom. The bulk Curie temperature of Gd of TC = 293 K corresponds an
energy of about kBTC . ; 25 meV. However, a direct comparison between our calcu-
lations and an experiment at a certain temperature is difficult for two reasons: First,
in a real experiment at a finite temperature many magnons with excitation energies
up to a certain value will be present simultaneously. Thus, there will always be a
superposition of magnons with q-vectors of different directions and different lengths,
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Figure 7.11 : Local density of states at a distances of 8.2 A from the surface

layer in the vacuum region as function of the spin-spiral q-vector .

while our calculations were carried out for a single q-vector each . And secondly, we

know form the bulk calculations (cf. Sec . 7.1) that the calculated magnetic energies

depend significantly on the treatment of the 4f states . Comparing the total energy

difference between ferromagnetic and antiferromagnetic hcp Gd calculated within the

4f-core model and the LDA+U method, we could conclude that the 4f-core model
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Figure 7.12: Position of the occupied and unoccupied peak in the vacuum
local density o£ states (circles) and of the spin-split surface state at the I'-point
(triangles) as function of the spin-spiral energy for q-vectors on the line P--7M-
(upper panel) and P-K (lower panel) .

might overestimate the magnetic energies by up to 50%. This would of course cor-
respond to a substantial change of the temperature scale. On the other hand our
results show the effect of non-collinear magnetic order present in a real material at
finite temperature on the electronic structure. And they allow to understand the
general trends in the temperature variation of the electronic valence states .

Coming back to Fig. 7.12, it can be seen that the two peaks in the occupied and
the unoccupied region of the vacuum LDOS approach the Fermi energy, and also
that the results for q-vectors on the two different symmetry lines are similar. In this
figure we marked two values for the occupied peak in the region of q where the double
peak structure is visible in Fig. 7.11 . By a detailed analysis of the electronic states
we traced the majority and minority part of the surface state at the P-point . The
corresponding binding energies are included as triangles in Fig . 7 .12 . The energies
of the surface states at the I'-point are in good agreement with the peak positions
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of the vacuum LDOS . The analysis of the states shows that in the ferromagnetic
configuration both, the majority and in particular the minority surface state, have
an enormous amount of charge in the vacuum region . More than 20% of the charge
of these states is found in the vacuum region of the FLAPW method, which starts
above the muffin-tin spheres of the surface atoms . However, the minority part of
the surface state quickly loses its surface localization with increasing q. Presumably,
this is due to the increasing possibility to hybridize with bulk majority states in
the same energy region . An analysis of the charge distribution of the states at the
P-point shows that, while the minority surface state loses surface localization and
more of its charge is found in muffin-tins far from the surface, the vacuum charge of
other (majority) states of the same energy, that have little surface localization in the
ferromagnetic state, grows. Due to the hybridization with other states it is difficult
to trace the minority part of the surface state beyond the first 4 q-vectors of our
calculation . The majority part of the surface state also loses surface localization with
increasing q, but more slowly that the minority part . Since it falls into a gap of both,
majority and minority state, in the ferromagnetic configuration, there are no states
with similar energy available for hybridization (for small values of q) .

In conclusion, we can say that the change of the electronic structure, in partic-
ular the vacuum local density of states, of spin-spiral calculations with q-vectors of
different size nicely resembles the trends found in temperature dependent scanning
tunneling spectroscopy experiments . However, a direct comparison of the theoret-
ical results to an experiment at a certain temperature is difficult . With increasing
q-vectör the character of the surface states changes drastically due to hybridization

with other states, also with states that originally have a different spin-character in

the ferromagnetic configuration . For very large values of q we found only a single

peak in the vacuum local density of states . In that configuration the valence mag-

netic moment is still as large as 0 .4 [-tB at the surface. Hence, the decreasing and

finally vanishing spitting of the peak of the density of states due to the surface state

cannot be taken as support for the applicability of the Stoner model in the sense of

a vanishing valence magnetic moment.
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Chapter 8

Conclusions and Outlook

In the present work we developed and applied a self-consistent full-potential non-
collinear vector spin-density ab-initio program for bulk, surfaces and thin films on
the basis of the FLAPW method. In order to be able to deal with arbitrary magnetic
configurations, which are not necessarily the magnetic ground state or a station-
ary state of the system under consideration, we implemented the constrained local
moment method . On the basis of a generalization of the Bloch theorem for spi-
ral magnetic states we have extended the vector spin-density FLAPW method to
also allow commensurate and incommensurate spin-spiral calculations using only the
chemical unit cell of the crystal, without the need for large super-cells. Thus, we are
able to cover a comprehensive set of magnetic configurations, which is only limited
by the available computer time . With the combination of the predictive power of the
density functional theory and the accuracy of the FLAPW method, which is ideally
suited for open structures, we have obtained a unique and powerful tool to study the
non-collinear magnetism of surfaces, thin films and systems with reduced symmetry
in general.

