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Budding of crystalline domains in fluid membranes
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Crystalline domains embedded in fluid membrane vesicles are studied by Monte Carlo simulations of
dynamically triangulated surfaces and by scaling arguments. A budding transition from a caplike state to a
budded shape is observed for increasing spontaneous cun@juoé the crystalline domain as well as
increasing line tensiok. The location of the budding transition is determined as a functid@efA, and the
radiusR, of the crystalline domain. In contrast to previous theoretical predictions, it is found that budding
occurs at a value of the spontaneous curva@lyethat is always a decreasing function of the domain Bize
Several characteristic scaling regimes are predicted. The distribution of five- and sevenfold disclinations as the
budding transition is approached is determined, and the dynamics of the generation of defects is studied.
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[. INTRODUCTION domain radiuRR is on the order ok/\, wherex is the bend-

The primary new feature in two-component—compareding rigidity andX is the line tension. Similarly, a membrane
to single-component—fluids is the possibility of phase sepapatch with spontaneous curvatu@ has a budding transi-
ration. Canonically, mixtures have a lower miscibility gap, tion atR~1/C,.
that is, the system is homogeneously mixed at high tempera- The coexistence of two phases in biological membranes
tures, but demixes at low temperatures into two coexistind’las also received considerable attention recently. The exis-
phases that are enriched in one of the two components. Howence of “lipid rafts” [10] may indeed play an important role
ever, upper miscibility gaps and closed coexistence loop#) the control of the activity of membrane proteins. Another
also exist, typically in systems in which the hydrophobickind of two-phase coexistence in biological membranes oc-
effect is important. The inverted phase behavior of these sysurs when domains of adsorbed proteins form spontaneously.
tems is due to the orientational degrees of freedom of thé famous, and biologically very important, example is the
water molecules, which are distributed isotropically at highadsorption of clathrin molecules on the plasma membrane
temperatures, but have a preferred orientation in the neigHd1]. Clathrin molecules assemble to form a regular hexago-
borhood of polar solutes. nal network on the membrane surfdde2—14. By forming

It is therefore natural to expect phase separation in twofirst a coated pit and then a complete bisde Fig. ], these
component amphiphilic membranes. Indeed, phase separglathl’in coats control endo- and exocytosis, i.e., the forma-
tion in Langmuir monolayers at the water-air interface hadion and detachment of small transport vesicles from the cell
been well documented for many years, and has been invegieémbrane. The formation of clathrin cages is therefore an
tigated in considerable detajll,2]. However, in bilayer —€xample of the budding of crystalline membrane patches em-
membranes, phase separation turns out to be much more difedded in a fluid lipid membrane.
ficult to observe. Initial evidence showed gel-fluid coexist-
ence in some systenj8], while fluid-fluid coexistence re-
mained elusive for a long time. Only very recently have
experiments using three-component membranes reveale
very clear and convincing evidence for both gel-fl{ig5]
and fluid-fluid[6,7] coexistence.

The coupling of phase separation and membrane shape i
flexible bilayer membranes opens the possibility for the bud- E
ding of domaing8,9]. The physical mechanism of this phe-
nomenon is the competition between the line tension energy
of the phase boundary and the curvature energy of the mem#
brane. Since the curvature energy is scale invariant, so thag
the curvature energy of a spherical vesicle is independent off
the vesicle radius, and the line tension energy is proportional

to the domain perimeter, i.e., to the domain radius, it is im- g 1. Rounded clathrin-coated pits in normal chick fibroblasts
mediately clear that a budding transition occurs when theg _(g) and coated pits on membrane fragments derived from cells
that have been broken open and leftpH 7 buffer for 10 min at
25 °C before fixation and freeze dryiri@)—(f). The width of the
*Permanent and present address: Department of Physics, Facufigld of view of the individual pictures is 0.4m. Reproduced from
of Education, Shiga University, Hiratsu 2-5-1, Otsu, Shiga 520-Ref. [14] by copyright permission of The Rockefeller University
0862, Japan. Press.
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The main difference between a fluid and a crystallineas a function of the Young modulus, the bending rigidity, and
membrane domain is the in-plane shear elasticity and posthe line tension are presented in Sec. IV. Four different scal-
tional long-range order of the crystalline phase. A flat, crys-ng regimes are predicted, depending on the relative impor-
talline membrane cannot be deformed into a spherical butRnce of the bending and stretching energies and on the do-
without the introduction of topological defects. For the ge-main size. A critical discussion of the analysis of Hé®] is
neric case of a hexagonal lattice symmetry, the crystal cor@lso presented. Results for the dynamics of the budding tran-
sists of a network of sixfold coordinated vertices. In thisSition are presented in Sec. VI. The paper closes with a brief
case, Euler’s theorem requires an excess of exactly 12 fivéliscussion of the budding of clathrin-coated membranes.
fold coordinated verticetor fivefold disclinationsto form a
spherical cage. A disclination is a topological defect, because Il. MODEL AND SIMULATION METHOD
it cannot be generated locally, but requires the rearrangement
of a large number of lattice sites. An important question,
therefore, is how these fivefold disclinations are generated For our Monte Carlo simulations of crystalline domains in
inside the crystalline domain. Two principal mechanisms ardluid membranes we employ a tether-and-bead model of self-
possible. In the first, thedge-acquisition mechanisrfive-  avoiding membranegl7]. The model consists dfl vertices
fold disclinations form at the edge of the crystalline domainwhich are connected by tethers to form a triangular network.
and then diffuse into the interidrl2]. Diffusion proceeds Each vertex is the center of a hard sphere of diameter
through the production of a series of dislocations, which con=1. The tethers do not restrict the motion of connected
sist of nearest-neighbor pairs of five- and sevenfold disclinabeads for distances smaller than the tether leiigttbut do
tions. In the second, thiaterior-acquisition mechanispais-  not allow the distance to exceéd. A Monte Carlo step then
location pairs are generated in the interior of the crystallineconsists ofN attempted positional updates with displace-
patch. Each of these dislocations subsequently dissociatesents chosen randomly in the cupes,s]®. For tether
leaving the fivefold disclination in the interior of the patch length €,< 30, and sufficiently small step sizes this
while the sevenfold disclination diffuses to the domainmodel mimics self-avoiding membranes, since the largest al-
boundary. Another possibility has been suggested for clathritowed space between the beads is too small for other beads
networks, in which fivefold coordinated sites are formedto penetrate the membrane. In addition, in order to allow for
through the addition of clathrin dimers to the interior of diffusion and fluidity within the membrane, the connectivity
clathrin domaing 15]. of the network must itself be a dynamic variable. This is

The interior-acquisition mechanism has been studied iusually achieved by cutting and reattaching the tethers con-
detail by Mashl and Bruinsmd 6]. They argue that budding necting the four beads of two neighboring triangles in such a
occurs via dislocation unbinding, driven by changes in theway that the two beads which were not connected before are
spontaneous curvature of the clathrin and associated lipitinked by a tether after the flip. A Monte Carlo step also
membrane assembly. Mashl and Bruinsma estimate the cuiRvolvesN attempted bond flips.
vature and stretching energies of a fivefold disclination in the Tether-and-bead models have been used very successfully
center the domain and a sevenfold disclination at distance to study the shape and fluctuations of fluid vesi¢te®,19,

