000030832 001__ 30832
000030832 005__ 20170601205342.0
000030832 0247_ $$2WOS$$aWOS:000089608400006
000030832 037__ $$aPreJuSER-30832
000030832 041__ $$aeng
000030832 082__ $$a540
000030832 084__ $$2WoS$$aChemistry, Physical
000030832 084__ $$2WoS$$aPhysics, Condensed Matter
000030832 1001_ $$0P:(DE-Juel1)4744$$aGiesen, M.$$b0$$uFZJ
000030832 245__ $$aOn the mechanism of rapid mound decay
000030832 260__ $$aAmsterdam$$bElsevier$$c2000
000030832 300__ $$aL697 - L702
000030832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000030832 3367_ $$2DataCite$$aOutput Types/Journal article
000030832 3367_ $$00$$2EndNote$$aJournal Article
000030832 3367_ $$2BibTeX$$aARTICLE
000030832 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000030832 3367_ $$2DRIVER$$aarticle
000030832 440_0 $$05673$$aSurface Science$$v464$$x0039-6028
000030832 500__ $$aRecord converted from VDB: 12.11.2012
000030832 520__ $$aThe observation of rapid mound decay events on Ag(lll) is reported. As in the case of Cu(lll), the critical terrace width for the onset of the rapid decay corresponds to about six atom rows. For Ag(lll), this distance is incompatible with the surface state model proposed earlier for Cu(lll). A new mechanism for the rapid decay events is considered, which involves steps in close proximity. It is shown that the observed mean terrace width in the final, rapid decay of a mound is well described by a combination of the random walk and shape fluctuations of the islands with the proposed local decay mechanism. Approximate activation energies for the new process are determined for Cu(lll) and Ag(lll). (C) 2000 Elsevier Science B.V. All rights reserved.
000030832 536__ $$0G:(DE-Juel1)FUEK261$$2G:(DE-HGF)$$aStruktur und Dynamik der Grenzflächen$$c25.25.0$$x0
000030832 588__ $$aDataset connected to Web of Science
000030832 650_7 $$2WoSType$$aJ
000030832 65320 $$2Author$$acopper
000030832 65320 $$2Author$$adiffusion and migration
000030832 65320 $$2Author$$agrowth
000030832 65320 $$2Author$$alow index single crystal surfaces
000030832 65320 $$2Author$$ascanning tunneling microscopy
000030832 65320 $$2Author$$asilver
000030832 65320 $$2Author$$asurface diffusion
000030832 7001_ $$0P:(DE-Juel1)VDB5414$$aIbach, H.$$b1$$uFZJ
000030832 773__ $$0PERI:(DE-600)1479030-0$$gVol. 464, p. L697 - L702$$pL697 - L702$$q464<L697 - L702$$tSurface science$$v464$$x0039-6028$$y2000
000030832 909CO $$ooai:juser.fz-juelich.de:30832$$pVDB
000030832 9131_ $$0G:(DE-Juel1)FUEK261$$bStruktur der Materie und Materialforschung$$k25.25.0$$lGrenzflächen- und Vakuumforschung$$vStruktur und Dynamik der Grenzflächen$$x0
000030832 9141_ $$aNachtrag$$y2000
000030832 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000030832 9201_ $$0I:(DE-Juel1)VDB167$$d31.12.2000$$gIGV$$kIGV$$lInstitut für Grenzflächenforschung und Vakuumphysik$$x0
000030832 970__ $$aVDB:(DE-Juel1)29337
000030832 980__ $$aVDB
000030832 980__ $$aConvertedRecord
000030832 980__ $$ajournal
000030832 980__ $$aI:(DE-Juel1)VDB167
000030832 980__ $$aUNRESTRICTED