000032271 001__ 32271
000032271 005__ 20161225212836.0
000032271 0247_ $$2WOS$$aWOS:000185853500004
000032271 037__ $$aPreJuSER-32271
000032271 041__ $$aeng
000032271 082__ $$a530
000032271 084__ $$2WoS$$aPhysics, Multidisciplinary
000032271 1001_ $$0P:(DE-HGF)0$$aCimponeriu, L.$$b0
000032271 245__ $$aInferring asymmetric relations between interacting neuronal oscillators
000032271 260__ $$aKyoto$$bProgress of Theoretical Physics, Publ. Office$$c2003
000032271 29510 $$a.
000032271 300__ $$a22 - 36
000032271 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032271 3367_ $$2DataCite$$aOutput Types/Journal article
000032271 3367_ $$00$$2EndNote$$aJournal Article
000032271 3367_ $$2BibTeX$$aARTICLE
000032271 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032271 3367_ $$2DRIVER$$aarticle
000032271 440_0 $$05151$$aProgress of Theoretical Physics Supplement$$v150$$x0033-068X
000032271 500__ $$aRecord converted from VDB: 12.11.2012
000032271 520__ $$aWe apply a quantitative method for the identification of asymmetric relations between weakly interacting self-sustained oscillators to the study of rhythmic neural electrical activity. We begin by testing the method on biophysically. motivated neural oscillator models considering first two diffusively coupled Hindmarsh-Rose oscillators, and then two ensembles of globally coupled neurons interacting through their. mean fields. Next, we consider the more complex case of interactions among several oscillatory units. The method is further applied to the analysis of the control of externally vs internally paced movements in humans. A pilot study in one healthy subject reveals that asymmetry of interactions between different brain areas may strongly change with the transition from external to internal pacing, while the degree of synchronization hardly changes. Furthermore, our preliminary results highlight the important role of the secondary auditory cortex in internal rhythm generation.
000032271 536__ $$0G:(DE-Juel1)FUEK255$$2G:(DE-HGF)$$aNeurowissenschaften$$cL01$$x0
000032271 588__ $$aDataset connected to Web of Science
000032271 650_7 $$2WoSType$$aJ
000032271 7001_ $$0P:(DE-HGF)0$$aRosenblum, M. G.$$b1
000032271 7001_ $$0P:(DE-Juel1)132100$$aFieseler, T.$$b2$$uFZJ
000032271 7001_ $$0P:(DE-Juel1)VDB261$$aDammers, J.$$b3$$uFZJ
000032271 7001_ $$0P:(DE-Juel1)133935$$aSchiek, M.$$b4$$uFZJ
000032271 7001_ $$0P:(DE-Juel1)VDB998$$aMajtanik, M.$$b5$$uFZJ
000032271 7001_ $$0P:(DE-Juel1)VDB1090$$aMorosan, P.$$b6$$uFZJ
000032271 7001_ $$0P:(DE-HGF)0$$aBezerianos, A.$$b7
000032271 7001_ $$0P:(DE-Juel1)131884$$aTass, P. A.$$b8$$uFZJ
000032271 773__ $$0PERI:(DE-600)2079227-X$$gVol. 150, p. 22 - 36$$p22 - 36$$q150<22 - 36$$tProgress of theoretical physics$$v150$$x0033-068X$$y2003
000032271 909CO $$ooai:juser.fz-juelich.de:32271$$pVDB
000032271 9131_ $$0G:(DE-Juel1)FUEK255$$bLeben$$kL01$$lFunktion und Dysfunktion des Nervensystems$$vNeurowissenschaften$$x0
000032271 9141_ $$y2003
000032271 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032271 9201_ $$0I:(DE-Juel1)VDB54$$d31.12.2006$$gIME$$kIME$$lInstitut für Medizin$$x0
000032271 970__ $$aVDB:(DE-Juel1)34160
000032271 980__ $$aVDB
000032271 980__ $$aConvertedRecord
000032271 980__ $$ajournal
000032271 980__ $$aI:(DE-Juel1)INB-3-20090406
000032271 980__ $$aUNRESTRICTED
000032271 981__ $$aI:(DE-Juel1)INB-3-20090406