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We present a framework for phenomenological lattice QCD calculations which makes use of a tree-

level Symanzink improved action for gluons and stout-link Wilson fermions. We give details of our

efficient HMC/RHMC algorithm and present a scaling study of the low-lying Nf ¼ 3 baryon spectrum.

We find a scaling region that extends to a & 0:16 fm and conclude that our action and algorithm are

suitable for large scale phenomenological investigations of Nf ¼ 2þ 1 QCD. We expect this conclusion

to hold for other comparable actions.
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I. INTRODUCTION

Over the last decade, it has become clear that smeared-

link fermion actions1 offer substantial technical advantages

over their thin-link counterparts. The idea of damping

unphysical UV fluctuations by replacing elementary links

with a weighted sum of paths was first introduced in the

framework of pure gauge theory [1]. It was later recog-

nized that the chiral properties of clover fermions [2] can

be substantially improved by replacing the thin links in the

covariant derivative of the fermion operator with their

smeared counterparts [3]. From a Symanzik point of

view, this replacement amounts to adding ultralocal irrele-

vant terms to the fermion action, as long as the smearing

prescription (parameter, iteration number) stays fixed as a

function of bare coupling. In this way it is guaranteed that

the continuum limit is unchanged.

In the context of quenched QCD, the advantages of

smeared clover fermions are well established [3–8]. The

theoretically leading Oð�saÞ contributions are, in practice,
absent and the extrapolation to the continuum appears to be

dominated by Oða2Þ cutoff effects. In particular, the tamed

UV fluctuations result in improved chiral symmetry prop-

erties. Furthermore, the smearing significantly reduces the

contributions of unphysical tadpoles; renormalization con-

stants are generally closer to their tree-level values, and

cSW is not far from 1 at typical lattice spacings.

Given this experience, it is reasonable to expect that also

dynamical clover fermions will benefit from link smearing.

There, the nondifferentiable nature of the back projection

step of the smeared link onto the gauge group, which is

usually performed, for instance, when using APE smearing

[1], may pose problems for the molecular dynamics up-

date. An early suggestion was to use ‘‘stout’’ links [9] to

define fermions which can be simulated with the hybrid

Monte Carlo (HMC) algorithm [10]. Further particulars of

the HMC force with UV-filtered actions have been worked

out in [11]. Recently, several alternative smearing methods

suitable for dynamical simulations have been proposed

[8,12–16].

The efficiency of link smearing results from the fact that

it leaves the structure of the fermionic operator entirely

unchanged. Smeared clover fermions still have exclusively

nearest-neighbor couplings. The damping of unphysical

UV modes is achieved exclusively by a modified—but still

ultralocal—coupling to the gluonic background. This

modification of the fermionic action is continuum irrele-

vant, but at a given finite cutoff one generally expects

observables with weaker coupling to unphysical UVmodes

to be closer to their continuum limit values, resulting in

overall improved scaling. In the present paper we inves-

tigate this issue by performing a scaling study with Nf ¼

3, stout-link clover fermions. Although other smearing

methods are presently known, we opt for the standard

stout-link prescription because it is widely used and will

share features, such as an enlarged scaling region, with

other comparable prescriptions.

The size of its scaling region is one of the most impor-

tant criteria to assess the suitability of a given action for

phenomenological purposes. The onset of scaling, together

with the power of the lattice spacing against which results

*CPT is ‘‘UMR 6207 du CNRS et des universités d’Aix-
Marseille I, d’Aix-Marseille II et du Sud Toulon-Var, affiliée à
la FRUMAM’’.

1In the literature they are also referred to as ‘‘UV-filtered’’ or
‘‘fat-link’’ actions. Likewise, actions in which the covariant
derivative involves the original gauge links are sometimes called
‘‘thin-link’’ actions.
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need to be plotted to show a linear dependence, determines

the finest lattice spacing needed to reliably extrapolate to

the continuum, and hence the overall cost in terms of CPU

time. Our main result is that smeared clover fermions do

indeed show very nice scaling properties up to at least

0.16 fm lattice spacing. Moreover, the link-smearing seems

to eliminate known pathologies that unfiltered actions may

show in a dynamical setting [17,18].

