000030832 001__ 30832 000030832 005__ 20170601205342.0 000030832 0247_ $$2WOS$$aWOS:000089608400006 000030832 037__ $$aPreJuSER-30832 000030832 041__ $$aeng 000030832 082__ $$a540 000030832 084__ $$2WoS$$aChemistry, Physical 000030832 084__ $$2WoS$$aPhysics, Condensed Matter 000030832 1001_ $$0P:(DE-Juel1)4744$$aGiesen, M.$$b0$$uFZJ 000030832 245__ $$aOn the mechanism of rapid mound decay 000030832 260__ $$aAmsterdam$$bElsevier$$c2000 000030832 300__ $$aL697 - L702 000030832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000030832 3367_ $$2DataCite$$aOutput Types/Journal article 000030832 3367_ $$00$$2EndNote$$aJournal Article 000030832 3367_ $$2BibTeX$$aARTICLE 000030832 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000030832 3367_ $$2DRIVER$$aarticle 000030832 440_0 $$05673$$aSurface Science$$v464$$x0039-6028 000030832 500__ $$aRecord converted from VDB: 12.11.2012 000030832 520__ $$aThe observation of rapid mound decay events on Ag(lll) is reported. As in the case of Cu(lll), the critical terrace width for the onset of the rapid decay corresponds to about six atom rows. For Ag(lll), this distance is incompatible with the surface state model proposed earlier for Cu(lll). A new mechanism for the rapid decay events is considered, which involves steps in close proximity. It is shown that the observed mean terrace width in the final, rapid decay of a mound is well described by a combination of the random walk and shape fluctuations of the islands with the proposed local decay mechanism. Approximate activation energies for the new process are determined for Cu(lll) and Ag(lll). (C) 2000 Elsevier Science B.V. All rights reserved. 000030832 536__ $$0G:(DE-Juel1)FUEK261$$2G:(DE-HGF)$$aStruktur und Dynamik der Grenzflächen$$c25.25.0$$x0 000030832 588__ $$aDataset connected to Web of Science 000030832 650_7 $$2WoSType$$aJ 000030832 65320 $$2Author$$acopper 000030832 65320 $$2Author$$adiffusion and migration 000030832 65320 $$2Author$$agrowth 000030832 65320 $$2Author$$alow index single crystal surfaces 000030832 65320 $$2Author$$ascanning tunneling microscopy 000030832 65320 $$2Author$$asilver 000030832 65320 $$2Author$$asurface diffusion 000030832 7001_ $$0P:(DE-Juel1)VDB5414$$aIbach, H.$$b1$$uFZJ 000030832 773__ $$0PERI:(DE-600)1479030-0$$gVol. 464, p. L697 - L702$$pL697 - L702$$q464<L697 - L702$$tSurface science$$v464$$x0039-6028$$y2000 000030832 909CO $$ooai:juser.fz-juelich.de:30832$$pVDB 000030832 9131_ $$0G:(DE-Juel1)FUEK261$$bStruktur der Materie und Materialforschung$$k25.25.0$$lGrenzflächen- und Vakuumforschung$$vStruktur und Dynamik der Grenzflächen$$x0 000030832 9141_ $$aNachtrag$$y2000 000030832 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000030832 9201_ $$0I:(DE-Juel1)VDB167$$d31.12.2000$$gIGV$$kIGV$$lInstitut für Grenzflächenforschung und Vakuumphysik$$x0 000030832 970__ $$aVDB:(DE-Juel1)29337 000030832 980__ $$aVDB 000030832 980__ $$aConvertedRecord 000030832 980__ $$ajournal 000030832 980__ $$aI:(DE-Juel1)VDB167 000030832 980__ $$aUNRESTRICTED