000000312 001__ 312
000000312 005__ 20180208195651.0
000000312 0247_ $$2DOI$$a10.1016/j.susc.2008.03.045
000000312 0247_ $$2WOS$$aWOS:000256980200007
000000312 037__ $$aPreJuSER-312
000000312 041__ $$aeng
000000312 082__ $$a540
000000312 084__ $$2WoS$$aChemistry, Physical
000000312 084__ $$2WoS$$aPhysics, Condensed Matter
000000312 1001_ $$0P:(DE-Juel1)VDB10516$$aCherepanov, V.$$b0$$uFZJ
000000312 245__ $$aGrowth of Ag on the Bi-terminated Ge/Si(111) surface
000000312 260__ $$aAmsterdam$$bElsevier$$c2008
000000312 300__ $$a1954 - 1956
000000312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000312 3367_ $$2DataCite$$aOutput Types/Journal article
000000312 3367_ $$00$$2EndNote$$aJournal Article
000000312 3367_ $$2BibTeX$$aARTICLE
000000312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000312 3367_ $$2DRIVER$$aarticle
000000312 440_0 $$05673$$aSurface Science$$v602$$x0039-6028
000000312 500__ $$aRecord converted from VDB: 12.11.2012
000000312 520__ $$aThe presence of a Bi layer during Ge epitaxy at the Si(1 11) surface suppresses Si-Ge intermixing and also allows us to distinguish between Si and Ge in scanning tunneling microscopy at the atomic level. In our investigation, we explored the possibility of a selective growth of Ag either on a Ge area or a Si area. We found that a chemically selective bonding of Ag to Si or Ge at the prestructured Ge/Si surface does not occur. Due to the strong passivation of Si and of the Ge surfaces by a layer of Bi at room and elevated temperatures Ag collects into 3D islands without being incorporated into the surface. Co-deposition of Ag during the epitaxy of Ge on the Bi-terminated Si(1 11) surface also leads to an accumulation of Ag into 3D islands, while the remaining surface is covered by a layer of Bi. (c) 2008 Elsevier B.V. All rights reserved.
000000312 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000000312 588__ $$aDataset connected to Web of Science
000000312 650_7 $$2WoSType$$aJ
000000312 65320 $$2Author$$ascanning tunneling microscopy
000000312 65320 $$2Author$$amolecular beam epitaxy
000000312 65320 $$2Author$$abismuth
000000312 65320 $$2Author$$asilver
000000312 65320 $$2Author$$asilicon
000000312 65320 $$2Author$$agermanium
000000312 65320 $$2Author$$anucleation
000000312 65320 $$2Author$$agrowth
000000312 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b1$$uFZJ
000000312 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2008.03.045$$gVol. 602, p. 1954 - 1956$$p1954 - 1956$$q602<1954 - 1956$$tSurface science$$v602$$x0039-6028$$y2008
000000312 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2008.03.045
000000312 909CO $$ooai:juser.fz-juelich.de:312$$pVDB
000000312 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000000312 9141_ $$y2008
000000312 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000312 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0
000000312 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000000312 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000000312 970__ $$aVDB:(DE-Juel1)100578
000000312 980__ $$aVDB
000000312 980__ $$aConvertedRecord
000000312 980__ $$ajournal
000000312 980__ $$aI:(DE-Juel1)PGI-3-20110106
000000312 980__ $$aI:(DE-Juel1)VDB381
000000312 980__ $$aI:(DE-82)080009_20140620
000000312 980__ $$aUNRESTRICTED
000000312 981__ $$aI:(DE-Juel1)PGI-3-20110106
000000312 981__ $$aI:(DE-Juel1)VDB381
000000312 981__ $$aI:(DE-Juel1)VDB881