001     32875
005     20240709094258.0
024 7 _ |2 DOI
|a 10.1016/S0920-3796(03)00220-5
024 7 _ |2 WOS
|a WOS:000185617900028
037 _ _ |a PreJuSER-32875
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Nuclear Science & Technology
100 1 _ |a Pintsuk, G.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5612
245 _ _ |a Development of W/Cu-Functionally Graded Materials
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2003
300 _ _ |a 237 - 240
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Fusion Engineering and Design
|x 0920-3796
|0 2169
|v 66-68
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Plasma facing components (PFCs) consist of a plasma facing and a heat sink material. These have to fulfil different functions that require different material properties, for example the coefficient of thermal expansion (CTE) of tungsten and copper. Joining of these materials (e.g. by brazing or HIPing) results in the formation of thermal-induced stresses at the interface. Functionally graded materials (FGMs), used as an interlayer, reduce these thermally induced stresses. Two different methods, laser sintering and plasma spraying, have been investigated as a means to produce W/Cu FGMs to be used in PFCs of next step confinement experiments. In addition to mixtures of tungsten and copper powders, 40 wt.% Cu-coated W powder was used to produce W/Cu composites with a content of either 25 or 60 vol.% Cu. The composite microstructure has been analyzed according to Cu content, particle distribution and layer structure. The difference in the behavior of powder mixtures and coated powder is outlined. A comparison of plasma sprayed to commercially produced Cu-infiltrated W samples is made and the results of thermomechanical and thermophysical testing are discussed with respect to different microstructures. (C) 2003 Elsevier Science B.V. All rights reserved.
536 _ _ |a Kernfusion und Plasmaforschung
|c E05
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK250
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a tungsten
653 2 0 |2 Author
|a copper
653 2 0 |2 Author
|a FGM
653 2 0 |2 Author
|a laser sintering
653 2 0 |2 Author
|a plasma spraying
700 1 _ |a Brünings, S. E.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB190
700 1 _ |a Döring, J.-E.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB3365
700 1 _ |a Linke, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB2728
700 1 _ |a Smid, I.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB2789
700 1 _ |a Xue, L.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/S0920-3796(03)00220-5
|g Vol. 66-68, p. 237 - 240
|p 237 - 240
|q 66-68<237 - 240
|0 PERI:(DE-600)1492280-0
|t Fusion engineering and design
|v 66-68
|y 2003
|x 0920-3796
856 7 _ |u http://dx.doi.org/10.1016/S0920-3796(03)00220-5
909 C O |o oai:juser.fz-juelich.de:32875
|p VDB
913 1 _ |k E05
|v Kernfusion und Plasmaforschung
|l Kernfusion und Plasmaforschung
|b Energie
|0 G:(DE-Juel1)FUEK250
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IWV-2
|l Werkstoffstruktur und Eigenschaften
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB2
|x 0
920 1 _ |k IWV-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB5
|x 1
970 _ _ |a VDB:(DE-Juel1)36677
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21