000031698 001__ 31698
000031698 005__ 20180210130552.0
000031698 0247_ $$2WOS$$aWOS:000180947500002
000031698 037__ $$aPreJuSER-31698
000031698 041__ $$aeng
000031698 082__ $$a620
000031698 084__ $$2WoS$$aMaterials Science, Ceramics
000031698 1001_ $$0P:(DE-Juel1)VDB5958$$aMeyer, R.$$b0$$uFZJ
000031698 245__ $$aCationic surface segregation in donor-doped SrTiO3 under oxidizing conditions
000031698 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2002
000031698 300__ $$a101 - 110
000031698 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000031698 3367_ $$2DataCite$$aOutput Types/Journal article
000031698 3367_ $$00$$2EndNote$$aJournal Article
000031698 3367_ $$2BibTeX$$aARTICLE
000031698 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000031698 3367_ $$2DRIVER$$aarticle
000031698 440_0 $$03263$$aJournal of Electroceramics$$v9$$x1385-3449
000031698 500__ $$aRecord converted from VDB: 12.11.2012
000031698 520__ $$aThe influence of high temperature oxygen annealing on (100) oriented donor-doped SrTiO3 single crystals was studied. Crystalline precipitates were found on the optical scale on surfaces of lanthanum-doped as well as niobium-doped specimens with donor concentrations above 0.5 at.%. The amount of the secondary phase increases with the doping level, oxidation temperature and oxidation time. EDX analyses of the crystallites reveal a SrOx composition.The formation of the observed secondary phase is discussed by means of the defect re-equilibration of the cation sub-lattice. In view of the point defect model for donor-doped perovskites, n-conducting SrTiO3 changes its compensation mechanism during an oxidation treatment from "electronic compensation" (N-D = n) to "self-compensation" (N-D = 2[V-Sr"]) by forming cation vacancies. Due to the favored Schottky-type disorder in perovskites, the formation of strontium vacancies is accompanied by a release of strontium from the regular lattice. Since the excess strontium is found to be situated at the surface in form of SrO-rich precipitates only, we propose the formation of strontium vacancies via a surface defect reaction and the chemical diffusion of strontium vacancies from the surface into the crystal as the most probable re-equilibration mechanism for the oxidation treatment of single crystals.The introduced mechanism is in contrast to an established model which proposes the formation of Ruddlesden-Popper intergrowth phases SrO.(SrTiO3)(n) in the interior of the crystal.
000031698 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000031698 588__ $$aDataset connected to Web of Science
000031698 650_7 $$2WoSType$$aJ
000031698 65320 $$2Author$$aperovskite
000031698 65320 $$2Author$$adonor
000031698 65320 $$2Author$$acation vacancy diffusion
000031698 65320 $$2Author$$aSrO secondary phase
000031698 65320 $$2Author$$aRuddlesden-Popper phases
000031698 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$uFZJ
000031698 7001_ $$0P:(DE-HGF)0$$aHelmboldt, J.$$b2
000031698 7001_ $$0P:(DE-HGF)0$$aBorchardt, G.$$b3
000031698 773__ $$0PERI:(DE-600)1472395-5$$gVol. 9, p. 101 - 110$$p101 - 110$$q9<101 - 110$$tJournal of electroceramics$$v9$$x1385-3449$$y2002
000031698 909CO $$ooai:juser.fz-juelich.de:31698$$pVDB
000031698 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000031698 9141_ $$aNachtrag$$y2002
000031698 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000031698 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x0
000031698 970__ $$aVDB:(DE-Juel1)33398
000031698 980__ $$aVDB
000031698 980__ $$aConvertedRecord
000031698 980__ $$ajournal
000031698 980__ $$aI:(DE-Juel1)PGI-7-20110106
000031698 980__ $$aUNRESTRICTED
000031698 981__ $$aI:(DE-Juel1)PGI-7-20110106