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Self-avoiding linear and star polymers anchored to membranes
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The effect of anchored linear and star polymers in the mushroom regime on the curvature elasticity of
membranes is investigated by Monte Carlo simulations and scaling arguments. We describe a simulation
method to calculate the free energy of anchored polymers as a function of membrane curvature, which is
accurate enough to extract reliable values for the polymer-induced spontaneous cuxegtiyending rigidity
Ak, and saddle-splay modulds«. For self-avoiding linear and star polymers, the universal amplitudes of the
curvature moduli as well as the effects of finite chain lengths are determined, to our knowledge, for the first
time. We find that star polymers have the unique property of strongly affectingnd «, but leavingx
essentially unchanged. Furthermore, star polymers are shown to have a much stronger effect on membrane
properties than an equivalent number of linear polymers.
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I. INTRODUCTION —105/64= — 1.641 from mean-field theor}3], independent
of both chain length and grafting density. For polymers in
The shapes, fluctuations, and phase behavior of fluidilute solution with excluded-volume interactions/«=
membranes are controlled by their curvature elastiglfy — —(1+0.10€) in d=4— e spatial dimensionElL2]. Similarly,
The bending rigidityk, the saddle-splay modulus and the for polymers embedded in the membraréx=—1/2 [2].
spontaneous curvatu® are strongly affected by the com- Finally, charged membranes in the limit of low surface
position of the membrane, and by the interaction of the memeharge density have/«x= —3/2, while for membranes at
brane with the surrounding fluid and with macromoleculeshigh charge densitys/x= —3/m?= —0.304[14].
and ions embedded in it. From a theoretical point of view, In this paper, we show that in the casestér polymers
the interaction of membranes with embedd&dl anchored anchored to a membrane at their center, the dependence of
[3-7], adsorbed8-10, or free[11,12 polymers is particu- the bending rigidity and the saddle-splay modulus on the
larly interesting, because due to the dominance of entropicdlinctionality f (the number of armsis different. Thus, star
contributions to the free energy of these macromoleculespolymers provide a unique opportunity to control the bend-
their effect on the curvature elasticity depends not on théng rigidity and the saddle-splay modulus independently.
detailed chemical structure, but only on a few geometricaFurthermore, we show that star polymers are more efficient
parameters such as the polymer length. Similarly, the eledn affecting the curvature elasticity of membranes than linear
trostatic contribution to the curvature elasticity of chargedpolymers in the mushroom regime. Finally, we calculate the
membranes only depends on the surface charge density, thaiversal amplitudes of all three elastic parameters, and
Debye screening length, and the Bjerrum lendt8,14. Ex- ¢, for self-avoiding linear and star polymers, to our knowl-
perimentally, membranes decorated with anchored polymensdge, for the first time.
have been studied for end-grafted polymers at bilayer
vesicleg 15,16 and in lamellar hydrogelgl7], for symmet-
ric and asymmetric amphiphilic block copolymers in oil-
water-surfactant microemulsiorfd8-20, for hydrophobi- The calculation of curvature elasticities from Monte Carlo
cally modified polymers in surfactant lamellar phas2s], simulations in the mushroom regime is very difficult, since
and for symmetric amphiphilic triblock copolymers in bi- the polymer effect is only of the order of the thermal energy
layer lyotropic phase$22]. All these experiments are per- kgT, even close to the overlap grafting density. In addition,
formed in good solvent conditions for the polymers. It isthe curvature elastic moduli follow from the minute differ-
therefore important to understand the effect of the excludedences in the polymer free energies at a planar and a curved
volume interaction of the polymers on the membrane propwall in the limit of small curvatures.
erties. We have therefore devised the following method, which is
In all the theoretical results mentioned above, the ratio oboth efficient and sufficiently accurate to obtain reliable data.
the additional contribution to the bending rigidity and to the The main idea is to run a simulation of a polymer anchored
saddle-splay modulus is a constant, ieand« are affected to aplanar, hard wall. We use the standard pivot algorithm
in exactly the same way. Furthermore, these constants are &3] to perform this simulation. For each configuration, we
in the range— 0.3> x/ x> —2.2. For example, for ideal poly- construct a sphere of radif and a cylinder of radiuR; in
mers anchored to a membrane in the mushroom regime @&fuch a way thati) it touches the wall at the anchoring point,
low grafting density, x/k=—(1/2+ w/4)= —1.285 [5,11], (i) all monomers are inside it, andi) the radiiRg and R,
independent of chain lengt, while for polymer brushes at are minimal, as illustrated in Fig. 1. The cylinder axis is
high grafting density, x/k=—(2+v)/(2v)=—13/6= always taken to have the same, fixed orientation. The ratio of
—2.167 (with »=3/5) from scaling theory[5] and «/x= partition functionsZy(Rs,N)/Z,(N), of a polymer confined

