000003188 001__ 3188
000003188 005__ 20240709081707.0
000003188 0247_ $$2DOI$$a10.1364/AO.48.00B159
000003188 0247_ $$2WOS$$aWOS:000264413400022
000003188 037__ $$aPreJuSER-3188
000003188 041__ $$aeng
000003188 082__ $$a530
000003188 084__ $$2WoS$$aOptics
000003188 1001_ $$0P:(DE-HGF)0$$aVarma, R.M.$$b0
000003188 245__ $$aLong optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction
000003188 260__ $$aWashington, DC$$bOptical Soc. of America$$c2009
000003188 300__ $$aB159 - B171
000003188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000003188 3367_ $$2DataCite$$aOutput Types/Journal article
000003188 3367_ $$00$$2EndNote$$aJournal Article
000003188 3367_ $$2BibTeX$$aARTICLE
000003188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000003188 3367_ $$2DRIVER$$aarticle
000003188 440_0 $$09361$$aApplied Optics$$v48$$x0003-6935$$y4
000003188 500__ $$aRecord converted from VDB: 12.11.2012
000003188 520__ $$aAn incoherent broadband cavity-enhanced absorption spectroscopy setup employing a 20 m long optical cavity is described for sensitive in situ measurements of light extinction between 630 and 690 nm. The setup was installed at the SAPHIR atmospheric simulation chamber during an intercomparison of instruments for nitrate (NO3) radical detection. The long cavity was stable for the entire duration of the two week campaign. A detection limit of similar to 2 pptv for NO3 in an acquisition time of 5 s was established during that time. In addition to monitoring NO3, nitrogen dioxide (NO2) concentrations were simultaneously retrieved and compared against concurrent measurements by a chemiluminescence detector. Some results from the campaign are presented to demonstrate the performance of the instrument in an atmosphere containing water vapor and inorganic aerosol. The spectral analysis of NO3 and NO2, the concentration dependence of the water absorption cross sections, and the retrieval of aerosol extinction are discussed. The first deployment of the setup in the field is also briefly described. (C) 2009 Optical Society of America
000003188 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000003188 588__ $$aDataset connected to Web of Science
000003188 650_7 $$2WoSType$$aJ
000003188 7001_ $$0P:(DE-HGF)0$$aVenables, D.S.$$b1
000003188 7001_ $$0P:(DE-HGF)0$$aRuth, A.A.$$b2
000003188 7001_ $$0P:(DE-HGF)0$$aHeimann, U.$$b3
000003188 7001_ $$0P:(DE-Juel1)VDB26256$$aSchlosser, E.$$b4$$uFZJ
000003188 7001_ $$0P:(DE-HGF)0$$aDixneuf, S.$$b5
000003188 773__ $$0PERI:(DE-600)1474462-4$$a10.1364/AO.48.00B159$$gVol. 48, p. B159 - B171$$pB159 - B171$$q48<B159 - B171$$tApplied optics$$v48$$x0003-6935$$y2009
000003188 8567_ $$uhttp://dx.doi.org/10.1364/AO.48.00B159
000003188 909CO $$ooai:juser.fz-juelich.de:3188$$pVDB
000003188 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000003188 9141_ $$y2009
000003188 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000003188 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000003188 970__ $$aVDB:(DE-Juel1)108700
000003188 980__ $$aVDB
000003188 980__ $$aConvertedRecord
000003188 980__ $$ajournal
000003188 980__ $$aI:(DE-Juel1)IEK-8-20101013
000003188 980__ $$aUNRESTRICTED
000003188 981__ $$aI:(DE-Juel1)ICE-3-20101013
000003188 981__ $$aI:(DE-Juel1)IEK-8-20101013