We have applied this method to perhaps the most classical problem of geomet-
ric frustration: the two-dimensional antiferromagnet on a triangular lattice . We
have performed selfconsistent calculations for the 3d transition metal monolayers
V, Cr, Mn and Fe on the (111) oriented surfaces of Cu and Ag. We investigated
the magnetism, the interlayer relaxation, and the energetics of a nearly complete
set of magnetic states and found an amazing variety of different magnetic ground
states : ferromagnetic for Fe/Cu(111) and Fe/Ag(111) ; row-wise antiferromagnetic
for Mn/Ag(111) ; the 120° Neel state, a two-dimensional non-collinear state in which
the direction of the magnetic moment changes by ±120° with respect to the neighbor-
ing atoms, for V/Ag(111), Cr/Cu(111) and Cr/Ag(111); and the so-called 3Q state,
a complex three-dimensional non-collinear state, which is a superposition of three
spin-waves (a picture is shown at the beginning of this thesis), for Mn/Cu(111) . In
addition, a calculation, that uses a fractional nuclear charge as a model for alloys,
suggests the possibility of a spiral magnetic ground state for a monolayer alloy of Fe
and Mn.

In order to shed more light on the physical nature of the magnetism of these

185



las 8. Conclusions and Outlook

systems we presented a detailed discussion of the classical Heisenberg model on the
two-dimensional triangular lattice . We developed a T = 0 phase diagram in the
parameter space of the exchange integrals . The structure of this phase diagram be-
comes very rich and complex, when exchange integrals beyond the nearest neighbors
are taken into account. Depending on the exchange integrals Jl , J2 and J3 the mag-
netic ground state can be collinear, ferromagnetic or row-wise antiferromagnetic, or
non-collinear, i.e . the Neel state or spin-spirals that propagate in different high sym-
metry directions . We tested the validity of the Heisenberg model by calculating the
functional dependence of the energy and the magnetic moments with respect to the
angle describing the relative orientation of the local moments. Comparing our self-
consistent calculations to the Heisenberg model, we found significant deviations . The
results of our self-consistent ab-initio calculations show that terms that go beyond
the Heisenberg model, like the biquadratic or the 4-spin interaction, play an impor-
tant role for the itinerant 3d metals . In the case of the Mn monolayer on Cu(111)
the higher order terms lead to the stabilization of the 3Q structure. The size of the
higher order terms can be appraised directly from the energy difference between the
3Q and the row-wise antiferromagnetic state, because the two states are degenerate
within the Heisenberg model irrespective of how many nearest neighbors are taken
into account. The physical picture of the magnetism of the two-dimensional antifer-
romagnets on a triangular lattice has been developed for unsupported monolayers .
But all essential results have been confirmed by calculations that included the ac-tual Cu or Ag(111) substrate . The results do not change qualitatively, which means
that 3d -transition metals on noble metal substrates are a good physical realization
of two-dimensional magnets.

We summarize this part of the investigation by concluding that any realistic de-scription of two-dimensional itinerant antiferromagnets on a triangular lattice requiresexchange interactions not only beyond the nearest neighbors but also exchange in-teractions beyond the Heisenberg model. This is an important discovery for thedevelopment of models dealing with the quantum fluctuations in these systems .
In the row-wise antiferromagnetic state, the 120° Neel state and in the 3Q statethe atoms are chemically indistinguishable and the total magnetic moment integratedover the unit cell is zero . We show that an experimental verification of our predictionswill be possible with the spin-polarized scanning tunneling microscope (SP-STM) .Depending on the direction of the magnetization of a spin-polarized tip relative to themagnetization of the sample, the SP-STM image will in general display patterns thatreflect the magnetic super-structure. By an investigation of the electronic structureof the magnetic monolayers in the vacuum region we verify that it is possible todistinguish between the different magnetic states on the atomic scale using the SP-STM with atomic resolution .
The localized 4f states of Gd represent a challenge for first-principle theory. Ourcalculations support the findings of previous authors that within the LDA the itin-erancy of the 4f states is overestimated. In particular, the large density of states atthe Fermi energy due to the minority 4f electrons is unphysical, and our results show
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that this is the origin of the incorrect prediction of the antiferromagnetic ground state
for hcp Gd by many LDA and GGA calculations . We show that different methods of
removing these states from the region close to the Fermi energy, e.g . the treatment
of the 4f electrons as localized core electrons, lead to the prediction of the correct
ferromagnetic ground state. With these methods ground state properties like the
magnetic moment and the equilibrium lattice constant can be determined in good
agreement with experiment .