II. MODEL AND SIMULATION TECHNIQUE
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FIG. 1. A polymer anchored to a planar, hard wall is simulated. cRe

Enveloping spheres and cylinders of radiRsare constructed to

calculate the ratio of partition functiorig(R,N)/Z,(N). FIG. 2. Simulation results for the partition-function ratios of an

ideal polymer chain with 20 bonds. Contributions to the small-

to the inside a sphere of radit and a planar hard wall is curvature expansion up to quadratic order are used to evaluate the
then obtained by simply counting the fraction of all configu-effect on the membrane parameters. In the sphere case,
rations, for which all monomers fall inside the sphere. TheZ(R,N)/Z,(N), all terms of higher than linear order vanish; fit and
same method gives the ratio of partition functions,simulation curve match exactlglashed-dotted lineln the cylinder
Z(R:,N)/Z,(N), for the cylinder. One of the big advan- caseZ(R,N)/Z,(N), simulation datasolid), linear(long dashes
tages of this method is that the partition functions &  and linear plus quadratic contributiofghort dashgsare shown.
radii of curvature can be obtained from a single run.

The method described so far seems to be restricted to A7=§KUR§, (5)
membranes curved towards the polymer chain. However, it

the polymer. All what has to be done in the latter case is tQhe bending rigidity of membrane plus anchored polymers,
simulate a polymer anchored at the outside of a sphere %{ndaspz—allz a,=(2a,+a?), a,=(b,—4ay,).

some fixed radiu®}y. The same technique described above
of constructing enveloping spheres and cylinders with radii
Rs,R.>R, then allows to calculate the ratios of partiton !l IDEALAND SELF-AVOIDING LINEAR POLYMERS

functions Zy(—Rs,N)/Z,(N) and Z.(—R:,N)/Zy(N). We have tested the method for a single, anchored, ideal
Here, the normalization factoZy(—Rg,N)/Zp(N) is ob-  polymer chain, for which analytical results are available in
tained automatically by using the plane as enveloping sufie long-chain limit[5]. We employ the standard freely
face. , _ o jointed chain model with fixed bond length. In order to ob-

~ Asin the analytical approaches, the ratio of partition func-tain data of sufficient statistical accuracy, Monte Carlo runs
tions is expanded in powers of inverse radius of curvature, y¢ typically 16 million Monte Carlo steps per bead are re-

Z.(RN) R, R,|? ciwred. The studied chain lengths range froéw=10 to N
= =lta;—tay =] +---, (1  =200. _
Z,(N) R R It is immediately clear that we have to do a double ex-
5 trapolation in order to compare our data with the analytical
Z{(RN) _ 1+b Re L. @ results. First, we have to extrapolate from finite curvatures to
Z,(N) IR ""4 R ' the limit of (almos} vanishing curvature, because the relative

statistical errors of the simulation data diverge in the limit
whereR.~N" is the average end-to-end distance difee  R— . This is done by fitting a quadratic polynomial to the
polymer, with»=0.59 in good solvent and=1/2 in a theta  data for 1-Z,(Rs,N)/Z,(N) with x=s,c in the range 0
solvent, respectively. Consistency with the curvature energy< 1/R<c,y, in which the data are not yet strongly affected
requireshb; =2a,. The simulated partition function ratios as by higher-order terms in the curvature expansion. The result-
well as largeR expansions extracted from the data up toing coefficientsa,, a,, b;, andb, still have a weak depen-
second order are plotted in Fig. 2. This figure also demondence orc,,,,. We extrapolate te,,,,=0 by fitting the data
strates nicely that the expansions hold for curvatures of botfor a,(c,,,,) etc. again to a linear or quadratic polynomial,
signs which is a necessary prerequisite to describe the polygnoring the data for very smatl,,.,, which has large sta-
mer effect by changes of the curvature elastic constants. Wstical error bars. Second, we have to extrapolate to large
have shown that Eq¢l) and(2) are valid for all linear and  chain lengthd\—, since the analytical results are obtained
star polymers considered in this pajp2d]. The elastic con- in the continuum limit. A plot of the data for the bending

stants(in units ofkgT) are finally obtained as rigidity versusN~ Y2 shows a nearly linear dependence, com-
pare Fig. 3 so that the correction-to-scaling exponent must be
KeffACo=aspoRe, 3) close to 1/2. This should be compared with very similar val-
5 ues for the correction-to-scaling exponent in the hydrody-
Axk=a,oRg, (4 namic radius of ideal chaiff€5] and for the end-to-end dis-
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FIG. 3. The universal amplituce, of the bending rigidity of an FIG. 4. The universal amplitude, of the bending rigidity of a

ideal polymer chain oN monomers. The arrow indicates the ana- self-avoiding polymer chain dii monomers.

