000032208 001__ 32208
000032208 005__ 20180210135618.0
000032208 0247_ $$2DOI$$a10.1016/S0013-4686(03)00369-4
000032208 0247_ $$2WOS$$aWOS:000185123400020
000032208 037__ $$aPreJuSER-32208
000032208 041__ $$aeng
000032208 082__ $$a540
000032208 084__ $$2WoS$$aElectrochemistry
000032208 1001_ $$0P:(DE-HGF)0$$aMai, T. T.$$b0
000032208 245__ $$aMicrostructured Metallization of Insulating Polymers
000032208 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2003
000032208 300__ $$a3021
000032208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032208 3367_ $$2DataCite$$aOutput Types/Journal article
000032208 3367_ $$00$$2EndNote$$aJournal Article
000032208 3367_ $$2BibTeX$$aARTICLE
000032208 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032208 3367_ $$2DRIVER$$aarticle
000032208 440_0 $$01776$$aElectrochimica Acta$$v48$$x0013-4686
000032208 500__ $$aRecord converted from VDB: 12.11.2012
000032208 520__ $$aDirect Ni electrodeposition on insulating polymers by the so-called PLATO technique is studied and the application of this technique for microstructured metallization is investigated. Propagation behavior, surface morphology, conductivity and thickness of a deposited metal layer are characterized using microscopy, AFM, four-point conductivity and XPS sputter measurements. Two layers are formed during metal deposition: primary layer and secondary layer. Both layers propagate with constant rates during the first 60 s and the propagation rates are influenced by the metallization potential. The primary layer has hemispherical morphology, low conductivity and an uneven thickness of about 25-100 nm. The secondary layer has the repetition morphology of the primary and higher roughness (R-a(prim) = 40 nm, R-a(sec) = 150 nm), higher conductivity (sigma(sec)/sigma(prim) = 10(8)/10(10)) and a thickness of 100-200 nm. The high lateral propagation rate of the metal strip during metal deposition offers possibilities for metallization of insulating microstructures. Routines for microstructured metallization using PLATO technique are proposed and examples for the applications are demonstrated. (C) 2003 Elsevier Ltd. All rights reserved.
000032208 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000032208 588__ $$aDataset connected to Web of Science
000032208 650_7 $$2WoSType$$aJ
000032208 65320 $$2Author$$ametal dcposition
000032208 65320 $$2Author$$ainsulating polymers
000032208 65320 $$2Author$$acobalt sulphide
000032208 65320 $$2Author$$amicrostructuring
000032208 65320 $$2Author$$aPLATO technique
000032208 7001_ $$0P:(DE-HGF)0$$aSchultze, J. W.$$b1
000032208 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b2$$uFZJ
000032208 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/S0013-4686(03)00369-4$$gVol. 48, p. 3021$$p3021$$q48<3021$$tElectrochimica acta$$v48$$x0013-4686$$y2003
000032208 8567_ $$uhttp://dx.doi.org/10.1016/S0013-4686(03)00369-4
000032208 909CO $$ooai:juser.fz-juelich.de:32208$$pVDB
000032208 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000032208 9141_ $$y2003
000032208 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032208 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000032208 970__ $$aVDB:(DE-Juel1)34034
000032208 980__ $$aVDB
000032208 980__ $$aConvertedRecord
000032208 980__ $$ajournal
000032208 980__ $$aI:(DE-Juel1)PGI-3-20110106
000032208 980__ $$aUNRESTRICTED
000032208 981__ $$aI:(DE-Juel1)PGI-3-20110106