000031595 001__ 31595
000031595 005__ 20180210132716.0
000031595 0247_ $$2DOI$$a10.1007/s00339-002-1500-y
000031595 0247_ $$2WOS$$aWOS:000184296000037
000031595 0247_ $$2ISSN$$a0947-8396
000031595 037__ $$aPreJuSER-31595
000031595 041__ $$aeng
000031595 082__ $$a530
000031595 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000031595 084__ $$2WoS$$aPhysics, Applied
000031595 1001_ $$0P:(DE-HGF)0$$aHartner, W.$$b0
000031595 245__ $$aSrBi 2Ta 2O 9 ferroelectric thin film capacitors: degradation in a hydrogen ambient
000031595 260__ $$aBerlin$$bSpringer$$c2003
000031595 300__ $$a571 - 579
000031595 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000031595 3367_ $$2DataCite$$aOutput Types/Journal article
000031595 3367_ $$00$$2EndNote$$aJournal Article
000031595 3367_ $$2BibTeX$$aARTICLE
000031595 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000031595 3367_ $$2DRIVER$$aarticle
000031595 440_0 $$0560$$aApplied Physics A$$v77$$x0947-8396
000031595 500__ $$aRecord converted from VDB: 12.11.2012
000031595 520__ $$aThe effects of annealing in forming gas 5% hydrogen, 95% nitrogen; FGA) are studied on spin-coated SrBi2Ta2O9 (SBT) thin films. SBT films on a platinum bottom electrode are characterized with and without a platinum top electrode. Films are characterized by residual stress measurements, scanning electron microscopy (SEM), Auger electron spectroscopy (AES), high-temperature X-ray diffraction (HT-XRD) and secondary ion mass spectrometry (SIMS). To determine the degree of strain, lattice constants of Pt are measured by X-ray diffraction (XRD). HT-XRD of blanket SBT/Pt/Ti films in forming gas revealed that the bismuth-layered perovskite structure of SBT is stable up to approximately 500 degreesC. After formation of an intermediate phase between 550 degreesC and 700 degreesC, SBT changes its structure to an amorphous phase. SIMS analysis of Pt/SBT/Pt samples annealed in deuterated forming gas (5% D-2, 95% N-2) showed that hydrogen accumulates in the SBT layer and at the platinum interfaces next to the SBT. After FGA of blanket SBT films, tall platinum-bismuth whiskers are seen on the SBT surface. It is confirmed that these whiskers originate from the platinum bottom electrode and grow through the SBT layer. FGA of the entire Pt/SBT/Pt/Ti stack shows two different results. For the samples with a high-temperature annealing (HTA) step in oxygen after top electrode patterning, peeling of the top electrode is observed after FGA. For the samples without a HTA step, no peeling is observed after FGA. The residual stress at room temperature is measured for blanket platinum wafers deposited at different temperatures. It is found that an increase in tensile stress caused by the HTA step in oxygen is followed by a decrease in stress caused by the hydrogen in the forming gas. Without HTA, however, an increase of stress is observed after FGA.
000031595 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000031595 588__ $$aDataset connected to Web of Science
000031595 650_7 $$2WoSType$$aJ
000031595 7001_ $$0P:(DE-HGF)0$$aBosk, P.$$b1
000031595 7001_ $$0P:(DE-HGF)0$$aSchindler, G.$$b2
000031595 7001_ $$0P:(DE-HGF)0$$aBachhofer, H.$$b3
000031595 7001_ $$0P:(DE-HGF)0$$aMört, M.$$b4
000031595 7001_ $$0P:(DE-HGF)0$$aWendt, H.$$b5
000031595 7001_ $$0P:(DE-HGF)0$$aMikolajick, D. A. B.$$b6
000031595 7001_ $$0P:(DE-HGF)0$$aDehm, C.$$b7
000031595 7001_ $$0P:(DE-Juel1)VDB3130$$aSchroeder, H.$$b8$$uFZJ
000031595 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b9$$uFZJ
000031595 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-002-1500-y$$gVol. 77, p. 571 - 579$$p571 - 579$$q77<571 - 579$$tApplied physics / A$$v77$$x0947-8396$$y2003
000031595 8567_ $$uhttp://dx.doi.org/10.1007/s00339-002-1500-y
000031595 909CO $$ooai:juser.fz-juelich.de:31595$$pVDB
000031595 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000031595 9141_ $$y2003
000031595 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000031595 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000031595 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000031595 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000031595 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000031595 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x0
000031595 970__ $$aVDB:(DE-Juel1)33066
000031595 980__ $$aVDB
000031595 980__ $$aConvertedRecord
000031595 980__ $$ajournal
000031595 980__ $$aI:(DE-Juel1)PGI-7-20110106
000031595 980__ $$aUNRESTRICTED
000031595 981__ $$aI:(DE-Juel1)PGI-7-20110106