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Self-avoiding linear and star polymers anchored to membranes
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The effect of anchored linear and star polymers in the mushroom regime on the curvature elasticity of
membranes is investigated by Monte Carlo simulations and scaling arguments. We describe a simulation
method to calculate the free energy of anchored polymers as a function of membrane curvature, which is
accurate enough to extract reliable values for the polymer-induced spontaneous curvatureDc0, bending rigidity
Dk, and saddle-splay modulusDk̄. For self-avoiding linear and star polymers, the universal amplitudes of the
curvature moduli as well as the effects of finite chain lengths are determined, to our knowledge, for the first
time. We find that star polymers have the unique property of strongly affectingc0 and k, but leaving k̄
essentially unchanged. Furthermore, star polymers are shown to have a much stronger effect on membrane
properties than an equivalent number of linear polymers.
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u

-
m

le
w

ic
le
th
ca
le
ed
,

e
ye

il-

i-
r-
is
e
op

o
he

e
-
e

t

in

ce
t

e of
the

d-
tly.
ient
ear
the

l-

rlo
ce
gy
n,

r-
rved

is
ta.

red
m
e

t,

is
o of
I. INTRODUCTION

The shapes, fluctuations, and phase behavior of fl
membranes are controlled by their curvature elasticity@1#.
The bending rigidityk, the saddle-splay modulusk̄, and the
spontaneous curvaturec0 are strongly affected by the com
position of the membrane, and by the interaction of the me
brane with the surrounding fluid and with macromolecu
and ions embedded in it. From a theoretical point of vie
the interaction of membranes with embedded@2#, anchored
@3–7#, adsorbed@8–10#, or free@11,12# polymers is particu-
larly interesting, because due to the dominance of entrop
contributions to the free energy of these macromolecu
their effect on the curvature elasticity depends not on
detailed chemical structure, but only on a few geometri
parameters such as the polymer length. Similarly, the e
trostatic contribution to the curvature elasticity of charg
membranes only depends on the surface charge density
Debye screening length, and the Bjerrum length@13,14#. Ex-
perimentally, membranes decorated with anchored polym
have been studied for end-grafted polymers at bila
vesicles@15,16# and in lamellar hydrogels@17#, for symmet-
ric and asymmetric amphiphilic block copolymers in o
water-surfactant microemulsions@18–20#, for hydrophobi-
cally modified polymers in surfactant lamellar phases@21#,
and for symmetric amphiphilic triblock copolymers in b
layer lyotropic phases@22#. All these experiments are pe
formed in good solvent conditions for the polymers. It
therefore important to understand the effect of the exclud
volume interaction of the polymers on the membrane pr
erties.

In all the theoretical results mentioned above, the ratio
the additional contribution to the bending rigidity and to t
saddle-splay modulus is a constant, i.e.,k andk̄ are affected
in exactly the same way. Furthermore, these constants ar
in the range20.3.k/k̄.22.2. For example, for ideal poly
mers anchored to a membrane in the mushroom regim
low grafting density,k/k̄52(1/21p/4)521.285 @5,11#,
independent of chain lengthN, while for polymer brushes a
high grafting density, k/k̄52(21n)/(2n)5213/65
22.167 ~with n53/5! from scaling theory@5# and k/k̄5
1063-651X/2003/68~5!/051801~6!/$20.00 68 0518
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2105/64521.641 from mean-field theory@3#, independent
of both chain length and grafting density. For polymers
dilute solution with excluded-volume interactions,k/k̄5
2(110.10e) in d542e spatial dimensions@12#. Similarly,
for polymers embedded in the membrane,k/k̄521/2 @2#.
Finally, charged membranes in the limit of low surfa
charge density havek/k̄523/2, while for membranes a
high charge density,k/k̄523/p2520.304@14#.

In this paper, we show that in the case ofstar polymers
anchored to a membrane at their center, the dependenc
the bending rigidity and the saddle-splay modulus on
functionality f ~the number of arms! is different. Thus, star
polymers provide a unique opportunity to control the ben
ing rigidity and the saddle-splay modulus independen
Furthermore, we show that star polymers are more effic
in affecting the curvature elasticity of membranes than lin
polymers in the mushroom regime. Finally, we calculate
universal amplitudes of all three elastic parametersk, k̄, and
c0 for self-avoiding linear and star polymers, to our know
edge, for the first time.

