000032207 001__ 32207
000032207 005__ 20180210134731.0
000032207 0247_ $$2DOI$$a10.1016/S0013-4686(02)00836-8
000032207 0247_ $$2WOS$$aWOS:000181814400018
000032207 037__ $$aPreJuSER-32207
000032207 041__ $$aeng
000032207 082__ $$a540
000032207 084__ $$2WoS$$aElectrochemistry
000032207 1001_ $$0P:(DE-HGF)0$$aGarcía, S. G.$$b0
000032207 245__ $$aSTM Tip-Induced Local Electrochemical Dissolution of Silver
000032207 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2003
000032207 300__ $$a1279 - 1285
000032207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032207 3367_ $$2DataCite$$aOutput Types/Journal article
000032207 3367_ $$00$$2EndNote$$aJournal Article
000032207 3367_ $$2BibTeX$$aARTICLE
000032207 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032207 3367_ $$2DRIVER$$aarticle
000032207 440_0 $$01776$$aElectrochimica Acta$$v48$$x0013-4686
000032207 500__ $$aRecord converted from VDB: 12.11.2012
000032207 520__ $$aLocal dissolution/deposition processes under in situ scanning tunneling microscopy (STM) imaging conditions are studied in the systems Ag(111)/Ag+, ClO4- and Ag(111)/Ag+, SO42-. The results show that in both systems the local kinetics of these processes strongly depend on the polarization conditions. At STM-tip potentials more positive than the Ag/Ag+ equilibrium potential, a local dissolution of the Ag(111) substrate is observed even at cathodic substrate overpotentials at which the overall substrate current density is cathodic. This tip-induced Ag dissolution is in agreement with results obtained recently in the system Cu((111))/Cu2+. The enhanced local Ag dissolution is explained by a reduced Ag+ concentration underneath the STM tip promoted by both an electrostatic repulsion of Ag+ and a reduction of the mass transport due to the shielding effect of the tip. The possibility for a preparation of negative Ag nanostructures by STM tip-induced electrochemical dissolution is demonstrated. (C) 2003 Elsevier Science Ltd. All rights reserved.
000032207 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000032207 588__ $$aDataset connected to Web of Science
000032207 650_7 $$2WoSType$$aJ
000032207 65320 $$2Author$$asilver
000032207 65320 $$2Author$$aSTM
000032207 65320 $$2Author$$atip-induced dissolution
000032207 65320 $$2Author$$alocal etching
000032207 65320 $$2Author$$ananostructuring
000032207 7001_ $$0P:(DE-HGF)0$$aSalinas, D. R.$$b1
000032207 7001_ $$0P:(DE-HGF)0$$aMayer, C. E.$$b2
000032207 7001_ $$0P:(DE-HGF)0$$aLorenz, W. J.$$b3
000032207 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b4$$uFZJ
000032207 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/S0013-4686(02)00836-8$$gVol. 48, p. 1279 - 1285$$p1279 - 1285$$q48<1279 - 1285$$tElectrochimica acta$$v48$$x0013-4686$$y2003
000032207 8567_ $$uhttp://dx.doi.org/10.1016/S0013-4686(02)00836-8
000032207 909CO $$ooai:juser.fz-juelich.de:32207$$pVDB
000032207 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000032207 9141_ $$y2003
000032207 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032207 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000032207 970__ $$aVDB:(DE-Juel1)34033
000032207 980__ $$aVDB
000032207 980__ $$aConvertedRecord
000032207 980__ $$ajournal
000032207 980__ $$aI:(DE-Juel1)PGI-3-20110106
000032207 980__ $$aUNRESTRICTED
000032207 981__ $$aI:(DE-Juel1)PGI-3-20110106