lytical result[5,11].

tance of self-avoiding chain26]. Also, a self-consistent- . _Thus, we f|n_d that the unlye_rsal amphtude ofihe bending
rigidity for a linear self-avoiding polymer is a,=0.1997

field calculation of the effect of long block copolymers on +0.001. which differs not too much from the result for an

the curvature elasticity of interfaces in a ternary m|xture Ofideal chain witha, = 0.2142. This is indeed a surprising re-
two homopolymers and a short block copolymer is consistent

- - ; : : ' sult, since the repulsion between the monomers of a self-
with this correction-to-scaling exponef7]. A linear fit to - .
the data implies avoiding chain leads to a stronger pressure of the polymer

onto the membrane compared to the case of an ideal chain
a =021301—0.87aN" Y2+ ...). 6 [28]. Therefore, a larger amplitude for the self-avoiding
" @ ) © chain might be expected. On the other hand, a smaller value

A comparison with the analytical resudt, = (1+ m/2)/12 _of the gniversgl amp_IitudaK for self-avoidiljg chains is not
=0.2142 shows excellent agreement, which demonstratdgconsistent W_lth an increased pressure, since the decrease of
that our method works very well. Furthermore, E6). indi- the ampl!tude is ov_ercompensat_ed by the increase of the end-
cates that corrections to scaling can be quite large for théP-end distance. Finally, analytical results for the effect of
typical chain lengths used in experiments, and that tieey ~POlymers in solution on the bending rigidity imply
ducethe polymer effect. The results for the spontaneous cur«(Self-avoiding/a,(idea) =1—0.071% in d=4—¢ spa-

vature and the saddle-splay modulus are tial dimensions, which is an effect of similggmall) magni-
tude[12]. In both cases, self-avoidance decreases the mag-
asp:O.18011—0.369\|*1’2+ S, 7) nitude of the universal amplitude. The effects gnand x

are similar, compare Fig. 5 fdr=1 and Table I.

a,=—0.16821—1.17N Y2+...) (8)
for which the same remarks apply as &r. We estimate the V. STAR POLYMERS
statistical error of all these amplitudes to be about 0.001. Star polymers are modeled afeely jointed chains with

The method can now be applied with confidence to anmutual avoidance and self-avoidance, which are all anchored
chored self-avoiding linear and star polymers. We use theo the same point on the membrane. The results for the spon-
standard model for self-avoiding polymers with hard spheresaneous curvature, the bending rigidity, and the saddle-splay
of radiusr, and bonds of fixed lengthi, between neighbor- modulusper arm i.e., the effect of a star polymer divided by
ing monomers. In order to have a scaling regime as large age functionalityf, are shown in Fig. 5 as function of the arm
possible, we chosé,/r,=4, for which the end-to-end dis- number. This shows immediately twqualitative effects.
tance scales as” with »=0.59 for chain lengths as small as First, the bending rigidity and the spontaneous curvature per
N=10. The simulations are again performed with the pivotarm increase withi. The star polymer is therefore more effi-

algorithm[23]. cient in modifying these membrane properties than an equal
For a self-avoiding linear chain we obtain number of individual chains. Second, the saddle-splay modu-
lus per arm remains essentially constant, i.e., the saddle-
a,=0.19971-0.971N 2+...), (9 splay modulus has a differehtiependence than the bending
rigidity.
asp= 0.16791—0.391N Y2+ ...), (10 The increased efficiency of darmed star polymer com-
pared tof single polymer chains can be understood intu-
a,=—0.15321—1.2208N 2+ . ..) (11)  itively as follows. Consider a symmetric case, in which two

identical star polymers are attached on either side of the
for N monomers, see also Fig. 4. We estimate the statisticahembrane, so that the spontaneous curvature vanishes iden-
error of to be about 0.001. tically. The star polymers then impose an entropic pressure
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15 | | | | | TABLE |. Universal amplitudes of the contributions bhear
@ anchored polymers on the membrane elasticity. The statistical error