II. MODEL AND SIMULATION TECHNIQUE

The calculation of curvature elasticities from Monte Ca
simulations in the mushroom regime is very difficult, sin
the polymer effect is only of the order of the thermal ener
kBT, even close to the overlap grafting density. In additio
the curvature elastic moduli follow from the minute diffe
ences in the polymer free energies at a planar and a cu
wall in the limit of small curvatures.

We have therefore devised the following method, which
both efficient and sufficiently accurate to obtain reliable da
The main idea is to run a simulation of a polymer ancho
to a planar, hard wall. We use the standard pivot algorith
@23# to perform this simulation. For each configuration, w
construct a sphere of radiusRs and a cylinder of radiusRc in
such a way that~i! it touches the wall at the anchoring poin
~ii ! all monomers are inside it, and~iii ! the radiiRs andRc
are minimal, as illustrated in Fig. 1. The cylinder axis
always taken to have the same, fixed orientation. The rati
partition functions,Zs(Rs ,N)/Zp(N), of a polymer confined
©2003 The American Physical Society01-1
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to the inside a sphere of radiusRs and a planar hard wall is
then obtained by simply counting the fraction of all config
rations, for which all monomers fall inside the sphere. T
same method gives the ratio of partition function
Zc(Rc ,N)/Zp(N), for the cylinder. One of the big advan
tages of this method is that the partition functions forall
radii of curvature can be obtained from a single run.

The method described so far seems to be restricte
membranes curved towards the polymer chain. Howeve
can easily be generalized to membranes curving away f
the polymer. All what has to be done in the latter case is
simulate a polymer anchored at the outside of a spher
some fixed radiusR0. The same technique described abo
of constructing enveloping spheres and cylinders with ra
Rs ,Rc.R0 then allows to calculate the ratios of partitio
functions Zs(2Rs ,N)/Zp(N) and Zc(2Rc ,N)/Zp(N).
Here, the normalization factorZs(2R0 ,N)/Zp(N) is ob-
tained automatically by using the plane as enveloping s
face.

As in the analytical approaches, the ratio of partition fun
tions is expanded in powers of inverse radius of curvatu

Zc~R,N!

Zp~N!
511a1

Re

R
1a2S Re

R D 2

1•••, ~1!

Zs~R,N!

Zp~N!
511b1

Re

R
1b2S Re

R D 2

1•••, ~2!

whereRe;Nn is the average end-to-end distance of afree
polymer, withn50.59 in good solvent andn51/2 in a theta
solvent, respectively. Consistency with the curvature ene
requiresb152a1. The simulated partition function ratios a
well as large-R expansions extracted from the data up
second order are plotted in Fig. 2. This figure also dem
strates nicely that the expansions hold for curvatures of b
signs which is a necessary prerequisite to describe the p
mer effect by changes of the curvature elastic constants.
have shown that Eqs.~1! and ~2! are valid for all linear and
star polymers considered in this paper@24#. The elastic con-
stants~in units of kBT) are finally obtained as

ke f fDc05aspsRe , ~3!

Dk5aksRe
2 , ~4!

R

FIG. 1. A polymer anchored to a planar, hard wall is simulat
Enveloping spheres and cylinders of radiusR are constructed to
calculate the ratio of partition functionsZ(R,N)/Zp(N).
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Dk̄5āksRe
2 , ~5!

wheres is the grafting density of the polymer chains,ke f f
the bending rigidity of membrane plus anchored polyme
andasp52a1/2, ak5(2a21a1

2), āk5(b224a2).

III. IDEAL AND SELF-AVOIDING LINEAR POLYMERS

We have tested the method for a single, anchored, id
polymer chain, for which analytical results are available
the long-chain limit @5#. We employ the standard freel
jointed chain model with fixed bond length. In order to o
tain data of sufficient statistical accuracy, Monte Carlo ru
of typically 108 million Monte Carlo steps per bead are r
quired. The studied chain lengths range fromN510 to N
5200.

It is immediately clear that we have to do a double e
trapolation in order to compare our data with the analyti
results. First, we have to extrapolate from finite curvatures
the limit of ~almost! vanishing curvature, because the relati
statistical errors of the simulation data diverge in the lim
R→`. This is done by fitting a quadratic polynomial to th
data for 12Zx(Rs ,N)/Zp(N) with x5s,c in the range 0
,1/R,cmax, in which the data are not yet strongly affecte
by higher-order terms in the curvature expansion. The res
ing coefficientsa1 , a2 , b1, andb2 still have a weak depen
dence oncmax. We extrapolate tocmax50 by fitting the data
for a1(cmax) etc. again to a linear or quadratic polynomia
ignoring the data for very smallcmax, which has large sta-
tistical error bars. Second, we have to extrapolate to la
chain lengthsN→`, since the analytical results are obtain
in the continuum limit. A plot of the data for the bendin
rigidity versusN21/2 shows a nearly linear dependence, co
pare Fig. 3 so that the correction-to-scaling exponent mus
close to 1/2. This should be compared with very similar v
ues for the correction-to-scaling exponent in the hydro
namic radius of ideal chains@25# and for the end-to-end dis

.

