001     3225
005     20180208225517.0
024 7 _ |2 DOI
|a 10.1109/MCSE.2008.153
024 7 _ |2 WOS
|a WOS:000260130800009
037 _ _ |a PreJuSER-3225
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
100 1 _ |0 P:(DE-HGF)0
|a Goldrian, G.
|b 0
245 _ _ |a QPACE: Quantum Chromodynamics Parallel Computing on the Cell Broadband Engine
260 _ _ |a College Park, Md.
|b Inst.
|c 2008
300 _ _ |a 46 - 54
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 20021
|a Computing in Science & Engineering
|v 10
|x 1521-9615
|y 6
500 _ _ |a QPACE is funded by the Deutsche Forschungsgemeinschaft (DFG) through the SFB/TR-55 framework and by IBM. We gratefully acknowledge important contributions to QPACE by Eurotech (Italy) and Knurr (Germany).
520 _ _ |a Application-driven computers for Lattice Gauge Theory simulations have often been based on system-on-chip designs, but the development costs can be prohibitive for academic project budgets. An alternative approach uses compute nodes based on a commercial processor tightly coupled to a custom-designed network processor. Preliminary analysis shows that this solution offers good performance, but it also entails several challenges, including those arising from the processor's multicore structure and from implementing the network processor on a field-programmable gate array.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|a Scientific Computing
|c P41
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Huth, T.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Krill, B.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Lauritsen, J.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Schick, H.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Ouda, I.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Heybrock, S.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Hierl, D.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Maurer, T.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Meyer, N.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Schäfer, A.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Solbrig, S.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Streuer, T.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Wettig, T.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Pleiter, D.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Sulanke, K.-H.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Winter, F.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Simma, H.
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Schifano, S.F.
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Tripiccione, R.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Nobile, A.
|b 20
700 1 _ |0 P:(DE-Juel1)133881
|a Drochner, M.
|b 21
|u FZJ
700 1 _ |0 P:(DE-Juel1)132179
|a Lippert, T.
|b 22
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Fodor, Z.
|b 23
773 _ _ |0 PERI:(DE-600)2042158-8
|a 10.1109/MCSE.2008.153
|g Vol. 10, p. 46 - 54
|p 46 - 54
|q 10<46 - 54
|t Computing in science and engineering
|v 10
|x 1521-9615
|y 2008
856 7 _ |u http://dx.doi.org/10.1109/MCSE.2008.153
909 C O |o oai:juser.fz-juelich.de:3225
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK411
|a DE-HGF
|b Schlüsseltechnologien
|k P41
|l Supercomputing
|v Scientific Computing
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
920 1 _ |0 I:(DE-Juel1)VDB1045
|g JARA
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|x 1
970 _ _ |a VDB:(DE-Juel1)108795
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB1045


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21