The results presented in this paper are obtained using a

tree-level Symanzik improved gauge action [19] and six-

step, stout-smeared clover fermions with a clover coeffi-

cient taken at its tree-level value cSW ¼ 1 (though a per-

turbative [20,21] or nonperturbative [15,22] determination

is feasible). Note that also F�� in the clover term is built

from the same set of stout links. This choice allows for

efficient simulation while delivering good scaling proper-

ties, as demonstrated below.Moreover, dedicated studies in

quenched QCD have shown that the dependence of ob-

servables on smearing is quite mild (see e.g. [8,13]) and the

exploratory studies of e.g. [11,12,14–16] suggest that this

behavior persists in the full theory. Thus, our choice in-

volves no fine-tuning and we expect our results to hold for

actions which involve comparable amounts of smearing.

In our scaling study we choose Nf ¼ 3 for simplicity,

creating an artificial world with degenerate u, d and s
quarks. Wewill denote the pseudoscalar and vector mesons

by � and � respectively. Our goal is to perform continuum

extrapolations along three distinct lines of constant ‘‘physi-

cal’’ quark masses, characterized byM�=M� ¼ 0:60, 0.64,

and 0.68. Since we do not aim in this paper at phenomeno-

logically relevant computations and instead would like to

test the extent of the scaling regime, we deliberately

choose these rather large masses. With Ma for standard

hadrons close to 1, cutoff effects with inferior actions will

be large. In all our runsM�L is kept fixed, at values larger

than 4, to avoid finite-volume effects. Our goal is to

simulate at several values of the gauge coupling and fixed

M�=M� and M�L, and to determine the scaling of the

baryon octet and decuplet masses, MN and M�.

The remainder of the article is organized as follows. In

Sec. II details of the action and our algorithm are given.

Sections III and IVare devoted to tests which provide clear

evidence for the absence of bulk phase transitions in our

simulations. In Sec. V we show that our action is ergodic

with respect to topology. Section VI then contains a de-

tailed scaling study of the nucleon and delta masses. We

conclude with a short summary and outlook.

II. ACTION AND ALGORITHMS

A. Action

The explicit form of our gauge and fermion action in

terms of the thin (Un;�) and smeared (Vn;�) gauge links is

as follows:

S ¼ S
Sym
G þ SSWF

S
Sym
G ¼ �

�

c0
3

X

plaq

ReTrð1�UplaqÞ

þ
c1
3

X

rect

ReTrð1�UrectÞ

�

SSWF ¼ SWF ½V� �
cSW
4

X

n

X

�;�

�c x���F��;n½V�c x;

(1)

with the standard Wilson action SWF . The parameters cSW,
c0 and c1 set to their tree-level values:

cSW ¼ 1; c1 ¼ �1=12; c0 ¼ 1� 8c1 ¼ 5=3:

Both the hopping part and the clover improvement term in

the fermion action SSWF use six-step stout-smeared links [9]

Vn;� � Vð6Þ
n;�. Those are constructed from the thin links

Un;� � Vð0Þ
n;� according to

Vðnþ1Þ ¼ e�S
ðnÞ
UðnÞ;

SðnÞ ¼ 1
2
ð�ðnÞVðnÞy � VðnÞ�ðnÞyÞ � 1

6
ReTrð�ðnÞVðnÞy

� VðnÞ�ðnÞyÞ

�ðnÞ
n;� ¼

X

���

VðnÞ
n;�V

ðnÞ
nþ�;�V

ðnÞy
nþ�;�

(2)

The stout smearing parameter is chosen to be � ¼ 0:11,
which is a rather conservative choice [8,9] corresponding

to an �APE ¼ 0:48 with respect to the average plaquette

[12]. In S
Sym
G only the unfiltered links are used. As detailed

in the Introduction, this action is ultralocal in both the

quark and gauge sector.

B. Simulation algorithm

We start with the description of our Nf ¼ 2þ 1 algo-

rithm. Two flavors are implemented via the HMC algo-

rithm [10], the third using the rational hybrid Monte Carlo

(RHMC) algorithm [23,24]. We employ even/odd precon-

ditioning [25] to speed up the fermion matrix inversions.

The generic HMC algorithm suffers from critical slowing

down in the light-quark regime. To treat this problem, we

combine several improvements over the generic algorithm

(see also [26,27]):

(i) Multiple time-scale integration: not all force contri-

butions in the molecular dynamics (MD) part of the

HMC algorithm require the same amount of compu-

tational resources. Using multiple time-scale inte-

gration (‘‘Sexton-Weingarten integration scheme’’)

[28], it is possible to put each part of the MD on a

different time scale according to its relative contri-

bution to the total force, thus reducing the computa-

tional costs of the MD.

