001     314
005     20200402205334.0
024 7 _ |2 pmid
|a pmid:18158160
024 7 _ |2 DOI
|a 10.1016/j.jmb.2007.11.035
024 7 _ |2 WOS
|a WOS:000253554700024
037 _ _ |a PreJuSER-314
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Kaimann, T.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Molecular Model of an alpha-helical Prion Protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2008
300 _ _ |a 582 - 596
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Molecular Biology
|x 0022-2836
|0 3552
|y 2
|v 376
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Prions are the agents of a series of lethal neurodegenerative diseases. They are composed largely, if not entirely, of the host-encoded prion protein (PrP), which can exist in the cellular isoform PrP(C) and the pathological isoform PrP(Sc). The conformational change of the alpha-helical PrP(C) into beta-sheet-rich PrP(Sc) is the fundamental event of prion disease. The transition of recombinant PrP from a PrP(C)-like into a PrP(Sc)-like conformation can be induced in vitro by submicellar concentrations of SDS. An alpha-helical dimer was identified that might represent either the native state of PrP(C) or the first step from the monomeric PrP(C) to highly aggregated PrP(Sc). In the present study, the molecular structure of these dimers was analyzed by introducing covalent cross-links using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Inter- and intramolecular bonds between directly neighboured amino groups and carboxy groups were generated. The bonds formed in PrP dimers of recombinant PrP (90-231) were identified by tryptic digestion and subsequent mass spectrometric analysis. Intra- and intermolecular cross-links between N-terminal glycine and three acidic amino acid side chains in the globular part of PrP were identified, showing the N-terminal amino acids (90-124) are not as flexible as known from NMR analysis. When the cross-linked sites were used as structural constraint, molecular modeling calculations yielded a structural model for PrP dimer and its monomeric subunit, including the folding of amino acids 90-124 in addition to the known structure. Molecular dynamics of the structure after release of the constraint indicated an intrinsic stability of the domain of amino acids 90-124.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Amino Acids, Acidic: chemistry
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Circular Dichroism
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Cricetinae
650 _ 2 |2 MeSH
|a Cross-Linking Reagents: chemistry
650 _ 2 |2 MeSH
|a Dimerization
650 _ 2 |2 MeSH
|a Mesocricetus
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Nuclear Magnetic Resonance, Biomolecular
650 _ 2 |2 MeSH
|a Prions: chemistry
650 _ 2 |2 MeSH
|a Prions: genetics
650 _ 2 |2 MeSH
|a Prions: metabolism
650 _ 2 |2 MeSH
|a Protein Conformation
650 _ 2 |2 MeSH
|a Protein Isoforms: chemistry
650 _ 2 |2 MeSH
|a Protein Isoforms: metabolism
650 _ 2 |2 MeSH
|a Protein Structure, Secondary
650 _ 2 |2 MeSH
|a Recombinant Proteins: chemistry
650 _ 2 |2 MeSH
|a Recombinant Proteins: metabolism
650 _ 2 |2 MeSH
|a Spectrometry, Mass, Electrospray Ionization
650 _ 2 |2 MeSH
|a Tandem Mass Spectrometry
650 _ 2 |2 MeSH
|a Trypsin: pharmacology
650 _ 7 |0 0
|2 NLM Chemicals
|a Amino Acids, Acidic
650 _ 7 |0 0
|2 NLM Chemicals
|a Cross-Linking Reagents
650 _ 7 |0 0
|2 NLM Chemicals
|a Prions
650 _ 7 |0 0
|2 NLM Chemicals
|a Protein Isoforms
650 _ 7 |0 0
|2 NLM Chemicals
|a Recombinant Proteins
650 _ 7 |0 EC 3.4.21.4
|2 NLM Chemicals
|a Trypsin
650 _ 7 |a J
|2 WoSType
700 1 _ |a Metzger, S.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Kuhlmann, K.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Brandt, B.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Birkmann, E.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB65870
700 1 _ |a Höltje, H.-D.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Riesner, D.
|b 6
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.jmb.2007.11.035
|g Vol. 376, p. 582 - 596
|p 582 - 596
|q 376<582 - 596
|0 PERI:(DE-600)1355192-9
|t Journal of molecular biology
|v 376
|y 2008
|x 0022-2836
856 7 _ |u http://dx.doi.org/10.1016/j.jmb.2007.11.035
909 C O |o oai:juser.fz-juelich.de:314
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k INB-2
|l Molekulare Biophysik
|d 31.12.2008
|g INB
|0 I:(DE-Juel1)VDB805
|x 0
970 _ _ |a VDB:(DE-Juel1)100580
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21