? 14 - + N in the simulation results is about 0.001 for ideal and self-avoiding
) chains.
S 13+ + —
£ : -
< 12} N i Ideal chain Self-avoiding
% 11+ i Analytical Simulation Simulation
= + asp Jml(4+/6) +0.1801 +0.1679
4 1F 5 a, (1+w/2)/12 +0.2130 +0.1997

0.9 T . . . . a, -1/6 —0.1682 —0.1532

"o 1 2 3 4 5 6

tween two ideal polymers. This leads to the estimate

15 | | | | | KetfACo=(7/2)[ 7/ (4\/6)]0R., Which overestimates the
_ ) - effect compared to our results by a factor of about 1.6. The
S 14 . reason for this overestimation is clearly that the typical con-
?a L3 formations of two chains with excluded-volume interactions
<7 . show considerable interpenetration, which is not taken into
S 12h _ account in the impenetrable-wall approximation.
o * With increasing functionality, Monte Carlo simulations
;{ﬂ‘ 11k . become less and less efficient. We therefore use the blob
s .l = | model for large functionalityf, which has been employed
= before for free star polymer®9], for polymer brushes to
0.9 i L L L L calculate the polymer effect on the curvature elasticity
0 1 2 3 4 5 6 [3,5,7], and for anchored star polymers to determine the local
f membrane shap&0]. The main idea is that at a given dis-
tance from the anchoring point, the blob s&é&s determined
1 T T T T T by the area available to the polymer chains. For a spherical
= deformation, this is the part of the surface of a sphere of
9 095 J( . radiusr around the anchoring point, which is inside another
= } sphere of radiuR (the radius of curvatupeouching the wall
'; 09 } . at the anchoring point. In the case of a cylindrical deforma-
3 tion, the second sphere has to be replaced by a cylinder of
2 085 - . radiusR. This implies
|
< L i 27 w2
o °° © E(r)= %f de dér2cosé, (12
0.75 L L L L 1 0 fmin
0 1 2 3 4 5 6

where the angld,,;, is determined by sif,;,=r/(2R) for a

spherical and by sifi,,(¢)=[R—(R2—rsirfe coSe)*?]/
FIG. 5. Effectper arm of an anchored star polymer on the (' cosg) for a cylindrical deformation. To relevant order in

membrane elasticity as a function of the functionaljtelative toa ~ @n expansion im/R, we obtain

star without self-avoidance: universal amplitudgas, of the spon-

2
taneous curvaturdb) a, of the bending rigidity, andc) a, of the §2(r)— 2 (1—q£) (13)
R

f

saddle modulus. f

onto the membrane from both sides. When the membrane With q=1/2 andq=1/4 for sphere and cylinder, respectively.
curved, the star on the interior side is compressed, while théhe number of monomers in a blob at distancés then
star in the exterior is relaxed. The same also happens for @iven byn(r) =[&(r)/€,]*". The total number of monomers
linear polymer. However, due to the mutual excluded-volumén one chain is

interactions of the arms of a star polymer, the entropic pres-

sure is higher for the star polymer. We obtain the important _ fRS‘a' rLr) (14)
guantitativeresult that the magnitude of the polymer effect 0 &(r)’

per arm onk and cq increases by about a factor 1.5 fbr

=5 compared to single chains, and should reach a factor hich determines the radilRg;,, of the star polymer. Ex-

roughly atf=10. panding to second order inR/ we find

Our results for the two-armed star can be compared with )
the approximate calculation of Reff6], in which the ex- R :f(lv)/2€0NvI~(f(1y)/2€0N ) 15
cluded volume was mimicked by an impenetrable plane be- star R
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with a scaling functionl'(x) = Qo+ QX+ Q,x?>+ ... and low charge density ideal linear chain
positive constant)y, Qq, and Q,, where the latter two i ]
depend on théspherical or cylindricaltype of deformation. brush (mean field)! POIYmer solution
Equation(15) shows that the star radius increases with the tembedded polymer
functionality [29]. More importantly_in our case, Ec{15) _ brush (scaling); ‘high charge density
demonstrates explicitly that the radius of a star in the inside ; P
(outside of a curved membrane increas@ecreaseswith : - vy '
the scaled curvaturB®) /R, whereR®) =f(1-722 ¢ /N” is -4 3 0 1 %
the star radius at a planar wall. Thus, the arms have to stretck
more at higher functionality, which implies a larger effect on
Co and k.
Finally, the free energy of one chain is determined by
star polymers
Fi=kgT f Rstard r i (16) f=2! Eself—avoiding linear chain
to &(r)

