000032209 001__ 32209
000032209 005__ 20180210134057.0
000032209 0247_ $$2DOI$$a10.1007/s10008-003-0426-4
000032209 0247_ $$2WOS$$aWOS:000188495500011
000032209 037__ $$aPreJuSER-32209
000032209 041__ $$aeng
000032209 082__ $$a540
000032209 084__ $$2WoS$$aElectrochemistry
000032209 1001_ $$0P:(DE-HGF)0$$aMai, T. T.$$b0
000032209 245__ $$aRelation between Surface Preconditioning and Metal Deposition in Direct Galvanic Metallization of Insulating Surfaces
000032209 260__ $$aBerlin$$bSpringer$$c2004
000032209 300__ $$a201
000032209 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032209 3367_ $$2DataCite$$aOutput Types/Journal article
000032209 3367_ $$00$$2EndNote$$aJournal Article
000032209 3367_ $$2BibTeX$$aARTICLE
000032209 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032209 3367_ $$2DRIVER$$aarticle
000032209 440_0 $$012701$$aJournal of Solid State Electrochemistry$$v8$$x1432-8488
000032209 500__ $$aRecord converted from VDB: 12.11.2012
000032209 520__ $$aThe relation between surface preconditioning and metal deposition in the direct galvanic metallization of different insulating polymer surfaces by the so-called PLATO technique was studied using electrochemical and surface analytical methods. AFM, XPS and contact angle measurements show that the chromic acid etching of original polymer surfaces leads to an increase of the surface energy and hydrophilicity of polymer substrates due to both surface roughening and the formation of -COOH and/or -COH surface groups. However, decisive for the subsequent surface activation with cobalt sulfide is the increase in surface roughness. The influence of the degree of activation and the electrode potential on the kinetics of Ni metallization was studied by current transient measurements on activated line-shaped structures. The results suggest that the electrochemical reduction of cobalt sulfide to cobalt is a necessary step to induce the process of Ni electrodeposition. Successful Ni metallization could be obtained on ABS (acrylonitrile-butadiene-styrene) and PEEK (poly-ether-ether-ketone) surfaces. The lateral propagation rate, V-x, of the depositing Ni layer depends exponentially on the applied potential and was found to be several orders of magnitude higher than the Ni deposition rate, V-z, in the normal z-direction (V-x/V-z=10(2)-10(4)). It was demonstrated that the approach involving cobalt sulfide pre-activation can also be applied successfully for metallization of oxidized porous silicon surfaces.
000032209 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000032209 588__ $$aDataset connected to Web of Science
000032209 650_7 $$2WoSType$$aJ
000032209 65320 $$2Author$$acobalt sulfide
000032209 65320 $$2Author$$aelectrodeposition
000032209 65320 $$2Author$$ainsulating polymers
000032209 65320 $$2Author$$ametallization
000032209 65320 $$2Author$$aX-ray photoelectron spectroscopy
000032209 7001_ $$0P:(DE-HGF)0$$aSchultze, J. W.$$b1
000032209 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b2$$uFZJ
000032209 773__ $$0PERI:(DE-600)1478940-1$$a10.1007/s10008-003-0426-4$$gVol. 8, p. 201$$p201$$q8<201$$tJournal of solid state electrochemistry$$v8$$x1432-8488$$y2004
000032209 8567_ $$uhttp://dx.doi.org/10.1007/s10008-003-0426-4
000032209 909CO $$ooai:juser.fz-juelich.de:32209$$pVDB
000032209 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000032209 9141_ $$aNachtrag$$y2004
000032209 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032209 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000032209 970__ $$aVDB:(DE-Juel1)34035
000032209 980__ $$aVDB
000032209 980__ $$aConvertedRecord
000032209 980__ $$ajournal
000032209 980__ $$aI:(DE-Juel1)PGI-3-20110106
000032209 980__ $$aUNRESTRICTED
000032209 981__ $$aI:(DE-Juel1)PGI-3-20110106