With increasingC,, the minimum of their free-energy ansatz the passage of vesicles through narrow pd&, and the

was found to move to larger values of until r=R, is  budding dynamics of multicomponent fluid membrafigs.
reached at a critical value of the spontaneous curvature. This the current context, it is particularly interesting that it has
disclination unbinding allows the sevenfold disclination to been demonstrated that tether-and-bead models can be used
move to the edge of the network, leaving behind the fivefoldto study the freezing transition of both plaf&2] and flex-
disclination at the center. In this approach, budding occuréble [23] membranes, as well as of flexible vesicled,25.

for R~C,, which, surprisingly, is thenverseof the result In order to induce crystallization of the membrane, no modi-
for fluid membranes. fication of the model is necessary. Instead, crystallization oc-

In this paper we present the results of a detailed study ofurs automatically when the tether length becomes suffi-
the budding of crystalline domains in fluid membraneciently small.
vesicles, using both Monte Carlo simulations and scaling ar- In the thermodynamic limit of very large networks, the
guments. The membrane is described using a network modéluid phase has been found to be stableffpto,>1.52[22].
and the location of the budding transition is determined as &he freezing transition proceeds in two steps, from the fluid
function of the spontaneous curvature of the crystalline dophase to a hexatic phase with quasi-long-range bond orien-
main, C,, the tension of the line separating the crystallinetational but short-range translational order, and then to the
and fluid domains), and the radiu®R, of the crystalline crystalline phase with quasi-long-range translational order, in
domain. The outline of the paper is as follows. The modelagreement with theoretical expectatiof6]. The hexatic
and simulation technique is described in Sec. Il. Simulatiorphase is stable within a narrow range of tether lengths,
results for vesicle shapes, number and distribution of defectd,.48<¢,/0(<1.52 [22]. For networks of finite size, the
and the budding phase diagram are presented in Sec. Ill, amdystalline-to-hexatic and hexatic-to-fluid transitions are
it is shown that the budding transition occurs at a domairshifted to effectively larger tether lengths. For a network
size R, which is always adecreasingfunction of the the with periodic boundary conditions, the crystalline phase has
spontaneous curvatui@, for the range of parameters con- been found to be stable fdt,/0y<1.574 forN=100, and
sidered. Analytical estimates for the line budding transitionsor €,/0y<<1.545 forN=748[22].

A. One-component membranes
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The shape and fluctuations of fluid membranes are commany neighbors a negative, Gaussian curvature—the dis-

trolled by the curvature enerd27] cretized curvature in combination with an Ising model with
vertex variables may lead to artifacts.
K . . - . . .
Hb:_f dS(H—Cp)?, (1) However, it is not Q|ff|cult to cure this problem with the
2 vertex occupation variables. All that needs to be done is to

h is the bending rigidityH = ¢, + ¢, is twice th use thdengthof the domain boundary instead of thember
\(/:vur(\a/;iSrls(wi'?h er?né?%lr Igtljrl/;tur_;lancécls) W;@ c ei?tizn of bonds connecting andB vertices. This is very natural in
P P 1 2/ 0 the Itzykson discretization of the curvature energy, since the
spontaneous curvature. For triangulated surfaces, several dis-". : ;
v&mablesmj , which are the lengths of the bonds in the dual

cretizations of the curvature energy have been suggested, . . .
[17]. Here we employ the discretization proposed by Itzykﬁatt'ce' are already calculated anyway. The discretized ver-

son[28], which has been shown to work very well for fluid sion of the energy of the domain boundary is
membrane$29]. In this case, the bending energy is given by

K 1 oij 2
Hy=52 of| — 2 —(R~R)=Co| , (2 H=N > oy, @
25 [ BTH) f” (ij)aB

where the sum ovef(i) is over neighbors of verteix In Eq.

(2), ¢j; is the distance between nodesndj located atR;  where(ij),g denotes the bonds connectiAgandB vertices.

and R;, respectively, oy;=€;;[ cot(fy)+cot(6,))/2 is the We want to study here crystalline domains in fluid mem-

length of a bond in the dual lattice, with anglés and 6, pranes. Therefore, we have to induce crystalline order in part

opposite to linkij in t_he two triangles sharing this bond,_ and of the membrane by choosing an appropriately small tether

0=(1/4)2(;) 0i; € is the area of the dual cell of vertéx  |ength. This implies that the tether length is not uniform and
depends on the type of the two connected vertices. We chose

B. Two-component membranes two tether lengths, and ¢y for the AA and BB bonds,
The shape and fluctuations of two-component fluid mem+espectively, and sétyg= (€ s+ €g)/2.
branes are again controlled by the curvature eng?dy. In In order to complete the definition of the model, we have

addition, there is a contribution from the line tension of theto specify the parameters used in the simulations. We con-
domain boundary. The total energy of a two-componensider a membrane with bending rigidityky= kg= K
membrane in the strong segregation limit is given by =10kgT. The tether length of the fluiB component is taken
to beg/oy=1.68, safely above the fluid-to-hexatic transi-
H= ﬁf dS(H—C%H)%+ E] dS(H-CEB)2+\ 3@ ds, tion at £/0y=1.52. The spontaneous curvatugg van-
2 2 ishes. For the crystallind component, we vary the param-
&) eters in the range ©C) 0,<1.0 and 1.45¢,/0=<1.50.

where\ is the line tension, and the bending rigiditiegand  In the following, we useCo=Cyq in order to simplify the
kg and spontaneous curvatur€y and C8 are in general notation. Finally, line tensions in the range<Q oy
different for the two components. We assume for simplicity<<1OkgT are investigated. The simulations are performed for
that the saddle-splay modulusis the same for both compo- membranes of spherical topology, i.e., for vesicles, in order
nents, so that the contribution of the Gaussian curvature is #® avoid boundary effects and to make sure that the surface
constant and does not have to be considered. tension vanishes identically. We study three different system
The tether-and-bead model has been generalized to mergizes  (Na,Ng) =(92,612), (Na,Ng)=(184,1224), and
branes with two fluid components. In this case, the two com{Na,Ng) =(368,2442), so that the total number of vertices
ponentsA andB can be placed either on the surface triangless N=704,N=1408, andN=2810, respectively. This im-
[21] or on the vertice$30,31]. In the first case, the interac- plies that the fractiorxy of the number ofA vertices in the
tions of the two-component mixture can be described by amotal number of vertices is constant, wity=0.1307. For
Ising Hamiltonian, where the binary spin variables describdixed tether lengths, the ratie=xy(1+€,)%/(1+€g)? of
the occupation of the triangles with either of the two com-the area of thé\ component to the total vesicle area is there-
ponents. Since the number of neighboring triangles is alwayfore also constant for the three system sizes. We have chosen
3 in this case, the energy of the domain boundary is propora small area fractiorx because we want to focus on the
tional to the number of bonds at which and B triangles  budding transition of an initiallyalmos} planar domain in a
meet and is therefore independent of the membrane shajleid membrane.
near the domain boundary, as it should[B&]. In contrast, Since one of the interesting applications of our model is
when the Ising model with vertex occupation variables isthe budding of clathrin-coated pits, we will often denote the
used, the interaction energy depends on the number of neiglrystallineA domain as the “clathrin domain” in the follow-
bors. It is therefore favorable for the system to minimize theing. This does not imply that we are taking any particular
number of bonds which connedtandB vertices. Since the properties of clathrin molecules into account. To simplify the
number of neighbors of a site is coupled to the local Gaussnotation, all lengths are measured in units of the bead diam-
ian curvature—with few neighbors implying a positive, and eter oy and all energies in units of the thermal enekgf .
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(a)

FIG. 2. (Color online Snapshots of typical vesicle shapes for | _
€,=1.50,N,=184, andC{=0.1, with (a) A=1.5,(b) A=3.0, and [
(c) A=5.0. Black lines indicate bonds betweanvertices.