(ii) Mass preconditioning: the pseudofermion force is

used within the MD to include the effects of dynami-

cal fermions. Through mass preconditioning, the UV

S. Dürr et al. PHYSICAL REVIEW D 79, 014501 (2009)
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part of the force can be split off and treated sepa-

rately [29], which helps reducing the fluctuations in

the force. The second important benefit of mass

preconditioning appears when combined with the

multiple time-scale integration scheme [26,27]: the

more expensive infrared part contributes less to the

total force and can be integrated with larger time

steps.

(iii) RHMC: the third, unpaired quark flavor is imple-

mented through the RHMC [23,24] algorithm. This

algorithm makes use of the fact that the single fer-

mion action can be written as �yðMyMÞ�1=2�, where
the inverse square root can in turn be approximated

by a rational approximation and be efficiently calcu-

lated with a multishift solver. The RHMC is highly

efficient in simulating a single quark flavor. It can

also be combined with the multiple time-scale inte-

gration scheme.

(iv) Omelyan integrator: the MD integration within the

generic HMC algorithms uses the leapfrog integra-

tion scheme. It proceeds by first integrating one half

step in position space followed by a full step update

of the conjugate momenta and finally another half

step in position space. The Omelyan integrator adds

a small momentum update (reduced by 	 � 0:193)
before and after the leapfrog step and shortens the

original leapfrog momentum update in by a factor

(1–2	). This scheme improves the MD energy con-

servation by about 1 order of magnitude for a factor

�2 increase in computational cost. The use of a

correspondingly larger step size then results in a

net gain of about 50% [30].

We use this algorithm also for our Nf ¼ 3 scaling study

with mHMC ¼ mRHMC.

C. Inversion algorithms

The most time consuming part, both in the valence and

the sea sector, is the (approximate) fermion matrix inver-

sion by means of a linear solver. These calculations gen-

erally require double precision accuracy. This is due to the

fact that, in order to maintain reversibility, the MD part of

the algorithm has to be performed in double precision.

Double precision accuracy is also required in valence

calculations at small quark masses, owing to the large

condition numbers involved. However, this does not imply

that each fermion matrix multiplication needs to be done in

double precision. In the valence sector we need to solve

Dx ¼ b (3)

(with D in our case being the stout-link clover Dirac

operator) to construct the correlators. To calculate the

fermionic force in the MD part of the algorithm we need

to solve

DyDx ¼ b: (4)

In both cases it is possible to use a single precision version

of D within mixed precision solvers to accelerate the

inversion. There is basically no penalty in terms of the

iteration count: we find that the increase in the number of

matrix multiplications is well below 10%.

A simple and reasonably efficient way to construct a

mixed precision solver is to use the standard ‘‘iterative

refinement’’ technique, which amounts to repeatedly using

a single precision solver. In this scheme, only the (outer)

residuals and global sums are calculated in double preci-

sion; the inversion is performed with single precision

accuracy. The single precision inversion typically uses

the same algorithm that would be used for a full double

precision inversion, such as BiCGstab to solve (3) or CG

for (4). With A ¼ D or A ¼ DyD referring to the forward

multiplication routine in double precision, a the single

precision counterpart and 
 the desired final double preci-

sion accuracy, the complete procedure reads:

(1) Compute ri ¼ b�Axi
(2) If jrij � 
jbj, exit
(3) Solve ati ¼ ri in single precision to an accuracy 
0,

with ~ti denoting the solution.

(4) Update xiþ1 ¼ xi þ ~ti
(5) Goto 1

With si ¼ ri �A~ti and � � jsij=jrij � 
0 < 1, we have

jriþ1j ¼ jb�Axiþ1j ¼ jb�Axi �A~tij

¼ jb�Axi � ri þ sij ¼ jsij ¼ �jrij< jrij: (5)

Thus, as long as the single precision inversion does not fail,

the method will converge. Since many single precision

matrix multiplications are needed to compute ~ti, compared

to just one double precision multiplication with A in the

outer iteration, the whole solver is dominated by the single
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FIG. 1 (color online). Performance of CG in double precision

(squares) compared to a mixed precision variant of CG (circles).

