000032121 001__ 32121 000032121 005__ 20200423203547.0 000032121 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org 000032121 0247_ $$2DOI$$a10.1103/PhysRevLett.91.016106 000032121 0247_ $$2WOS$$aWOS:000183915400041 000032121 0247_ $$2Handle$$a2128/2154 000032121 037__ $$aPreJuSER-32121 000032121 041__ $$aeng 000032121 082__ $$a550 000032121 084__ $$2WoS$$aPhysics, Multidisciplinary 000032121 1001_ $$0P:(DE-Juel1)VDB5414$$aIbach, H.$$b0$$uFZJ 000032121 245__ $$aThe Step Line Tension on a Metal Electrode 000032121 260__ $$aCollege Park, Md.$$bAPS$$c2003 000032121 300__ $$a016106 000032121 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000032121 3367_ $$2DataCite$$aOutput Types/Journal article 000032121 3367_ $$00$$2EndNote$$aJournal Article 000032121 3367_ $$2BibTeX$$aARTICLE 000032121 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000032121 3367_ $$2DRIVER$$aarticle 000032121 440_0 $$04925$$aPhysical Review Letters$$v91$$x0031-9007 000032121 500__ $$aRecord converted from VDB: 12.11.2012 000032121 520__ $$aThe step line tension in electrochemical systems differs conceptually from the line tension on metals in the vacuum because it refers to different boundary conditions. A procedure is established for calculating the electrochemical line tension and is applied to a novel model of the interface comprising both a stepped metal electrode and an electrolyte solution. To first order, the potential dependence of the line tension is governed by the energy of the step dipole in the electric field of the space charge in the solution. 000032121 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000032121 588__ $$aDataset connected to Web of Science 000032121 650_7 $$2WoSType$$aJ 000032121 7001_ $$0P:(DE-HGF)0$$aSchmickler, W.$$b1 000032121 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.91.016106$$gVol. 91, p. 016106$$p016106$$q91<016106$$tPhysical review letters$$v91$$x0031-9007$$y2003 000032121 8567_ $$uhttp://hdl.handle.net/2128/2154$$uhttp://dx.doi.org/10.1103/PhysRevLett.91.016106 000032121 8564_ $$uhttps://juser.fz-juelich.de/record/32121/files/33730.pdf$$yOpenAccess 000032121 8564_ $$uhttps://juser.fz-juelich.de/record/32121/files/33730.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000032121 8564_ $$uhttps://juser.fz-juelich.de/record/32121/files/33730.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000032121 8564_ $$uhttps://juser.fz-juelich.de/record/32121/files/33730.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000032121 909CO $$ooai:juser.fz-juelich.de:32121$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000032121 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000032121 9141_ $$y2003 000032121 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000032121 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000032121 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0 000032121 970__ $$aVDB:(DE-Juel1)33730 000032121 980__ $$aVDB 000032121 980__ $$aJUWEL 000032121 980__ $$aConvertedRecord 000032121 980__ $$ajournal 000032121 980__ $$aI:(DE-Juel1)PGI-3-20110106 000032121 980__ $$aUNRESTRICTED 000032121 980__ $$aFullTexts 000032121 9801_ $$aFullTexts 000032121 981__ $$aI:(DE-Juel1)PGI-3-20110106