(a) (b)

Ill. SIMULATION RESULTS: SHAPES, DEFECTS,
AND THE BUDDING TRANSITION

FIG. 3. (Color online Rotationally averaged vesicle shapes for
€,=1.50,N,=184, withA\=2.0 and(a) C;=0.0, (b) C5=0.1, and

A sequence of typical vesicle shapes for fixed spontanetc) C5=0.2. Black lines indicate bonds betweArvertices.
ous curvatureC,=0.1 is shown in Fig. 2. For small line
tension,A=1.5, the crystalline domain takes a caplike shapewhich indicates the first-order nature of the budding transi-
Note that the domain boundary shows strong fluctuations aton. This jump is large for small spontaneous curvatures and
this value of\, which indicates the vicinity of the mixing becomes smaller with increasir@,. For CQN,ﬁ’224.0, the
transition of the two components. Far=1.5, the clathrin  cap phase is not stable for our value ©f 10kgT. A com-
vertices remain connected during the length of a typicaparison of the results for the scaled boundary length shown

simulation run. Fon=1.0, however, somé vertices detach in Fig. 5 indicates that, for a given scaled spontaneous cur-

fluiq meml_:)rane. Since we are int.eresteq in thg strong segrg\N/&/zlk for the system sizes studied.
gation regime, we therefore restrict all simulations to values o bending of the initially almost flat crystalline domain

of the line ftensiom_al._S. . ) is only possible when an excess of fivefold disclinations ap-

_As the line tension increases, the crystalline domain bepear ingside the domain. We distinguish between crystalline
gins to bend more strongly, while the fluctuations of the dogrtices at the boundary of the domain, which have at least
main boundary decrease. Finally, at8<5, a budding tran- o6 fiig vertex as a nearest neighbor, and crystalline verti-

sition occurs, and the crystalline domain forms a completg.e i the interior, which have only other crystalline vertices
bud. . - . L as nearest neighbors. The excasg of fivefold coordinated
This scenario is very similar to the budding transition ob-y e tices in the interior, i.e., the number of all fivefold coor-

served in fluid membrane domains. This can be seen Morg, 4104 vertices minus the number of all sevenfold coordi-

clearly in a transverse projection of the vesicle shapes, Whicnated vertices in the interior, is shown in Fig. 6. This excess

is shown in Fig. 3. The average shapes strongly resemblg again quite smallA<:<3. in the cap phase for smadl
those calculated for phase-separated fluid membri@8®s = again qui Rs=3, 1 bp 0

A. Vesicle shapes

B. Defects and budding transition

In order to obtain a more detailed picture of the budding
process, we have calculated several quantities that character-
ize the domain shape and the internal defect structure in the
clathrin domain. A typical defect configuration is shown in
Fig. 4.

Obviously, the lengthL of the boundary of the clathrin
domain is well suited for characterizing the transition. The
boundary length is shown in Fig. 5 as a function of the scaled
line tension\N¥? «, for several values of the scaled spon-
taneous curvatur€,yNy?. Our motivation for introducing
these scaled variables is that in fluid membranes, all size
dependence can be absorbed in these quantities. With in- FIG. 4. (Color online Typ|ca| defect Configuration foNA
creasing line tension, the curves show a rapid decreake of =368, ¢,=1.50, k=10, A=2.0, andC,=0.1. The picture shows a
for small A due to the suppression of thermal fluctuations,top view of the crystalline domain; the fluid part of the membrane is
and then a slow decay as the cap slowly curves mor@ot shown. fivefold and sevenfold coordinated vertices are marked
strongly for largern. Finally, L jumps to a very small value, by squares and circles, respectively.
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100 i FIG. 6. Excess fivefold-coordinated verticas; in the internal
CocoNA”2 part of the clathrin domain fof ,=1.50 as a function of the scaled
80 f ] 9108- o 1 line tension\ N/« for two different domain sizes(a) Ny=92
&, 3837 <o and (b) Npo=184. In both cases, several data sets are shown for
60 | ] different values of the scaled spontaneous curvaflyeN ,.
=] H
© o
- 40 } ] the budded state, the excess beconegstivei.e., the num-
i ber of sevenfold disclinations now exceeds the number of
20 i fivefold disclinations, as should be expected from a region of
=Y negative Gaussian curvature.
() * o4 From these results, we can already draw the important

0 ' : . conclusion that the fivefold disclinations are generated at the
domain boundary, before they are pushed slowly into the
interior of the domain by the increasing line tension. Since
FIG. 5. The boundary length of the clathrin domain forf .the density of fivefold fjisclingtion_s at the boundary is higher
=1.50 as a function of the scaled line tensiofN,/« for three in the cap state than in .the |nt(.ar|or,. the boqndary must also
different domain sizes(a) No=92, (b) N,=184, and(c) N, curve more strongly, while the interior remains flaj[ter.
—368. In all cases, several data sets are shown for different values N Fig. 8, we show the number{>® of isolated fivefold
of the scaled spontaneous curvat@g/N . disclinations, i.e., of fivefold coordinated vertices, that have
only sixfold coordinated nearest neighbors. Witf*9<1
even very close to the budding transition, and approaches 1f2r smallC,, this number is quite small in the cap phase and
in the budded phase, as required by the Euler theorem.  jumps to aboungs")z6 in the budded phase. Since the Eu-
The deviation ofAs; from 12 in the latter case is due to a ler theorem requires an excess of 12 fivefold disclinations,
small number of defects in the neck region. The defect strucwe conclude that only half of these disclinations are isolated,
ture in this region can be characterized by the excess afhile the other half are dressed by neighboring dislocations.
fivefold coordinated vertices at the boundary. Figure 7 dem¥Figure 8 indicates that for larger system sizes the number of
onstrates that in the cap state, this number is larger for smadiressed fivefold disclinations increases.
\ than the excess in the interior. For larger but before Other quantities that characterize the internal order of
budding, the number of excess fivefold disclinations in thethe crystalline phase are the total number of defects—defined
boundary and in the interior is almost the same. Finally, inas the total number of five- and sevenfold coordinated