Data are from an Nf ¼ 2þ 1 run on a 323 � 64 lattice at � ¼

3:57 with amPCAC
ud ’ 0:0077 and amPCAC

s ’ 0:049 corresponding

to M� � 250 MeV.
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precision matrix multiplication performance, resulting in a

significant speedup over a full double precision inversion

(see Fig. 1).

II. SPECTRAL GAP

In quenched QCD, the (unsmeared) clover fermion op-

erator may have one or several eigenvalues close to the

origin or with a negative real part, even for not very light

quark masses. Configurations for which this is the case are

referred to as ‘‘exceptional.’’

If one integrated the HMC trajectories exactly, any such

configuration would be absent in full QCD, since an ei-

genvalue of the hermitean Wilson operator HW ¼ �5DW

approaching zero would induce an infinite back-driving

force in the HMC. In practice, when the trajectories are

generated with a finite step-size integrator, the near zero

modes along a trajectory are only approximately sup-

pressed. This may cause a breakdown of the MD evolution.

It is therefore natural to monitor the smallest eigenvalue (in

magnitude) of HW and check if it is sufficiently far from

the origin throughout the entire run. In a given ensemble

this spectral gap shows a more-or-less Gaussian distribu-

tion, and as long as its median is several � away from zero,

the simulation is deemed safe [31].

Since we use even-odd preconditioning, the relevant

quantity to monitor is the smallest eigenvalue of the

Hermitian counterpart of the reduced operator Dred ¼
1
2
�

ðDoo �DoeD
�1
ee DeoÞ, which is �5-Hermitian. We include a

factor 1=2 to have its IR eigenvalues almost aligned with

the low-lying eigenvalues of the full operator. For the

lightest mass (M�=M� ¼ 0:60, cf. Sec. V) the distributions

are shown in Fig. 2, with � ranging from 2.8 (left) to 3.76

(right). One can see that even for the strongest coupling,

there is still a clear separation of the eigenmodes from the

origin.

For phenomenological applications it is of course most

relevant to know how this spectral gap evolves when low-

ering the masses of two of the three flavors. Instead of

monitoring the lowest eigenvalue of �5Dred, we opted for

monitoring the closely related quantity 1=nCG, where nCG

is the iteration count for the lightest pseudofermion in the

action for our Nf ¼ 2þ 1 runs. In Fig. 3, we plot a

histogram of 1=nCG for one of our lightest production

runs (for phenomenological studies) and find a clear gap,

which provides strong evidence for the stability of the

algorithm. We have also monitored the acceptance rate

and the Hamiltonian violation �H throughout our runs

and have seen no sign of any algorithmic problems.

IV. SEARCH FOR POTENTIALLY METASTABLE

BEHAVIOR

In dynamical Wilson fermion simulations with small

quark masses, it was reported that the system appears to

undergo a first-order transition to an unphysical phase

[18,32]. This was argued to mean that there is a lower

bound on the quark mass, below which physically sensible

simulations cannot be performed. Moreover, it was ob-

served, that

(1) the phenomenon occurs only with coarse lattices,
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FIG. 2 (color online). The magnitude of the smallest eigenvalue of the preconditioned Hermitian Dirac operator in units of the PCAC

mass. At each � the lightest run (M�=M� ’ 0:6) is shown.

0 0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

0.25

FIG. 3 (color online). Histogram of the inverse iteration num-

ber of our linear solver at a lighter M� for the lightest pseudo-

fermion in the action. Results are from an Nf ¼ 2þ 1 run on a

483 � 64 lattice at � ¼ 3:57 with amPCAC
ud ’ 0:0056 and

amPCAC
s ’ 0:044 corresponding to M� � 190 MeV.
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(2) gauge action improvement decreases the lower

bound on the quark mass [33],

(3) OðaÞ-improved Wilson fermions together with im-

proved gauge actions made the problem disappear

for all lattice spacings investigated in [18],

(4) one level of stout smearing weakens the phenome-

non [34].

When discussing such phenomena, it is important to

remember that a first-order phase transition can only occur

in infinite volume. In finite volume, the metastability can

be understood as an artifact of the updating algorithm: with
an efficient algorithm, the system should eventually find

the true minimum of the effective potential. Thus, for

finite-volume simulations, the relevant question is: can

the algorithm thermalize the system in a manageable num-

ber of updating steps?

