000031348 001__ 31348
000031348 005__ 20180210132728.0
000031348 0247_ $$2DOI$$a10.1016/j.elecom.2003.10.027
000031348 0247_ $$2WOS$$aWOS:000188507400007
000031348 037__ $$aPreJuSER-31348
000031348 041__ $$aeng
000031348 082__ $$a540
000031348 084__ $$2WoS$$aElectrochemistry
000031348 1001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b0$$uFZJ
000031348 245__ $$aIn situ STM Study of the Initial Stages of Electrochemical Oxide Formation at the Ag(111)/0.1M NaOH(aq) Interface
000031348 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2004
000031348 300__ $$a132 - 137
000031348 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000031348 3367_ $$2DataCite$$aOutput Types/Journal article
000031348 3367_ $$00$$2EndNote$$aJournal Article
000031348 3367_ $$2BibTeX$$aARTICLE
000031348 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000031348 3367_ $$2DRIVER$$aarticle
000031348 440_0 $$01775$$aElectrochemistry Communications$$v6$$x1388-2481
000031348 500__ $$aRecord converted from VDB: 12.11.2012
000031348 520__ $$aThe atomic structure of surface layers and the local changes of surface morphology during the initial stages of anodic oxidation of Ag(111) in an aqueous 0.1 M NaOH solution have been investigated by in situ scanning tunneling microscopy (STM) under different polarization conditions. The surface oxide formation starts at underpotentials, i.e. at electrode potentials E below the Nernst-potential E-3DAg2O (vs. SHE) = 0.4 V for the formation of the three-dimensional (3D) bulk Ag2O phase. An ordered overlayer showing distinct Moire pattern is observed in the potential range -0.1 V < E (vs. SHE) < 0.1 V. The appearance of the Moire structure is assigned to the strong OH adsorption, which induces a stretching of the 2D lattice of the OH-terminated topmost Ag(111) monolayer. In situ STM imaging at higher potentials (0.1 V < E (vs. SHE) < 0.3 V) shows the occurrence of a Ag dissolution process followed by an underpotential oxide formation in agreement with previous electrochemical measurements and in situ X-ray absorption studies. (C) 2003 Elsevier B.V. All rights reserved.
000031348 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000031348 588__ $$aDataset connected to Web of Science
000031348 650_7 $$2WoSType$$aJ
000031348 65320 $$2Author$$asilver
000031348 65320 $$2Author$$aSTM
000031348 65320 $$2Author$$aadsorption
000031348 65320 $$2Author$$aelectrochemical oxide formation
000031348 65320 $$2Author$$asolid/liquid interface
000031348 7001_ $$0P:(DE-HGF)0$$aKunze, J.$$b1
000031348 7001_ $$0P:(DE-HGF)0$$aStrehblow, H.-H.$$b2
000031348 773__ $$0PERI:(DE-600)2027290-X$$a10.1016/j.elecom.2003.10.027$$gVol. 6, p. 132 - 137$$p132 - 137$$q6<132 - 137$$tElectrochemistry communications$$v6$$x1388-2481$$y2004
000031348 8567_ $$uhttp://dx.doi.org/10.1016/j.elecom.2003.10.027
000031348 909CO $$ooai:juser.fz-juelich.de:31348$$pVDB
000031348 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000031348 9141_ $$aNachtrag$$y2004
000031348 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000031348 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000031348 970__ $$aVDB:(DE-Juel1)31964
000031348 980__ $$aVDB
000031348 980__ $$aConvertedRecord
000031348 980__ $$ajournal
000031348 980__ $$aI:(DE-Juel1)PGI-3-20110106
000031348 980__ $$aUNRESTRICTED
000031348 981__ $$aI:(DE-Juel1)PGI-3-20110106