AN, "2/
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FIG. 7. Excess of fivefold coordinated verticels,,, at the FIG. 8. The number of isolated fivefold disclinatiomg>® , in
boundary of the clathrin domain fdt,=1.50 as a function of the the clathrin domain for ,=1.50 as a function of the scaled line
scaled line tension N4/« for two different domain sizesta)  tension\ YN/« for two different domain sizega) Ny=92 and(b)
N,=92 and(b) N,=184. In both cases, several data sets are showiNa=184. In both cases, several data sets are shown for different
for different values of the scaled spontaneous curvaflyéN,. values of the scaled spontaneous curva@§eN.

vertices—in the interiory; , and at the boundary,,,, of the . . . .
clathrin domain(see Figfsl. 9 and 10At the bud(%?]g transi- &t the transition, wherR, is the radius of the planar, circular

tion, the jump in the total number of defects in the interior isclathrin domain, withmRz=2N/3(¢)/4 to leading order,
quite pronounced. In the cap phase, near the budding trangind average bond lengtff)=(1+¢,)/2 of AA bonds. We
tion, the total number of defects minus the number of topohave determine®, numerically from the area of the clathrin
logical disclinations;—As;, increases roughly as the do- domain. The resulting values &, exhibit a weak depen-
main area’compare Figs. 9 and)60n the other hand, in the dence on the spontaneous curvature and the line tension. At
budded phase,; — As; increases more rapidly, from about 8 the budding transitionR, is found to be about 10% smaller
for No=92 to about 20 foN,=184. Figure 10 demonstrates in the cap phase than in the budded phase. In the following,
that the total number of defects at the boundary is roughlyve have used the latter value.
proportional to the boundary lengteee Fig. 5. In Eq. (5), the prefactor of the first term is normalized to

The location of the budding transition can be determinednity. The prefactory of the second term is found to be close
from these simulation data. The dependence of the scalgg unity for the two smaller system sizes studied, with
spontaneous curvatur€y'N, on the scaled line tension y=0.84, while the functiod’(R,) has the values
MN4/k at the budding transition is shown in Fig. 11. The
transition points were determined from the point of intersec-
tion of a horizontal line of constant boundary lengith with 3.39+0.02 for Np=92, R,=6.18,
the interpolated data plotted in Fig.|5* has been chosen to _ _
lie approximately halfway between the two values of the [(Ra)={ 3457003 for N,=184, R\=8.74, (6)
domain lengths at the cap-to-bud transitidri & 20 for N 3.68+0.05 for Np=368, Ry=12.4.
=092,L* =30 for No=184, andL* =40 for N,=368).

For all three system sizes, the data are consistent with

We can therefore draw the conclusion thgR,) has only a
ARp/k+yCoRA=T(Ra) (5)  weak system size dependence.
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FIG. 10. Total number of defect,,, at the boundary of the
clathrin domain for ,=1.50 as a function of the scaled line tension

clathrin domain for ,=1.50 as a function of the scaled line tension . o
X S A AMNA/ & for two different domain sizesta) Na=92 and(b) N4
AN,/ for two different domain sizesta) Na=92 and (b) N, =184. In both cases, several data sets are shown for different val-

=184. In both cases, several data sets are shown for different valIJ-es of the scaled spontaneous curvaseN,
ues of the scaled spontaneous curvatDge/N 4. P B& Na-

FIG. 9. Total number of defectg;;, in the internal area of the

IV. ANALYTICAL ESTIMATES OF THE LINE
C. Dependence on the Young modulus OF BUDDING TRANSITIONS

All the data we have presented so far have been calculated
for fixed tether lengtif ,=1.50. For the system sizes studied
in the simulation, this tether length is well in the crystalline
phase; however, in the thermodynamic limit, this tether

The location of the budding transition can be calculated
analytically for some special cases. A comparison of these

length is in the center of the hexatic phase. We have there- e

fore also investigated the behavior for a smaller tether 5t NiBZ e
length, £ ,=1.45, which is well within the crystalline phase NA;184 o
even in the thermodynamic limit. The comparison of the data 4t B N:=368 P

for the two tether lengths allows an estimate of the effect of = <
the size of the Young modulus, which characterizes the in- £ 3
plane elasticity, on the defect distributions and on the phase gs
behavior. 2r
Two characteristic quantities, the boundary lengtand
the numben\5; of excess fivefold disclinations in the interior
area are shown in Figs. 12 and 13, respectively. This shows . , , , ) )
two qualitative effects with decreasing tether lengté., in- > 25 3 35 4 45 5 55 6
creasing Young modulyis(i) the budding transition is shifted Ao N2
to slightly higher values of the scaled line tension, dingl oA
there are fewer excess defects in the cap phase and moreF|G. 11. (Color online Dependence of the scaled spontaneous
excess defects in the budded phase. A more quantitativgirvatureC,+/N, on the scaled line tensiony/N,/ « at the budding
analysis of the Monte Carlo data will be made in Sec. IVtransition, for £,=1.50 for three different domain sized,
below. =92,N,=184, andN,=368.
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140 - - : : and to approximate the numerically determined line of bud-
120 | E' ] ding transitions quite accurately. This estimate can easily be
Ip=1.45 —e— adapted to our case. WiR,=R,/(2x), we obtain
100 | =15 o &
N 1-+x 1
o 80 i — Ry+ —— CORp=4——. (8)
5 el N N
a0 | For xN=0_.1_3, \_Nhich corresponds tx=0.104 for €4
=1.50, this implies
20
0 : ; : : A Ra+0.716 CR,=4.225 9
0 2 4 6 8 10 Kk AT OTAT e

Ao 2 : : o .
Another estimate can be obtained by considering the limit
FIG. 12. (Color online The boundary length of the clathrin ~ shape of budded vesicles. The limit shape corresponds to an
domain for€ ,=1.50 and( ,=1.45 as a function of the scaled line infinitesimal neck, for which Jicher and Lipowsky[32] de-
tension\ N/« for domain sizeN,= 184 and scaled spontaneous rived the condition
curvatureCy\N,= 1.356.

A
Ap _ (1 — ) —
estimates with our numerical data will lead to a consistent ;RA+C0 Ra=4+4yx/(1-x)=5.363 (10
picture of the budding of crystalline domains in vesicles.
for x=0.104. This condition must obviously be an upper

A. Fluid domains of spherical shape bound for the location of the budding transition.
Juicher and Lipowsky[32,33 have calculated the locus _
of budding transitions for axisymmetric vesicles consisting B. The argument of Mashl and Bruinsma
of one fluid domain with spontaneous curvat@g embed- for crystalline domains
ded in a fluid membrane of spontaneous curva@ge They In order to calculate the location of the budding transition

solve the shape equations numerically and thereby determingf a crystalline domain, Mashl and Bruinsiii®] considered
the line of budding transitions. They also derive an analyticah membrane domain of radifs, with a fivefold disclination
estimate for this line by approximating the incomplete budat the center and a sevenfold disclination at distante this

by a spherical cap and the complete bud by two spheres. Fetenario, the budding transition is determined by the location
the case o€5=0 andx,= kg considered here, this estimate of the unbinding of this dislocation pair. They approximate

is given by the bending energy of thisuckledconfiguration by
N Ry [1+CPRy(x— V)], @ E,=2xkCARs A(F/Ry)+ gK(Cé‘RA)Z’ (11)
K VX(1—X)

whereR, is the radius of a spherical vesicle of the same areawhereA(0)=0 andA (1)= — «/\3. For intermediate values
Equation(7) was found to be a lower bound for the transition of r/R,, A has to be calculated numerically. The contribu-
tion of the stretching energy was estimated to be the energy
of a dislocation of Burgers vectarin a buckledcrystalline
membrane withCy=0,