To investigate this issue, we have taken two 163 � 32
configurations, one with random links and the other, ther-

malized in a Nf ¼ 2þ 1 simulation at � ¼ 3:3, with

amPCAC
u;d ¼ 0:0066, corresponding to a pion mass of ap-

proximately 240 MeV, and amPCAC
s ’ 0:0677, correspond-

ing roughly to the physical strange quark mass. A

‘‘downward’’ updating sequence was then constructed
from the random configuration: consecutive simulations

at amPCAC
u;d ’ 0:0243, 0.0173, 0.0131, 0.0086, 0.0066, cor-

responding to a range of pseudoscalar massesM� � 440�
240 MeV, were performed, with each simulation starting

from the last configuration of the previous (larger mass)

run. Similarly, an ‘‘upward’’ sequence of five simulations
was obtained, beginning with the configuration thermal-

ized at amPCAC
u;d ’ 0:0066, and ending with a run at

amPCAC
u;d ’ 0:0243. For each point in the two sequences,

approximately 400 trajectories were generated, of which

the first 100 were discarded when calculating the average

expectation value of the plaquette. The resulting plaquette

values, obtained during the two updating sequences, are

shown in Fig. 4. No sign of hysteresis is observed: the

algorithm evolves the system to the correct equilibrium

state in a reasonable number of steps, independently of the

starting configuration.

This absence of evidence for metastability, together with

the good performance of our algorithm in all of our pro-

duction runs, gives us confidence that our choice of algo-

rithm and of action is appropriate for the range of

parameters that we have considered so far.

V. TOPOLOGY

In phenomenological applications, the combined choice

of an action and an algorithm must allow for an adequate

sampling of sectors of different topological charge. Quite

generically, this sampling becomes more difficult as the

0.15 0.2 0.25 0.3

0.4415

0.4420

0.4425

0.4430

cycle down

cycle up

FIG. 4 (color online). Absence of hysteresis in the average

expectation value of the plaquette. Data are from an Nf ¼ 2þ 1

run on a 163 � 32 lattice at � ¼ 3:3 with a fixed strange quark

mass amPCAC
s ’ 0:0677 and the light quark mass varying be-

tween amPCAC
ud ’ 0:0066 and 0.0243 in ascending (square) and

descending (circles) order. The range of light quark masses

corresponds to M� � 240–440 MeV. The second data set is

slightly offset along the x-axis for better readability.
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FIG. 5 (color online). History of the unrenormalized gluonic

topological charge (left) and the corresponding autocorrelation

function plot (right), measured on our finest lattice with the

smallest quark mass: � ¼ 3:76, aM� ¼ 0:2019ð20Þ. The inte-

grated autocorrelation time of qnai is approximately 2 configu-

rations on this ensemble. A separation of one configuration

corresponds to 10 HMC/RHMC trajectories.
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continuum limit is approached. Thus, as the lattice spacing

is reduced, the autocorrolation time of topological charge

increases. This is also the case in our simulations.

However, within the range of lattice spacings which we

consider, we observe no dramatic slowing down of tunnel-

ing events.

To determine the topological charge of our configura-

tions, we use the naive gluonic charge definition

qnai ¼
1

16�2

X

x

Tr½F��ðxÞ ~F
��ðxÞ�; (6)

where F�� is the gluonic field strength tensor and the sum

extends over all lattice sites. We calculate F�� at each

lattice site as follows. After applying our smearing pre-

scription (2) to the links, we average the four plaquettes

emanating from this site and which lie in the �-� plane.

The field strength tensor is then defined as the anti-

Hermitian part of this average. The charge defined in Eq.

(6) leads to noninteger values and must be renormalized for

quantitative studies of topology. However, such a renor-

malization is not necessary here since we are only inter-

ested in verifying the topological ergodicity of our

simulations.

The simulation-time evolution and autocorrelation of

this unrenormalized topological charge are shown in

Fig. 5 for our finest lattice and its smallest quark mass,

aM� ¼ 0:2019ð20Þ. The integrated autocorrelation time is

around 2 configurations. The autocorrelation decays very

rapidly and is compatible with zero within the error bars

after around 5 configurations. We can easily conclude from

these two plots that there is no long-range correlation.
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cosh or sinh fits to the corresponding two-point functions in the

time intervals indicated by the length of the lines.
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VI. SCALING STUDY

For our scaling study, we use lattices with approximately

constant physical volume at five different lattice spacings.

