000032037 001__ 32037
000032037 005__ 20200423203544.0
000032037 0247_ $$2DOI$$a10.1063/1.1592300
000032037 0247_ $$2WOS$$aWOS:000184469800096
000032037 0247_ $$2Handle$$a2128/17211
000032037 037__ $$aPreJuSER-32037
000032037 041__ $$aeng
000032037 082__ $$a530
000032037 084__ $$2WoS$$aPhysics, Applied
000032037 1001_ $$0P:(DE-HGF)0$$aDas, J.$$b0
000032037 245__ $$aStatistical model for prebreakdown current jumps and breakdown caused by single traps in magnetic tunnel junctions
000032037 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2003
000032037 300__ $$a2749 - 2751
000032037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032037 3367_ $$2DataCite$$aOutput Types/Journal article
000032037 3367_ $$00$$2EndNote$$aJournal Article
000032037 3367_ $$2BibTeX$$aARTICLE
000032037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032037 3367_ $$2DRIVER$$aarticle
000032037 440_0 $$03051$$aJournal of Applied Physics$$v93$$x0021-8979
000032037 500__ $$aRecord converted from VDB: 12.11.2012
000032037 520__ $$aTo obtain reliable magnetic tunnel junctions (MTJs) for sensor and memory applications, the quality of the Al2O3 tunnel barrier is extremely important. Here, we studied the reliability of MTJs with a 1.6 nm Al2O3 tunnel barrier formed by ultraviolet light assisted oxidation. In the stress measurements, prebreakdown current jumps and, finally, breakdown are observed. We show, by using statistics, that both the current jumps and the final breakdown can be attributed to single trap generation. Moreover, we can relate the current jump height to the trap location. In this way, we reveal the breakdown mechanism in MTJs and illustrate the importance of reliability studies. (C) 2003 American Institute of Physics.
000032037 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000032037 588__ $$aDataset connected to Web of Science
000032037 650_7 $$2WoSType$$aJ
000032037 7001_ $$0P:(DE-HGF)0$$aDegraeve, R.$$b1
000032037 7001_ $$0P:(DE-Juel1)VDB3112$$aStein, S.$$b2$$uFZJ
000032037 7001_ $$0P:(DE-Juel1)VDB3107$$aKohlstedt, H.$$b3$$uFZJ
000032037 7001_ $$0P:(DE-HGF)0$$aGroeseneken, C. J.$$b4
000032037 7001_ $$0P:(DE-HGF)0$$aBorghs, G.$$b5
000032037 7001_ $$0P:(DE-HGF)0$$ade Boeck, J.$$b6
000032037 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.1592300$$gVol. 94, p. 2749 - 2751$$p2749 - 2751$$q94<2749 - 2751$$tJournal of applied physics$$v94$$x0021-8979$$y2003
000032037 8567_ $$uhttp://dx.doi.org/10.1063/1.1592300
000032037 8564_ $$uhttps://juser.fz-juelich.de/record/32037/files/1.1592300.pdf$$yOpenAccess
000032037 8564_ $$uhttps://juser.fz-juelich.de/record/32037/files/1.1592300.gif?subformat=icon$$xicon$$yOpenAccess
000032037 8564_ $$uhttps://juser.fz-juelich.de/record/32037/files/1.1592300.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000032037 8564_ $$uhttps://juser.fz-juelich.de/record/32037/files/1.1592300.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000032037 8564_ $$uhttps://juser.fz-juelich.de/record/32037/files/1.1592300.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000032037 909CO $$ooai:juser.fz-juelich.de:32037$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000032037 9141_ $$y2003
000032037 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000032037 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032037 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000032037 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x0
000032037 970__ $$aVDB:(DE-Juel1)33488
000032037 980__ $$aVDB
000032037 980__ $$aConvertedRecord
000032037 980__ $$ajournal
000032037 980__ $$aI:(DE-Juel1)PGI-7-20110106
000032037 980__ $$aUNRESTRICTED
000032037 9801_ $$aFullTexts
000032037 981__ $$aI:(DE-Juel1)PGI-7-20110106