1
10

1
E=Kor? gln(Rb/({’)) +c(xlk)|, (12

As

which was calculated in the limit ahfinite membrane size
by Seung and Nelsof84]. In Eqg. (12), R, is the buckling
radius of a dislocation, ant{'x/ ) depends only on the ratio
of the bending rigidityx and the saddle-splay modulus
Using the sum of Eqg11) and(12) as an ansatz for the free
energy, Mashl and Bruinsnja6] found that the minimum of
this energy moves continuously frors O to larger values of
r with increasingC,, reachingr=R, at some value of
FIG. 13. (Color online The number of excess fivefold disclina- 4Co/(KoRa), which signals the budding transition. This re-
tions in the interior of the clathrin domain fat,=1.50 and¢,  sults implies, in particular, the(té~ R, at the transition.

N WA OO N

0 2 4 6 8 10
AcgN A1/ %

=1.45 as a function of the scaled line tensiogN,/ « for domain We believe that this estimate of the free energy of a buck-
sizeN,=184 and scaled spontaneous curvatOge/N,=1.356. led disclination pair is incorrect. This can be seen easily by
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considering the case=R,. In this case, the sevenfold dis- tions screen the strain field and lead to a reduction of the
clination no longer contributes, and we have a cone with a&nergy of a crystalline lattice on a sphere. For grain bound-
fivefold disclination at the center. In the inextensional limit aries containingn dislocations per disclinatiorG;.,(n) de-
of largeK,, the total energy can be calculated exactly and iscreases from 0.60, 0.44, 0.37 foe=0,1,2, respectively, to
found to be Cico(n)=0.25 for largen [35]. The effect of the stretching
contribution in Eq.(15) is therefore reduced by grain bound-
11 \/1—1 A 1 Al aries. Indeed, in the configurations shown in Fig. 15 below,
Econe™ 7K 3—O|n(RA/<€>)—2ECoRA+E(CORA) several grain-boundary lines are visible. The data for the
total number of defects in the interior of the crystalline do-
- main shown in Fig. 9 indicate that there is about 0.5 dislo-
+ K+ Ecore (13 cation per topological fivefold disclination fd\,=92, and
about 1.5 forN,=184.

3

w

which essentially agrees with E@ll), up to an additive
contribution with a logarithmic size dependence. In this case, D. Crystalline icosahedron without defects
the stretching energy vanishes, so that®&4) strongly over-
estimates the stretching contribution. The origin of this dis—Iar
agreement is the fact that E@L2) is valid only in the limit
r<R, [34].

When the two-dimensional Young modulus is sufficiently
ge, bending is more favorable than stretching, and the cur-
vature is no longer distributed uniformly over the bi&6].
Instead, the stress becomes localized in “stretching ridges”
which connect the 12 fivefold disclinations. The bud then
C. Crystalline sphere with disclinations and grain boundaries  takes the shape of an icosahedron with rounded edges and
Bowick, Nelson, and Travessg35] have recently calcu- nearly flat faces. For large system sizes, and no defects be-
lated the energy of an icosahedral lattice on a perfect spher¥ond the topologically required fivefold disclinations, the en-
cal surface which contains no defects other than the topologergy of such a shape was shown from elasticity theory and
cally required 12 disclinations. For a sphere of radyysthe ~ simulations to b¢36-38
elastic energy was found to be 11 N, K| ¥ iy
Etethzgﬂ"( In (E + Cretn K(T) Ra™+12E e,

Rg+ 12Ecore (14) (]_6)

7TKO
Eico= Cico%
with C,.o=0.604, whereK, is the two-dimensional Young where the first term is the contribution of the cone-shaped
modulus. For a vesicle with large bending rigidity, i.e., with COrners and the second of the ridges. The prefaCig, can
k>Ko(€)2, where (€)=(1+¢,)/2 is the average bond be extracted from simulations of tethered netwdr&s,38,
length in the clathrin domain, we can use this result to esti@nd has been found to li&.,=3.63 for icosahedrgs8] and
mate the position of the budding transition by comparing thisCtetn=9-3 for tetrahedrg37]. _ _
energy with that of a planar patch of the same area, i.e., with It IS interesting to note that the simulations of Refs.
Ra=2R,. For the sphere, the energy is a sum of the stretchl37,38 show that forCo=0 the contribution of the cone-
ing energy(14) and the curvature energg). The energies of shaped corners dominates up to quite large system sizes.

the planar and budded configurations are equal when Only for (Ko/x)*?R, in the range of 500 to 1500 do the
ridges begin to dominate the curvature energy. This can eas-

N Cico KoRi Ecore ily be seen from Eq(16), where the contributions of corners
- Rao+2CoRA=4+ 288 « +12 o (15  and ridges are equal when
. ) K 1/2 117 3
In order to see whether the stretching term contributes, we _0) A= —In[NA/12]} ) (17)
have to insert values fak, and R, that are characteristic K 5Cieth

for our simulation. In Ref.[25], it was shown that the ) )

two-dimensional Young moduluk, for planar, crystal- We now compare t_he free energies of a planar disk and a

line networks of the type employed in our simulations in- deformed sphere, which we consider to be composed of '12

creases with decreasing tether length. In particular, Cones. The membrane area of a cone C_Orreszpondlng t02a five-

the valuesKq(€)?=64.8 for £,=1.50 andK(¢)2=78.0 fold disclination is (6/5)R;. This implies Ry=(72/5)R;

for €,=1.45 were obtained[25]. For Ry=12.5, the and

largest domain size considered in the simulations, this

implies  (Cico/288)KoR2/k=1.36 for €,=150 and M \/Tl ae - Etemn

> N . —Rat2\/7:CoRa=12

(Cicol288)KoRa/k=1.70 for €,=1.45. For a crystalline K 10 2K

sphere, stretching contributions are therefore subdominant on

the right-hand side of Eq15) for the range of domain sizes so thatl'(R,) exhibits a logarithmic dependence when the

investigated. energy contribution of the cone-shaped corners dominates.
Bowick, Nelson, and Travessid5] have shown that short For large values of y/x)Y?R,, T'(R,) is proportional to

grain boundaries at the location of the topological disclina-R}\B.