FIG. 6. Values ofx/« for different systemg2,3,5,11,12,1%
By evaluating these integrals in an expansion R for both ~ Our results are indicated by dashed lines. Star polymers allow to
sphere and cylinder, we can extract the contribution of theiccess systematically a wide range«dk ratios. As indicated by
star polymer to the curvature elasticity. The result of thisthe arrow, in principle, the whole range of negative ratios is acces-

calculation is sible.
S our model to calculate the polymer effect ahand « de-
KeffACo=Aspf < "ot (N, (170 scribes the system perfectly.
In the case ofasymmetrichlock copolymers, or foend-
Ax=A,f52 752N, (18) grafted polymers—such as the PEO-lipids studied in bilayer

vesicleg 16] and lamellar phasd47]—the situation is more
complicated. The pressure exerted on one side of the mem-
Ak=0, (19 brane by the polymer now induces a spontaneous curvature
[4]. However, it also deforms the membrane locally into a
where Ag,=0.029 andA,=0.110 for »=0.59. Thus, the conelike shap¢10,28,30-32 For star polymers, the cone-
elastic moduliper armare found to increase with the func- like deformation increases with increasing functionality. The
tionality asA x/f~ %9 and kerAcy/f~ 27 These power angle of the cone has been predicted from a blob model
laws for largef with exponents not too far from unity are Calculation to increase &s'” [30].
very consistent with the almost linear dependence found in In order to understand the generation of a spontaneous
the simulations for smafl For Ax=const 0 (compare Fig. Curvature for end-grafted chains, we have to distinguish two
5), Eq.(17) implies A x/ Ak~ — 327, which becomes very Situations. The first is the case osmglelinear or star poly-
large for large functionality. mer anchored to an infinite membrane, which becomes as-
The blob model calculation also gives some insight intoymptotically flat far from the anchoring point, as studied in
the physical origin of the independence of the saddle-splajRefs. [10,28,30,31 The membrane is found to be cone-
modulus per arm on the star functionality. As discussed aftephaped in the area affected by the polymer, and takes a
Eq. (15), the chains have to stretch for a spherical deformacatenoid shape of zero mean curvature at larger distances.
tion of the membrane. However, in the case of a saddle delhe integrated mean curvature in a perturbative calculation,
formation, the area available for the chains at any distance In Which the pressure distribution of the polymer anchored to
from the anchoring point remains completely unchanged2 planar wall is used to determine the membrane shape, gives
Therefore, the sizes and numbers of blobs are not affected Iy value of /6 (KgT/4x)R, for ideal chaind31]. The sec-
a saddle deformation, only their arrangement in spac@nd is afinite densityof chains with grafting density. We

changes, which leaves the free energy unaltered. can simply superimpose the shape deformations of the single
chains and obtain a spontaneous curvaturec,
V. DISCUSSION AND CONCLUSIONS =ml6(kgT/4x)oR, [31]. Remarkably, this isxactly the

same result obtained by grafting ideal polymer chains onto a
The interpretation of our results for the effective curvaturespherical surface, compare E) and Table I. Thus, for

elasticity is straightforward for symmetric diblock ideal chains and sufficiently large bending rigidities—so that
copolymers—like those investigated in balanced ternary mithe pressure distribution is well approximated by the planar
croemulsions[18—-20—and for amphiphilic star polymers case—the local conelike deformation of the membrane shape
with equal numbers of hydrophobic and hydrophilic aims  doesnot affect the spontaneous curvature. This strongly sup-
equal lengthanchored to a membrane. In this case, there arports the validity of our results also for asymmetric copoly-
identical polymer chains attached to the same anchoringners and for end-grafted linear and star polymers—possibly
point on both sides of the membrafk8]. Therefore, sym-  with small corrections.
metry implies that the spontaneous curvature vanishes, and It is important to note that the elastic moduli, which we
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calculate with our method, describe the effective curvaturdorane ensembles on the bending rigidity and saddle-splay
elasticity of the composite membranes on length scalesnodulus in more detail, and to control and tailor the proper-
which are large compared to the size of an individual poly-ties of membrane systems.
mer mushroom.

The effect of star polymers on the membrane curvature
elastic constants gives the unique possibility to vary the ratio
«/'x over a wide range, compare Fig. 6. This provides the Stimulating discussions with E. Eisenriegler and D. Rich-
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