000032153 001__ 32153
000032153 005__ 20180210131047.0
000032153 0247_ $$2DOI$$a10.1524/zpch.217.5.587.20456
000032153 0247_ $$2WOS$$aWOS:000182884100010
000032153 0247_ $$2ISSN$$a0942-9352
000032153 037__ $$aPreJuSER-32153
000032153 041__ $$aeng
000032153 082__ $$a540
000032153 084__ $$2WoS$$aChemistry, Physical
000032153 1001_ $$0P:(DE-Juel1)VDB22267$$aNagy, G.$$b0$$uFZJ
000032153 245__ $$aAdlayer Structures Probed by Distance Tunneling Spectroscopy for Au(111)/H2SO4 Cu2
000032153 260__ $$aMünchen$$bOldenbourg$$c2003
000032153 300__ $$a587 - 605
000032153 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032153 3367_ $$2DataCite$$aOutput Types/Journal article
000032153 3367_ $$00$$2EndNote$$aJournal Article
000032153 3367_ $$2BibTeX$$aARTICLE
000032153 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032153 3367_ $$2DRIVER$$aarticle
000032153 440_0 $$06031$$aZeitschrift für physikalische Chemie$$v217$$x0942-9352
000032153 500__ $$aRecord converted from VDB: 12.11.2012
000032153 520__ $$aWe performed a series of distance tunnelling characteristics measurements for the system Au(111)/0.05 M H2SO4 + 1 mM Cu2+ to understand, if it is possible to map the liquid part of the double layer perpendicular to the electrode surface. We found that we probed the double layer in a distance range where we do not penetrate into the inner Helmholtz layer. Nevertheless, the tip is sufficiently close to the metal surface to address adlayer features showing sensitivity toward long-range ordered structures. The bias between the STM tip and the sample drops in the inner Helmholtz layer, and electronic overlap exists between the adsorbed layer and the metal surface. Molecular contributions to the electronic structure of ordered adlayers appear to be detectable. At larger distances from the surface the average barrier height was found to be about 1 eV, practically independent on the electrode potential.
000032153 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$cI01$$x0
000032153 588__ $$aDataset connected to Web of Science
000032153 650_7 $$2WoSType$$aJ
000032153 65320 $$2Author$$adouble layer
000032153 65320 $$2Author$$aSTM
000032153 65320 $$2Author$$aSTS
000032153 65320 $$2Author$$abarrier height
000032153 65320 $$2Author$$aCuUPD
000032153 65320 $$2Author$$aanions
000032153 65320 $$2Author$$aAu(111)
000032153 7001_ $$0P:(DE-Juel1)VDB5443$$aWandlowski, T.$$b1$$uFZJ
000032153 773__ $$0PERI:(DE-600)2020854-6$$a10.1524/zpch.217.5.587.20456$$gVol. 217, p. 587 - 605$$p587 - 605$$q217<587 - 605$$tZeitschrift für Physikalische Chemie$$v217$$x0942-9352$$y2003
000032153 8567_ $$uhttp://dx.doi.org/10.1524/zpch.217.5.587.20456
000032153 909CO $$ooai:juser.fz-juelich.de:32153$$pVDB
000032153 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$x0
000032153 9141_ $$y2003
000032153 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000032153 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000032153 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000032153 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000032153 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000032153 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000032153 970__ $$aVDB:(DE-Juel1)33865
000032153 980__ $$aVDB
000032153 980__ $$aConvertedRecord
000032153 980__ $$ajournal
000032153 980__ $$aI:(DE-Juel1)PGI-3-20110106
000032153 980__ $$aUNRESTRICTED
000032153 981__ $$aI:(DE-Juel1)PGI-3-20110106