001     32208
005     20180210135618.0
024 7 _ |2 DOI
|a 10.1016/S0013-4686(03)00369-4
024 7 _ |2 WOS
|a WOS:000185123400020
037 _ _ |a PreJuSER-32208
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Electrochemistry
100 1 _ |a Mai, T. T.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Microstructured Metallization of Insulating Polymers
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2003
300 _ _ |a 3021
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Electrochimica Acta
|x 0013-4686
|0 1776
|v 48
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Direct Ni electrodeposition on insulating polymers by the so-called PLATO technique is studied and the application of this technique for microstructured metallization is investigated. Propagation behavior, surface morphology, conductivity and thickness of a deposited metal layer are characterized using microscopy, AFM, four-point conductivity and XPS sputter measurements. Two layers are formed during metal deposition: primary layer and secondary layer. Both layers propagate with constant rates during the first 60 s and the propagation rates are influenced by the metallization potential. The primary layer has hemispherical morphology, low conductivity and an uneven thickness of about 25-100 nm. The secondary layer has the repetition morphology of the primary and higher roughness (R-a(prim) = 40 nm, R-a(sec) = 150 nm), higher conductivity (sigma(sec)/sigma(prim) = 10(8)/10(10)) and a thickness of 100-200 nm. The high lateral propagation rate of the metal strip during metal deposition offers possibilities for metallization of insulating microstructures. Routines for microstructured metallization using PLATO technique are proposed and examples for the applications are demonstrated. (C) 2003 Elsevier Ltd. All rights reserved.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a metal dcposition
653 2 0 |2 Author
|a insulating polymers
653 2 0 |2 Author
|a cobalt sulphide
653 2 0 |2 Author
|a microstructuring
653 2 0 |2 Author
|a PLATO technique
700 1 _ |a Schultze, J. W.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Staikov, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB13645
773 _ _ |a 10.1016/S0013-4686(03)00369-4
|g Vol. 48, p. 3021
|p 3021
|q 48<3021
|0 PERI:(DE-600)1483548-4
|t Electrochimica acta
|v 48
|y 2003
|x 0013-4686
856 7 _ |u http://dx.doi.org/10.1016/S0013-4686(03)00369-4
909 C O |o oai:juser.fz-juelich.de:32208
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)34034
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21