0.4
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0.8

1
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x
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cRe

FIG. 2. Simulation results for the partition-function ratios of a
ideal polymer chain with 20 bonds. Contributions to the sma
curvature expansion up to quadratic order are used to evaluat
effect on the membrane parameters. In the sphere c
Zs(R,N)/Zp(N), all terms of higher than linear order vanish; fit an
simulation curve match exactly~dashed-dotted line!. In the cylinder
case,Zc(R,N)/Zp(N), simulation data~solid!, linear ~long dashes!,
and linear plus quadratic contributions~short dashes! are shown.
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tance of self-avoiding chains@26#. Also, a self-consistent
field calculation of the effect of long block copolymers o
the curvature elasticity of interfaces in a ternary mixture
two homopolymers and a short block copolymer is consis
with this correction-to-scaling exponent@27#. A linear fit to
the data implies

ak50.2130~120.870N21/21••• !. ~6!

A comparison with the analytical resultak5(11p/2)/12
50.2142 shows excellent agreement, which demonstr
that our method works very well. Furthermore, Eq.~6! indi-
cates that corrections to scaling can be quite large for
typical chain lengths used in experiments, and that theyre-
ducethe polymer effect. The results for the spontaneous c
vature and the saddle-splay modulus are

asp50.1801~120.369N21/21••• !, ~7!

āk520.1682~121.179N21/21••• ! ~8!

for which the same remarks apply as forak . We estimate the
statistical error of all these amplitudes to be about 0.001

The method can now be applied with confidence to
chored self-avoiding linear and star polymers. We use
standard model for self-avoiding polymers with hard sphe
of radiusr 0 and bonds of fixed length,0 between neighbor-
ing monomers. In order to have a scaling regime as larg
possible, we chose,0 /r 054, for which the end-to-end dis
tance scales asNn with n50.59 for chain lengths as small a
N510. The simulations are again performed with the piv
algorithm @23#.

For a self-avoiding linear chain we obtain

ak50.1997~120.9719N21/21••• !, ~9!

asp50.1679~120.3911N21/21••• !, ~10!

āk520.1532~121.2206N21/21••• ! ~11!

for N monomers, see also Fig. 4. We estimate the statis
error of to be about 0.001.
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FIG. 3. The universal amplitudeak of the bending rigidity of an
ideal polymer chain ofN monomers. The arrow indicates the an
lytical result @5,11#.
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Thus, we find that the universal amplitude of the bend
rigidity for a linear self-avoiding polymer is ak50.1997
60.001, which differs not too much from the result for a
ideal chain withak50.2142. This is indeed a surprising re
sult, since the repulsion between the monomers of a s
avoiding chain leads to a stronger pressure of the poly
onto the membrane compared to the case of an ideal c
@28#. Therefore, a larger amplitude for the self-avoidin
chain might be expected. On the other hand, a smaller v
of the universal amplitudeak for self-avoiding chains is no
inconsistent with an increased pressure, since the decrea
the amplitude is overcompensated by the increase of the
to-end distance. Finally, analytical results for the effect
polymers in solution on the bending rigidity impl
ak(self-avoiding)/ak( ideal)5120.0713e in d542e spa-
tial dimensions, which is an effect of similar~small! magni-
tude @12#. In both cases, self-avoidance decreases the m
nitude of the universal amplitude. The effects onc0 and k̄
are similar, compare Fig. 5 forf 51 and Table I.

IV. STAR POLYMERS

Star polymers are modeled asf freely jointed chains with
mutual avoidance and self-avoidance, which are all ancho
to the same point on the membrane. The results for the sp
taneous curvature, the bending rigidity, and the saddle-s
modulusper arm, i.e., the effect of a star polymer divided b
the functionalityf, are shown in Fig. 5 as function of the ar
number. This shows immediately twoqualitative effects.
First, the bending rigidity and the spontaneous curvature
arm increase withf. The star polymer is therefore more effi
cient in modifying these membrane properties than an eq
number of individual chains. Second, the saddle-splay mo
lus per arm remains essentially constant, i.e., the sad
splay modulus has a differentf dependence than the bendin
rigidity.