(18
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E. Hexatic domains of cone-shape

(@

In crystalline membranes that are larger than the buckling K—KH In(R)
radiusR,, of a dislocation, the elasti@urvature and stretch-
ing) energy of a free dislocation has been predicted to ap-
proach a constant, independent of system [&32¢ This pre-
diction has been confirmed by Monte Carlo simulations
[24,25 of the same network model that is employed in the
current study. Therefore, the free energy of dislocations is
negative for any finite temperature for a sufficiently large
membrane. This implies that a finite concentration of free

dislocations is present in the membrane, which destroys spherical | cones S“r‘i’(tlcglgsng hexatic
translational order. The resulting phase, which still has bond-
orientational order, is called a hexatic. R, /<l>

The energyEs of a cone-shaped membrane in the hexatic

phase was calculated in Ref89,40, with the result
ElEESIE

for k/IKy<11/72 and

Es

’7TKH_

25+K
36 Ky

K 1/2 5
KH” _§} In(Ro/{€))

Es
7TKH

1
=3—6|n(R0/<€>) (20

for k/Ky>11/72, where&K is the hexatic stiffness arfg, is

r B n®)

hexatic

spherical

RA/<l>

the radius of the base area of the cone. The budding transi- FIG. 14. Scaling regimes for the functidh which characterizes

tion is again described by E@18), with Es, replaced by
Es. This result implies thal’(R,) exhibits a logarithmic
dependence for sufficiently larde, .

the dependence of the budding transition on the raRjy$in units
of the average bond lengtif)) of a planar crystalline domairfa)
Low defect density and high Young modulb) High defect den-

In order to proceed, we need an estimate of the magnitud@ty and low Young modulus. “Spherical” denotes the regime of

of the ratio k/Ky. Such an estimate can be obtained by
comparing the calculated phase diagram as a functiok of
and Ky [41] with the phase diagram obtained from Monte
Carlo simulations of our moddl24,25. Since K is not
known in the simulations, the phase diagram was plotted as
function of the Young modulu&, of a membrane with the

spherical bud shapes, “cones” the regime where the fivefold dislo-

cations are cone shaped, “stretching ridges” the regime where the
competition of bending and stretching leads to stress condensation
along the edges of an icosahedron, and “hexatic” the regime where
free dislocations induce hexatic order in the membrane. In the

?pherical regime, short grain boundaries reduce the stretching
energy.

same tether length, but without any defects. The two phase

diagrams have very similar shapes. Therefore, we assume

Ky=aKo(€)2, with a proportionality constan& which is
obtained from fitting the location of the hexatic-to-fluid tran-
sition, which occurs akgT/Ky=7/72=0.0436[41] and at
kg T/(Ko(€)?)=0.0172[21]. This impliesa=0.4. From the
simulation results folKo(¢)? [25], we then findK=25.8
for €,=1.50 andKy=31.2 for € ,=1.45. Thus, fork=10,
we obtain x/Ky=0.39>11/72 and «/Ky=0.32>11/72
for €,=1.50 and €,=1.45, respectively. Therefore, for
our range of simulated tether lengths, Et2(2m«)
=[Ky/(6k)]In(Ry/{€)). This yields a logarithmic depen-
dence with a prefactor df/(6«)=0.5.

It is interesting to note that renormalization group calcu-

V. DISCUSSION OF BUDDING SCENARIOS

From the various theoretical results described in the pre-
vious subsections, together with the simulation data, the fol-
lowing picture emerges. The budding behavior depends on
the value of the raticQ=K0Rf\/K, on the buckling radius
Ry /{€)~ kIl (Ko(£)?) of a dislocation, measured in units of
the average nearest-neighbor distance, and on the distance
from the two-dimensional melting transition, which is deter-
mined by the value oK(¢)?. There are various scenarios,
depending on the values of the buckling radius &pd¢)2.

Two possible scenarios are sketched in Fig. 14. Consider
first the case of large buckling radius and very low defect

lations for fluctuating planar membranes predict that the ratiaensity, [See Fig. 148)]. Then, for small domain sizes

Ky /k approaches the universal valdg, /=4 in the long-
wavelength limit in the hexatic, “crinkled” phasg41,42.
Our estimate oK, /x=3 in the short-wavelength regime

Ra, Q is small, the bud is spherical, and the membrane is
crystalline without excess defects. This is the case discussed
in Sec. IV C. With increasing size, defect scars in the form of

indicates that corrections to scaling can be expected to bghort grain boundaries appear at the location of the 12 five-

small.

fold disclinations. The spherical shape begins to deform into
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an icosahedral shape with stretching ridges connecting the 12 for open boundaries. We therefore propose that, for
topological disclinationgcompare Sec. IV D Finally, the  vesicles, the value of the buckling radius for open mem-
system size becomes so large that the free energy of a fréganes withk= — « should be used. Fdt,=1.50 andk=10,

buckled dislocation, this impliesR,= 25.
1 Consider now a system with a small buckling radius and a
Fdis|oc=8—Ko<€>2|n(Rb/<€>)—kBT|n(7TR/2.\/<€>2), high defect densitysee Fig. 14)]. In this case, for small
o

domain sizes, we again expect spherical shapes with short

(22) grain boundaries. However, for larger sizes there should be a
becomes negative and the membrane enters the hexatic ph&HEeCt crossover to hexatic membranes.
discussed in Sec. IV E. This happens when The main conclusion that can be drawn from the preced-
ing analysis is that, in general, we prediovaak size depen-
7(Ra/(€))2= (R, /{£))M8M(Ko(O)*IkeT), (220 denceof I'(R,) in Eq. (5), with several distinct scaling re-

_ o ~gimes[43]. In particular, the value of the line tension or the
where the exponent on the right-hand side is close to 2 in thgpontaneous curvature at the budding transition is a decreas-
vicinity of the crystal-to-hexatic transition for the planar sys-ng function of R, . This result is strongly supported by our

tem, but becomes very large at small tether lengths. simulation data. In our simulation€ =415 for £,=1.50

The crossover from the regime of a spherical crystal Wlthand R,=10. The parameters in the simulations are therefore

