000032229 001__ 32229
000032229 005__ 20180210133455.0
000032229 0247_ $$2DOI$$a10.1016/j.susc.2003.11.046
000032229 0247_ $$2WOS$$aWOS:000189230900010
000032229 037__ $$aPreJuSER-32229
000032229 041__ $$aeng
000032229 082__ $$a540
000032229 084__ $$2WoS$$aChemistry, Physical
000032229 084__ $$2WoS$$aPhysics, Condensed Matter
000032229 1001_ $$0P:(DE-Juel1)VDB1226$$aPaul, N.$$b0$$uFZJ
000032229 245__ $$aRemoval of the surfactant in Bi/Ge/Si(111) surfactant-mediated epitaxy
000032229 260__ $$aAmsterdam$$bElsevier$$c2004
000032229 300__ $$a80 - 90
000032229 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032229 3367_ $$2DataCite$$aOutput Types/Journal article
000032229 3367_ $$00$$2EndNote$$aJournal Article
000032229 3367_ $$2BibTeX$$aARTICLE
000032229 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032229 3367_ $$2DRIVER$$aarticle
000032229 440_0 $$05673$$aSurface Science$$v551$$x0039-6028
000032229 500__ $$aRecord converted from VDB: 12.11.2012
000032229 520__ $$aSurfactant-mediated epitaxy of 6 nm Ge on a Bi terminated Si(111) surface results in a smooth, two dimensional, defect free Ge film on Si(111) where 1 monolayer Bi covers the film surface. Heating the Ge film results in desorption of bismuth but the Ge film breaks up and deep holes form. Using ion beam sputtering we have removed the Bi surfactant from the film in situ and the remaining Ge/Si film is still two dimensional, smooth and defect free. Subsequent deposition of 5 bilayers germanium on the sputtered surface leads to growth of 3D islands as observed by scanning tunneling microscopy (STM). This behavior can be explained by residual stress in the Ge film. (C) 2003 Elsevier B.V. All rights reserved.
000032229 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000032229 588__ $$aDataset connected to Web of Science
000032229 650_7 $$2WoSType$$aJ
000032229 65320 $$2Author$$ascanning tunneling microscopy
000032229 65320 $$2Author$$aauger electron spectroscopy
000032229 65320 $$2Author$$asputtering
000032229 65320 $$2Author$$asemiconducting surfaces
000032229 65320 $$2Author$$aepitaxy
000032229 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b1$$uFZJ
000032229 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2003.11.046$$gVol. 551, p. 80 - 90$$p80 - 90$$q551<80 - 90$$tSurface science$$v551$$x0039-6028$$y2004
000032229 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2003.11.046
000032229 909CO $$ooai:juser.fz-juelich.de:32229$$pVDB
000032229 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000032229 9141_ $$y2004
000032229 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032229 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000032229 970__ $$aVDB:(DE-Juel1)34066
000032229 980__ $$aVDB
000032229 980__ $$aConvertedRecord
000032229 980__ $$ajournal
000032229 980__ $$aI:(DE-Juel1)PGI-3-20110106
000032229 980__ $$aUNRESTRICTED
000032229 981__ $$aI:(DE-Juel1)PGI-3-20110106