The increased efficiency of anf-armed star polymer com
pared to f single polymer chains can be understood in
itively as follows. Consider a symmetric case, in which tw
identical star polymers are attached on either side of
membrane, so that the spontaneous curvature vanishes
tically. The star polymers then impose an entropic press

0.13

0.14

0.15
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0.18

0.19
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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N –1 / 2

FIG. 4. The universal amplitudeak of the bending rigidity of a
self-avoiding polymer chain ofN monomers.
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onto the membrane from both sides. When the membran
curved, the star on the interior side is compressed, while
star in the exterior is relaxed. The same also happens f
linear polymer. However, due to the mutual excluded-volu
interactions of the arms of a star polymer, the entropic pr
sure is higher for the star polymer. We obtain the import
quantitativeresult that the magnitude of the polymer effe
per arm onk and c0 increases by about a factor 1.5 forf
55 compared to single chains, and should reach a fact
roughly at f 510.

Our results for the two-armed star can be compared w
the approximate calculation of Ref.@6#, in which the ex-
cluded volume was mimicked by an impenetrable plane
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FIG. 5. Effect per arm of an anchored star polymer on th
membrane elasticity as a function of the functionalityf, relative to a
star without self-avoidance: universal amplitude~a! asp of the spon-
taneous curvature,~b! ak of the bending rigidity, and~c! āk of the
saddle modulus.
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tween two ideal polymers. This leads to the estim
ke f fDc05(7/2)@Ap/(4A6)#sRe , which overestimates the
effect compared to our results by a factor of about 1.6. T
reason for this overestimation is clearly that the typical co
formations of two chains with excluded-volume interactio
show considerable interpenetration, which is not taken i
account in the impenetrable-wall approximation.

With increasing functionality, Monte Carlo simulation
become less and less efficient. We therefore use the
model for large functionalityf, which has been employe
before for free star polymers@29#, for polymer brushes to
calculate the polymer effect on the curvature elastic
@3,5,7#, and for anchored star polymers to determine the lo
membrane shape@30#. The main idea is that at a given dis
tance from the anchoring point, the blob sizej is determined
by the area available to the polymer chains. For a spher
deformation, this is the part of the surface of a sphere
radiusr around the anchoring point, which is inside anoth
sphere of radiusR ~the radius of curvature! touching the wall
at the anchoring point. In the case of a cylindrical deform
tion, the second sphere has to be replaced by a cylinde
radiusR. This implies

j2~r !5
1

f E0

2p

dwE
umin

p/2

dur 2cosu, ~12!

where the angleumin is determined by sinumin5r/(2R) for a
spherical and by sinumin(w)5@R2(R22r2sin2w cos2w)1/2#/
(r cos2w) for a cylindrical deformation. To relevant order i
an expansion inr /R, we obtain

j2~r !5
2pr 2

f S 12q
r

RD ~13!

with q51/2 andq51/4 for sphere and cylinder, respectivel
The number of monomers in a blob at distancer is then
given byn(r )5@j(r )/,0#1/n. The total number of monomer
in one chain is

N5E
0

Rstar
dr

n~r !

j~r !
, ~14!

which determines the radiusRstar of the star polymer. Ex-
panding to second order in 1/R, we find

Rstar5 f (12n)/2,0NnGS f (12n)/2
,0Nn

R D ~15!

TABLE I. Universal amplitudes of the contributions oflinear
anchored polymers on the membrane elasticity. The statistical e
in the simulation results is about 0.001 for ideal and self-avoid
chains.

Ideal chain Self-avoiding

Analytical Simulation Simulation
asp Ap/(4A6) 10.1801 10.1679
ak (11p/2)/12 10.2130 10.1997
āk 21/6 20.1682 20.1532
1-4
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SELF-AVOIDING LINEAR AND STAR POLYMERS . . . PHYSICAL REVIEW E 68, 051801 ~2003!
with a scaling functionG(x)5Q01Q1x1Q2x21 . . . and
positive constantsQ0 , Q1, and Q2, where the latter two
depend on the~spherical or cylindrical! type of deformation.
Equation~15! shows that the star radius increases with
functionality @29#. More importantly in our case, Eq.~15!
demonstrates explicitly that the radius of a star in the ins
~outside! of a curved membrane increases~decreases! with
the scaled curvatureRstar

(0) /R, whereRstar
(0) 5 f (12n)/2 ,0Nn is

the star radius at a planar wall. Thus, the arms have to str
more at higher functionality, which implies a larger effect
c0 andk.

Finally, the free energy of one chain is determined by

F15kBTE
,0

Rstar
dr

1

j~r !
. ~16!