To model the temperature dependence of the electronic structure of the Gd(0001)
surface, which has been a matter of extensive debate, we performed non-collinear
spin-spiral calculations . We calculated the local density of states, which is probed
by scanning tunneling spectroscopy (STS) experiments, as function of the spin-spiral
q-vector . In the ferromagnetic configuration, which would correspond to a zero tem-
perature experiment, we found two pronounced peaks in the local density of states in
the vacuum, which originate from the spin-split dx2 surface state of Gd. These peaks
were also observed in actual STS experiments . However, the experimentally observed
splitting at low temperatures is smaller (700 meV) than the splitting obtained from
the calculation (1 .1 eV). With increasing q-vector, i.e . increasing angle between neigh-
boring atoms, the two peaks in the local density of state approach the Fermi energy
from below and above and the splitting decreases. Finally, only a single peaks is
visible . In all magnetic configuration we found a finite valence magnetic moment.
Hence, the decreasing and finally vanishing spitting of the peak of the local density
of states due to the surface state cannot be taken as support for the applicability of
the Stoner model in the sense of a vanishing valence magnetic moment.

Non-collinear ab-initio calculations on the basis of the FLAPW method have
proven to be a powerful tool to investigate non-collinear magnetic states, in particu-
lar at surface and in systems with reduced symmetry . The constrained local moment
method allows calculations of arbitrary magnetic configurations . Thus, in particu-

lar, the total energy of a magnetic system can be calculated as a function of the

angle of the local moment. Analogous calculations can be performed as a function

of the spin-spiral q-vector . The results can be fitted to model Hamiltonians, e.g .

the Heisenberg model . The parameters that are obtained from such fits can then be

used in the framework of the corresponding model to investigate, for example, the

finite temperature behavior . Spin-spiral calculations could be used to determine the

energies that are associated with the formation of domain walls in ferromagnetic ma-

terials, both in the bulk, but also in magnetic films. In combination with calculations

of the magneto-crystalline anisotropy, valuable information about the stability and

size of domain walls in magnetic films could be obtained . Magnetic frustration will

play a growing role in the world of nano-magnetism. The frustration at step edges

of interfaces between ferromagnetic and antiferromagnetic materials is one example,

which is technologically consequential for the exchange bias effect . Other examples

are magnetic molecules, magnetic clusters in the gas phase or deposited on surfaces.

A first-principle quantum mechanical description of such systems will become more

important, also to understand and optimize technologically relevant effects . Non-
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collinear calculations are also an important input to determine dynamical properties
such as spin-waves.

In summary, we have developed a powerful tool - a massively parallelized ab-
initio full-potential vector spin-density FLAPW program- to deal with constrained
and unconstrained, commensurate and incommensurate non-collinear magnetism in
the bulk, at surfaces, in thin films, in low-dimensional and open structures and sys-
tems with low symmetry in general. In combination with the capability to calculate
the total energy and to optimize the structure this tool opens new vistas in the inves-
tigation of the magnetic ground state properties, the dynamical properties and the
temperature properties in the field of nano-magnetism .



Appendix A

Spin Rotations and Coordinate
Transformations

The implementation of non-collinear magnetism presented in chapter 5 uses different
spin coordinate frames . A global frame S9 , defining the global spin z-axis and also the
x- and y-axis, is used for the interstitial and vacuum region . At each atom we define
a local frame S" with the local z-axis parallel to the direction of the local magnetic
moment. As a consequence, we have to deal with coordinate transformations of
three-dimensional real vectors (m, B), two-dimensional complex Pauli spinors (x) and
complex 2x2 matrices (p, V) . The aim of this section is to clarify the convention and
notation used and to state the formulae that are used in the actual implementation .

A.1

	

Euler Angles

A common way to specify a general three-dimensional rotation is the use of the
Euler Angles. Here the rotation is separated into three rotations about the axes of a
coordinate frame. These rotations are represented by 3 x 3 matrices, e.g . a rotation
around the x-axis by an angle cp is performed by applying the matrix

R(a, 0, -y) = R,(a) - Ry(0) - R, (Y) =

1 0 0
Rx (cp) =

	

)
0

	

cos w

	

- sin w

	

.