defect scars to the regime of a roun_ded |cosahedr_on W'tho%tuch that we are in the crossover regime from the crystalline
defects can be estimated by equating the energies of eqso' the hexatic phase: defect scars can be recognized, the
(14) and (16). This corresponds to . L ’ cogn '
buckling radius is on the order of the domain size, the
1584 [Njp stretching energy is comparable to the bending energy, and
Q=gz I (E) (23)  small deviations from the spherical shape are visible.
co We can make the comparison of the Monte Carlo data and
where we have assumed that the system is small enough tH&e analytical estimates moguantitativeby studying the
for the icosahedron the energy is dominated by the contribudependence of the budding transition on the domain size.
tion from the corners. For crystalline domains with smallerFirst, for the Monte Carlo data, the prefactpof the spon-
values ofQ, the shape should be spherical with defect scarstaneous curvature term in E¢5) is found to bey=0.84,
for domains with largeQ rounded icosahedrons should be slightly smaller than, but close to unity, in good agreement
observed. FON=500, this impliesQ=2410. At the cross- With the predictions for fluid vesicldgompare Eqs(9) and
over point, the contribution of the stretching energy in Eq.(10)]. On the other hand, the prefactor of the spontaneous
(15) roughly equals the contribution of the bending energy. curvature term in all our estimates for crystalline and hexatic
The crossover from the crystalline to the hexatic phase ighembranes was found to be=2. However, this can easily
determined by the rati®, /R, of the buckling radiug,, and be traced back to the fact that in the latter cases we do not
the domain size. Foopen membranes with free boundary take into account that the cap has a curved Shape. Rather, we
conditions, the buckling radius has been calculated in ReBimply compare the free energiesftzt domains and spheri-
[34] to be Ry=E(x/x)«/(Ko(€)). The scaling function cal bu.ds. The same approximation yvould also Iead/:tudz_
Z(x/«) depends on the ratio of the saddle-splay moduludor fluid domains. We therefore believe that our analytical
% and the bending rigidity. The Gaussian-curvature term results for crystalline and hexatic domains overestimate this
in the curvature Hamiltonian has to be taken into accounPrefactor. o _
for open membranes, since it determines the boundary con- Second, we have seen in Figs. 5-10 that the budding tran-
ditions. Forx/x=0, where the curvature Hamiltonian be- Sition disappears foCoogNA*=4, which corresponds to
comes unstable with respect to the formation of saddleCoRa=2.6. This result can easily be understood on the basis
shaped structures with small radii of curvature, the buckling?f Eg. (5). For this value ofCyR,, the two sides of Eq(5)
radius vanishes. Similarly, the buckling radius vanishes folecome equal for a line tensionr, on the order ofkgT.
xl k= —2, where the curvature Hamiltonian has an instabil-The line tension is so small in this case that we are very close
ity toward the formation of small vesicles. In the rang@  to the mixing critical point of the two components.
<kl k, fluid membranes with large radii of curvature are Third, we can compare the dependencel@R,) ob-
stable, and the buckling radius is finite, with a maximum attained from the Monte Carlo data with the predicti(ib)
klk=—0.8 whereE=125. for crystalline buds with grain boundaries. The numerical
For vesiclesor membranes with periodic boundary condi- data for €,=1.50 are well described by’(Ra)=3.28
tions which are characterized by a uniform saddle-splay+0.000KoR4/«x. The numerical prefactor of the second
modulus, the Gauss-Bonnet theorem indicates that the intéerm should be compared with;.,(n)/288, which is 0.001
gral over the Gaussian curvature is a topological invarianfor n=2. Since we have additional dislocations in the simu-
which does not affect the membrane shape and fluctuationtated domains due to the vicinity of the hexatic phase, these
Therefore, the buckling radius cannot dependwoim this  two results are in very nice agreement.
case. However, periodic boundary conditions or the spherical An important point we have not discussed yet is the de-
topology of a vesicle can be expected to have a similar conpendence of'(R,) on the two-dimensional Young modulus
straining effect on buckling as the most unfavorable value oK. In the defect-free crystalline phase, Ed4) implies a
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FIG. 15. (Color online Snapshots of configu-
rations during the budding process after a quench
from a completely spherical initial state. The pic-
tures show a top view of the crystalline domain;
the fluid part of the membrane is not shown.
Fivefold and sevenfold coordinated vertices are
marked by squares and circles, respectively. The
parameters ar®l,=368,¢,=1.50, A=2.0, and
CAH=0.2. Snapshots are shown at tina) t
=0.1x10°, (b) t=0.3x 10%, (c) t=0.5x 10, (d)
t=1x10°, (e) t=2x10°, and (f) t=3x10°
Monte Carlo steps after the quench.
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linear dependence df,. With the numbers appropriate for librium. Another interesting question is the dynamical behav-
our simulations, a change of the tether length fré  ior after the system has been quenched from a state of van-
=1.50 to€,=1.45 implies a shifAl'(Ry)=0.21. This re- ishing spontaneous curvatui@,; =0, to a part of the phase
sult is consistent with the small shift observed in the Simu-diagram where single buds are stable. Here, the question
lations, (see Figs. 12 and 13 arises as to how the defects appear dynamically in the clath-
It is worth mentioning that we would obtain a quadratic rin domain.
R4 contribution tol” in the regime of crystalline buds which Several snapshots of configurations during the budding
is reminiscent of the result of Mashl and Bruinsﬁlﬁ] if the process are shown in F|g 15 for a System V@@‘]:OZ after
contribution of the stretching energy in EQ.5 were larger  the quench. The figure demonstrates very nicely that five-
than that of the bending energy. However, it is important tofo|q and sevenfold disclinations are generated at the domain
note that(i) the physical origin of this contribution is differ- poundary, and that the fivefold disclinations then move into
ent, since in our case, it arises from the stretching of a crysihe internal area of the clathrin patch.
talline cone when it is deformed into a spherical cap, while it The time dependence of the boundary length and the ex-
comes from the energy of a disclination pair in theirs, @0d  cess number of fivefold disclinations in the interior of the
the stretching contribution, which is proportional KR4, clathrin domain are shown in Fig. 16 and Fig. 17, respec-
can never dominate the bending energy, since the bud begifigely. From these figures, the following time regimes can be
to deform into an icosahedral shape before this can happegistinguished.

(i) Fivefold disclinations appear on the boundary and
VI. DYNAMICS OF THE BUDDING TRANSITION move into the internal area.
A. Formation of single buds (i) The number of excess fivefold disclinations in the

. L internal area is almost constant, but the shape graduall
In Sec. Il we studied the shapes, defect distributions, ancp pe g y

phase behavior of two-component vesicles in thermal equi- 14

100 - . - : - 12
9 10
80 8t
70 6E
60 0
€ 50 ) ;
3
40 0
30 2
20 4
10 -6
0 . . . . . 0 1 2 3 4 5 6
0 1 2 3 4 5 6 Time  [million MCS]

Time [million MCS]
FIG. 17. (Color online Time dependence of excess fivefold co-

FIG. 16. Time dependence of the boundary lerigdf the clath-  ordinated verticeds; in the internal aredfull line) andAs), at the
rin domain forN,=368, ¢ ,=1.50,A=2.0, andC’3=0.2. See Fig. domain boundarydotted ling for No=368, € ,=1.50,\=2.0, and
15 for the corresponding configurations. C§=O.2. See Fig. 15 for the corresponding configurations.
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ATBTRTY A

FIG. 19. Clathrin network with nucleated microcages in chick

FIG. 18. (Color online Snapshots of configurations during the cells acidified by pigericin treatment at pH 6.3 for 5 min at 37 °C.
budding process after a quench from an initial spherical state fof N& nucleated microcages do not contain plasma membrane. Bar,
large spontaneous curvatu@%\/N_A>1. The pictures show a top 0.2 um. Reprod_uced_ from Reff14] by copyright permission of The
view of the crystalline domain; the fluid part of the membrane is notRockefeller University Press.
shown. Fivefold and sevenfold coordinated vertices are marked by
squares and circles, respectively. The parameter\gre368, € strongly resembles the microcages seen in clathrin domains
=1.435,A=1.50, andCy=1.0. Snapshots are shown at tirfa t after a strong quench ipH (see Fig. 19
=0.03x10°, (b) t=0.06x1C%, (c) t=0.07x10°, and (d) t=0.1 (iii ) The state of small buds is not stable, but evolves into
x 10° Monte Carlo steps after the quench. a cylindrical shape with time. The cylindrical structures elon-

gate, and the whole clathrin domain is composed of several
changes until it becomes a half sphere. The boundary lengtylindrical structures, which include fluid vertices in some
is decreasing roughly linearly with time. parts.