By evaluating these integrals in an expansion in 1/R for both
sphere and cylinder, we can extract the contribution of
star polymer to the curvature elasticity. The result of t
calculation is

ke f fDc05Aspf
22n/2s,0Nn, ~17!

Dk5Ak f 5/22ns,0
2N2n, ~18!

Dk̄50, ~19!

where Asp50.029 andAk50.110 for n50.59. Thus, the
elastic moduliper armare found to increase with the func
tionality asDk/ f ; f 0.91 andke f fDc0 / f ; f 0.71. These power
laws for largef with exponents not too far from unity ar
very consistent with the almost linear dependence found
the simulations for smallf. For Dk̄5const,0 ~compare Fig.
5!, Eq. ~17! impliesDk/Dk̄;2 f 3/22n, which becomes very
large for large functionality.

The blob model calculation also gives some insight in
the physical origin of the independence of the saddle-sp
modulus per arm on the star functionality. As discussed a
Eq. ~15!, the chains have to stretch for a spherical deform
tion of the membrane. However, in the case of a saddle
formation, the area available for the chains at any distanr
from the anchoring point remains completely unchang
Therefore, the sizes and numbers of blobs are not affecte
a saddle deformation, only their arrangement in sp
changes, which leaves the free energy unaltered.

V. DISCUSSION AND CONCLUSIONS

The interpretation of our results for the effective curvatu
elasticity is straightforward for symmetric diblock
copolymers—like those investigated in balanced ternary
croemulsions@18–20#—and for amphiphilic star polymer
with equal numbers of hydrophobic and hydrophilic arms~of
equal length! anchored to a membrane. In this case, there
identical polymer chains attached to the same ancho
point on both sides of the membrane@18#. Therefore, sym-
metry implies that the spontaneous curvature vanishes,
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our model to calculate the polymer effect onk and k̄ de-
scribes the system perfectly.

In the case ofasymmetricblock copolymers, or forend-
graftedpolymers—such as the PEO-lipids studied in bilay
vesicles@16# and lamellar phases@17#—the situation is more
complicated. The pressure exerted on one side of the m
brane by the polymer now induces a spontaneous curva
@4#. However, it also deforms the membrane locally into
conelike shape@10,28,30–32#. For star polymers, the cone
like deformation increases with increasing functionality. T
angle of the cone has been predicted from a blob mo
calculation to increase asf 3/2 @30#.

In order to understand the generation of a spontane
curvature for end-grafted chains, we have to distinguish t
situations. The first is the case of asinglelinear or star poly-
mer anchored to an infinite membrane, which becomes
ymptotically flat far from the anchoring point, as studied
Refs. @10,28,30,31#. The membrane is found to be con
shaped in the area affected by the polymer, and take
catenoid shape of zero mean curvature at larger distan
The integrated mean curvature in a perturbative calculat
in which the pressure distribution of the polymer anchored
a planar wall is used to determine the membrane shape, g
a value ofAp/6 (kBT/4k)Re for ideal chains@31#. The sec-
ond is afinite densityof chains with grafting densitys. We
can simply superimpose the shape deformations of the si
chains and obtain a spontaneous curvatureDc0

5Ap/6(kBT/4k)sRe @31#. Remarkably, this isexactly the
same result obtained by grafting ideal polymer chains ont
spherical surface, compare Eq.~3! and Table I. Thus, for
ideal chains and sufficiently large bending rigidities—so th
the pressure distribution is well approximated by the pla
case—the local conelike deformation of the membrane sh
doesnot affect the spontaneous curvature. This strongly s
ports the validity of our results also for asymmetric copo
mers and for end-grafted linear and star polymers—poss
with small corrections.

It is important to note that the elastic moduli, which w

FIG. 6. Values ofk/k̄ for different systems@2,3,5,11,12,14#.
Our results are indicated by dashed lines. Star polymers allow
access systematically a wide range ofk/k̄ ratios. As indicated by
the arrow, in principle, the whole range of negative ratios is acc
sible.
1-5
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calculate with our method, describe the effective curvat
elasticity of the composite membranes on length sca
which are large compared to the size of an individual po
mer mushroom.

The effect of star polymers on the membrane curvat
elastic constants gives the unique possibility to vary the r
k/k̄ over a wide range, compare Fig. 6. This provides
possibility to study the dependence of the behavior of me
l-

tt.

05180
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brane ensembles on the bending rigidity and saddle-s
modulus in more detail, and to control and tailor the prop
ties of membrane systems.
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