000032491 001__ 32491
000032491 005__ 20240712100832.0
000032491 0247_ $$2WOS$$aWOS:000184508700002
000032491 0247_ $$2Handle$$a2128/730
000032491 037__ $$aPreJuSER-32491
000032491 041__ $$aeng
000032491 082__ $$a550
000032491 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000032491 1001_ $$0P:(DE-HGF)0$$aLuo, B. P.$$b0
000032491 245__ $$aUltrathin tropical tropopause clouds (UTTCs) II: stabilization mechanism
000032491 260__ $$aKatlenburg-Lindau$$bEGU$$c2003
000032491 300__ $$a1093 - 1100
000032491 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032491 3367_ $$2DataCite$$aOutput Types/Journal article
000032491 3367_ $$00$$2EndNote$$aJournal Article
000032491 3367_ $$2BibTeX$$aARTICLE
000032491 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032491 3367_ $$2DRIVER$$aarticle
000032491 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v3$$x1680-7316
000032491 500__ $$aRecord converted from VDB: 12.11.2012
000032491 520__ $$aMechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10(-4) have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work suggests a mechanism, which forces the particles into a thin layer, based on upwelling of the air of some mm/s to balance the ice particles, supersaturation with respect to ice above and subsaturation below the UTTC. In situ measurements suggest that these requirements are fulfilled. The basic physical properties of this mechanism are explored by means of a single particle model. Comprehensive 1-D cloud simulations demonstrate this stabilization mechanism to be robust against rapid temperature fluctuations of +/-0.5 K. However, rapid warming (DeltaT>2 K) leads to evaporation of the UTTC, while rapid cooling (DeltaT<2 K) leads to destabilization of the particles with the potential for significant dehydration below the cloud.
000032491 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000032491 588__ $$aDataset connected to Web of Science
000032491 650_7 $$2WoSType$$aJ
000032491 7001_ $$0P:(DE-HGF)0$$aPeter, Th.$$b1
000032491 7001_ $$0P:(DE-HGF)0$$aWernli, H.$$b2
000032491 7001_ $$0P:(DE-HGF)0$$aFlüglistaler, S.$$b3
000032491 7001_ $$0P:(DE-HGF)0$$aWirth, M.$$b4
000032491 7001_ $$0P:(DE-HGF)0$$aKiemle, C.$$b5
000032491 7001_ $$0P:(DE-HGF)0$$aFlentje, H.$$b6
000032491 7001_ $$0P:(DE-HGF)0$$aYushkov, V. A.$$b7
000032491 7001_ $$0P:(DE-HGF)0$$aKhattatov, V.$$b8
000032491 7001_ $$0P:(DE-Juel1)VDB8778$$aRudakov, V.$$b9$$uFZJ
000032491 7001_ $$0P:(DE-HGF)0$$aThomas, A.$$b10
000032491 7001_ $$0P:(DE-Juel1)VDB150$$aBorrmann, S.$$b11$$uFZJ
000032491 7001_ $$0P:(DE-HGF)0$$aToci, G.$$b12
000032491 7001_ $$0P:(DE-HGF)0$$aMazzinghi, P.$$b13
000032491 7001_ $$0P:(DE-Juel1)VDB101$$aBeuermann, J.$$b14$$uFZJ
000032491 7001_ $$0P:(DE-Juel1)VDB1410$$aSchiller, C.$$b15$$uFZJ
000032491 7001_ $$0P:(DE-HGF)0$$aCairo, F.$$b16
000032491 7001_ $$0P:(DE-HGF)0$$adi Donfrancesco, G.$$b17
000032491 7001_ $$0P:(DE-HGF)0$$aAdriani, A.$$b18
000032491 7001_ $$0P:(DE-HGF)0$$aVolk, C. M.$$b19
000032491 7001_ $$0P:(DE-HGF)0$$aStrom, J.$$b20
000032491 7001_ $$0P:(DE-HGF)0$$aNoone, K.$$b21
000032491 7001_ $$0P:(DE-HGF)0$$aMitev, V.$$b22
000032491 7001_ $$0P:(DE-HGF)0$$aMacKenzie, R. A.$$b23
000032491 7001_ $$0P:(DE-HGF)0$$aCarslaw, K. S.$$b24
000032491 7001_ $$0P:(DE-HGF)0$$aTrautmann, T.$$b25
000032491 7001_ $$0P:(DE-HGF)0$$aSantacesaria, V.$$b26
000032491 7001_ $$0P:(DE-HGF)0$$aStefanutti, L.$$b27
000032491 773__ $$0PERI:(DE-600)2069847-1$$gVol. 3, p. 1093 - 1100$$p1093 - 1100$$q3<1093 - 1100$$tAtmospheric chemistry and physics$$v3$$x1680-7316$$y2003
000032491 8564_ $$uhttps://juser.fz-juelich.de/record/32491/files/34904.pdf$$yOpenAccess
000032491 8564_ $$uhttps://juser.fz-juelich.de/record/32491/files/34904.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000032491 8564_ $$uhttps://juser.fz-juelich.de/record/32491/files/34904.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000032491 8564_ $$uhttps://juser.fz-juelich.de/record/32491/files/34904.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000032491 909CO $$ooai:juser.fz-juelich.de:32491$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000032491 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000032491 9141_ $$y2003
000032491 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032491 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000032491 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000032491 970__ $$aVDB:(DE-Juel1)34904
000032491 9801_ $$aFullTexts
000032491 980__ $$aVDB
000032491 980__ $$aJUWEL
000032491 980__ $$aConvertedRecord
000032491 980__ $$ajournal
000032491 980__ $$aI:(DE-Juel1)IEK-7-20101013
000032491 980__ $$aUNRESTRICTED
000032491 980__ $$aFullTexts
000032491 981__ $$aI:(DE-Juel1)ICE-4-20101013
000032491 981__ $$aI:(DE-Juel1)IEK-7-20101013