	

(A.1)
0

	

sincp

	

cos cp

There are different ways to choose the axes of the three rotations . We use the conven-
tion of rotations around the z- and y-axis, where the axes of the coordinate system
we rotate around are kept fixed during the whole rotation . The three rotations are as
follows . First, we rotate around the z-axis by an angle "y. Second, we rotate around
the y-axis by an angle ,ß and the last rotation is again around the z-axis by an angle

a . Thus, a general rotation matrix takes the form
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(A .2)
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Here we use the active interpretations of rotations, i.e . the three-dimensional vectors
are rotated, not the coordinate system .

A.2

	

Coordinate frame transformations

Due to the usage of different spin coordinate frames it is necessary to transform quan-
tities, like for example the integrated local moment inside the muffin-tin sphere a,
M", from one spin frame to another. An additional index is added to distinguish be-
tween the representations in the different spin frames . When a quantity is represented
within the global frame it is notified by an index g, e .g . M"9 . The same quantity
represented in the local frame or the frame of the effective B-field is denoted M"t or
MaB, respectively. Before we start to work with the coordinate transformations, we
have to define the local spin frames . The reason to introduce a local frame is to work
in a frame, that has its z-axis parallel to the direction of the local magnetization e" .
Thus, we still have the freedom to rotate the local frame around its z-axis . We make
a choice by setting the Euler angle y = 0 for the rotation that rotates the global
frame S9 into the local frame S" . The corresponding rotation matrix is

cos acosß

	

-sin g

	

cosa sin ,ß )R"9i = R(a, ,ß, 0) =

	

sin a cos,3

	

cosa

	

sin asinß

	

(A.3)
-sino 0 cos,ß

With this choice, the Euler angles a and ß are equal to the standard polar angles of
the local z-axis in the global frame, a = cp and 0 = V. Hence, the basis vectors of the
global frame eg are related to the basis vectors of the local frame ea by R(a,,ß, 0) e9 =
ea. Defining R"i9 = (R"9t) -'(= (R191 )II), the relation between the representations
of a vector quantity, e.g . M", is given by

M"t = R"ts . M"s (A.4)

The coordinate frame transformation matrices have the same representation in both,
the local and the global frame. This becomes immediately obvious, when a trans-
formation is applied to R"a9 . For example, to obtain R"t9 in the local frame it has
to be multiplied by R"t9 and R"9t from the left and right, respectively, yielding
Rc'19RcI19R'91 _ R"l9R«t9 (R"t9)-i _ R"19.

A. Spin Rotations and Coordinate Transformations

cos acosß cos ry - sina sin ,y - cos a cos 0 sin y - sin a cos ,y cos asin ,ß
sin acos ,ß cos 7 + cosa sin -y - sina cos ,ß sin y + cos a cos "y sin a sin ,ß

- sin ,ß cos ,y sin ß sin ,y cos ,ß
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A.3

	

Spin Rotation Matrices

-i(a+7

	

-i
a-.Y

%~ _ e 2
COs(2) -e 2 sin(")U(a, 0, -t)

	

i(a-7

	

i(a+7e 2 sin( C2 ) e 2
COs(2)

xal = Ualgxag

The corresponding matrix of the rotation matrix in the two-dimensional space of
Pauli spinors is the spin 1/2 rotation matrix U .

(A.5)

The unitary matrix U is derived in most standard textbooks, e.g . [OH93] . Again, we
use the active interpretation of the rotation, i.e . the wave function (spinor) is rotated .
In other words, the expectation value of the rotated spinor with the operator o- ,
which has the meaning of a magnetic moment, is rotated by the corresponding three-
dimensional rotation .

(U(a, 3, y)X1u1U(a�ß, -y)X) = R(a�ß, y) (x1uIx)

	

(A.6)

The proof of this equation is straightforward, but cumbersome . The coordinate sys-
tem transformation rules are equivalent to (A .4) .

(A.7)

Where Ualg is given by Ualg = (U(a�ß, 0)) -1 and the unitary U-matrices fulfill the
condition Ual9 = (Uagl) -1 = (Uag l)t . The 2 x 2 matrix quantities p and V transform

like operators, e.g .
pal - UalgpagUagl = (Uagl)t pagUagl .

	

A.8
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