(iii) The half sphere quickly changes to a bud with a nar- (iv) After a long time, several isolated clathrin caps float
row neck. The boundary length is again decreasing linearlypn the fluid membrane.
but with a considerably larger slope than in reginiiesand
(ii). VIl. BUDDING OF CLATHRIN-COATED MEMBRANES

(iv) The final budded state is reached.

Note the similarity of the configurations shown in Fig. 15 The bioc_:hemistry of the b“?'di”,g process in clathri.n-.
with the rounded clathrin-coated pits in Fig. 1. coated vesicles has been studied in considerable detail in

recent year§44-4€. In addition to clathrin, many other
proteins have been found to play an important role in
clathrin-mediated endocytosis. In synaptic vesicle endocyto-
We can also consider the case of a quench to a state &fs, coat proteins AP2 and AP180 are recruited to the mem-
large spontaneous curvatuf%RA>1, and very small line brane to bind the clathrin proteins to the membrgtig. The
tension. The budding process now proceeds very differentlynvagination of the coated membrane depends on endophilin
in particular for a large Young modulutssmaller tether [48]. Narrowing of the neck region may involve several fac-
length. This can be seen in the sequence of snapshots givenrs, including actin, intersectin, dynamin, and amphiphysin
in Fig. 18, where small buds are forming near the domairf49]. Finally, fission depends on dynamin, probably in coop-
boundary, while the central region of the domain remainseration with other proteins such as amphiphysin and endo-
essentially flat. philin [48].
The shape of the clathrin domain now evolves as follows. For the comparison of our results with the formation of
(i) At the beginning, the interior part of the domain re- clathrin-coated vesicles, it is interesting to determine pos-
mains flat, since no defects are present. The mobility of desible mechanisms for the generation of spontaneous curva-
fects is low for large Young modulus. Therefore, only theture. Here, endophilin | seems to play an essential role. It has
boundary region can curve, which it does. The domain shapkeen shown, for example, that in the absence of endophilin I,
becomes a flattened mushroom. the clathrin-coated pit does not transform into a complete
(i) A wavelike instability occurs at the boundary, which bud[48]. It therefore seems natural to assume that endophi-
leads to the formation of many small, spherical buds. This idin induces a spontaneous curvature in the clathrin domain.
possible because the line tension is very small. This stat&his view is supported by the fact that after presynaptic mi-

B. Microcages
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croinjection of antiendophilin antibodies, the invagination Mashl and Bruinsmd16]. In particular, the dynamical be-
process appears to be inhibited in a concentration-dependelmavior we observe is not consistent with their type of
manner, as the depth of the coated pits decreases with imterior-acquisition model. While Mashl and Bruinsma pre-
creasing antibody concentratip48]. Furthermore, endophi- dict that the formation of fivefold disclinations proceeds via
lin 1 has been found to convert lysophosphatic acid, arthe unbinding of dislocations in the interior region of the
inverted-cone-shaped lipid, to phosphatic acid, a conenetwork, we have found, as summarized in the last para-
shaped lipid in the cytoplasmic leaflet of the bilayB@]. In graph, that disclinations are formed at the domain boundary
the interior of the clathrin domain, such a conversion wouldbefore diffusing into the interior.
imply a spontaneous curvature toward the clathrin side, i.e., a Furthermore, Mashl and Bruinsn{d 6] argue that the
negative rather than the desired positive spontaneous curv&20-30 kgT of energy required for the dissociation of clath-
ture. However, the latter activity may occur only in the neckrin coats provides an estimate for the energy needed to break
region due to the interaction with dynamin, which forms athe bond between the four clathrin arms in a polygonal edge.
ring around the neck. It has been proposed that this inducesThis would imply that diffusive motion of fivefold and sev-
negative membrane curvature at the edges of a coated p#nfold disclinations induced by thermal fluctuations is rather
which promotes membrane fissi@b0]. unlikely. It is still an open question if this is indeed the case.

It has also been shown that clathrin-coated buds morphoA recent analysis of the size distribution of reconstituted
logically similar to the corresponding structures observed irclathrin cages suggests that the relevant energy scale for
synaptic vesicles can be generated on protein-free liposomefanges in the local structure of clathrin coats is on the order
by incubation with cytoso51], which suggests that the pri- of kgT [52]. Our present Monte Carlo simulations cover the
mary function of membrane proteins is to act as regulatorsange of small bond energies, while our scaling results
of coat assembly. Furthermore, Heuf&4] has shown that should be applicable also for large bond energies.
both thein vivo acidification of cells as well thén vitro The detailed behavior at the budding transition depends
acidification of exposed clathrin lattices leads to the forma-on the value of the rati@=K,R3/«, the buckling radius of
tion of budded microcages which nucleate at the edges af dislocation, and the distance from the two-dimensional
the clathrin network(see Fig. 19 The resulting structures melting transition. The various scenarios are discussed in
are very similar to those shown in Fig. 18 which developSec. IV and summarized in Fig. 14. For the current simula-
after a quench from an initially flat state for large spontanetions, Q~400, so that the transition occurs in the crossover
ous curvature. The microcages observed by Hellsélrare  region from the crystalline to the hexatic phase. In this case,
spherical in shape, with radii on the order of 25-30 nm, andhe buckling radius is on the order of the domain size, the
are small compared to normal coated clathrin pitsmpare  stretching energy is comparable to the bending energy, and
Fig. 1). short grain boundaries can be seen at the topologically re-

quired fivefold disclinations.
VIIl. SUMMARY AND CONCLUSIONS It remains a formidable challenge to elucidate the various

- mechanisms involved in clathrin-mediated endocytosis in

Heuser[14] suggested that the driving force for the for- i, colls. For this reason, it would be extremely interesting
mation of cIa'Fhrln—coated ves_lcles Is the chgmlcal asymmetry, perform further studies on the endocytosis of protein-free
of the clathrin network. This asymmetry induces a finite i, somes in order to determine the extent to which simple
mean curvature in the membfa‘_ﬁe which de_pends orpthe models of the type discussed in this paper can describe the
and other environmental conditions. Budding occurs wheryeneric features of formation of clathrin-coated pits. Experi-
the curvgture_ becomes s_ufﬁuently Iargg. In the .model CONments on simple, well characterized systems could be used in
sidered in this paper, this asymmetry is described by th%onjunction with simulations, as was done in Ref9] for
spontaneous curvature. We have shown that for a large ran ant synthetic lipid bilayer vesicles, to quantify our under-

of material parameters, budding in crystalline networks Ofgianing of the underlying physical mechanism of the bud-
radiusR, occurs at a critical value of the spontaneous CUrging of coated pits.

vature that is a monotonically decreasing functiorRqaf. It

was also shown that the disclinations required to form the
budded state are created at the boundary of the crystalline
patch. Budding occurs when a sufficient number of the re- TK thanks the Japanese Ministry of Education, Science
quired fivefold disclinations have been formed and have difand Culture for financial support during a visit to the Re-
fused into the domain interior. For the model parameters waearch Center liah. D.M.K. acknowledges support from the
considered, the energies associated with changes in the loddhtional Science Foundation under Grant No. DMR-
structure of the network are of the orderlgfT. 0083219 and the donors of The Petroleum Research Fund,

This scenario is quite different from that suggested byadministered by the ACS.
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