We opted for an Nf ¼ 3 instead of an Nf ¼ 2 setting in

order to test the full RHMC algorithm that is also being

used for phenomenological applications. We choose a T ¼
2L geometry with lattice sizes varying from L=a ¼ 8 to

L=a ¼ 24 and bare gauge couplings between � ¼ 2:8 and
� ¼ 3:76. We measure fermionic observables every 20

trajectories for L=a ¼ 8, 10, 12 and every ten for L=a ¼
16, 24. For the error analysis, we use the ‘‘moving-block-

bootstrap’’ [35] technique with a bin length of 2 times the

integrated autocorrelation time of the quantity which is

measured. This bin length is typically around 2 for the

coarsest lattices and around 8 for the finest lattices. The

number of bootstrap samples is chosen to be 2000, because

the calculated bootstrap errors saturate at ’ 1500 samples.

At each lattice spacing we simulate a number of masses

(from seven at L=a ¼ 8 to three at L=a ¼ 24) such that

M�=M� is between 0.60 and 0.68. As already mentioned in

the Introduction, it is preferable to use these rather large

masses for a scaling study in order to enhance possible

discretization effects of orderMa. After fixing to Coulomb

gauge, we measure propagators with multiple Gaussian

sources on different time slices. The source size is set to

L=4 and is thus roughly constant in physical units. Using a
Gaussian sink of the same size, the effective masses usu-

ally reach a plateau very quickly and we can determine a

useful fitting window from it. Note that—because the

x-space (ultra-)locality of our action is the same as for

the unsmeared clover action—such a ‘‘normal’’ behavior is

exactly what one would expect. To illustrate this point, a

typical effective mass plot is shown in Fig. 6. Then, the

masses are extracted from a correlated single channel cosh

or sinh fit to the correlators. In order to estimate the

systematic error due to excited states, we reduced the

initial fit time by up to 2 time slices and repeated the

analysis with the new fit ranges. This difference then

propagates into the systematic error in the continuum limit.

For each coupling � we then interpolate a2M2
�, aM�,

aMN, and aM� linearly to a common current quark mass as

determined byM�=M�. For illustration the interpolation at

� ¼ 3:59 is shown in Fig. 7. The error on the current quark
mass is of order 10�4 and therefore barely visible on this

scale. Note that all data points are fully unquenched.

We perform our scaling test on the baryon spectrum for

three different values of M�=M�, all of which can be

reached by interpolating our simulation data. In Table I

we summarize the values of amPCAC, aM�, aM�, aMN,

and aM� after interpolation toM�=M� ¼ 0:60, 0.64, 0.68.

Also listed is LM�, which is roughly constant for fixed

M�=M�. Moreover, even for the lightest data set we are

deep in the M�L > 4 regime. In case this criterion alone

would not guarantee the smallness of finite-volume effects,

the fact that our boxes have a fixed physical size ensures

that such effects would be the same for all data at a given

M�=M� ratio, and the scaling test would still be

meaningful.

The masses are known to better than 2% and, due to

correlations, this is also true for mass ratios. For the three

lines of constant physics, MN and M� in units of M� are

plotted in Fig. 8 as functions of the squared lattice spacing

(see below), measured in units of the vector meson mass.

We normalize the baryon masses byM� to clearly separate

the lines of constant physics in the plot. The fits incorporate

the error bars along both the vertical and horizontal axes.

For both the spin-1=2 and spin-3=2 baryons, the contin-

uum limit is approached smoothly with scaling violations

TABLE I. Results of the interpolation of aM�, aM�, aMN , and aM�, obtained from simulations performed at different bare quark

masses and gauge couplings, to the reference points M�=M� ¼ 0:60, 0.64, 0.68.

M�=M� L=a � amPCAC LM� aM� aM� aMN aM�

0.60 8 2.80 0.0676(11) 4.55 0.5688(26) 0.9480(44) 1.3605(73) 1.5944(75)

10 3.23 0.0468(28) 4.44 0.4437(57) 0.7395(95) 1.064(12) 1.248(10)

12 3.40 0.0437(15) 4.60 0.3830(34) 0.6384(57) 0.9236(74) 1.0823(87)

16 3.59 0.0328(6) 4.56 0.2852(26) 0.4754(43) 0.6785(44) 0.8031(38)

24 3.76 0.0217(7) 4.85 0.2019(20) 0.3365(33) 0.4825(34) 0.5708(20)

0.64 8 2.80 0.0839(8) 5.03 0.6292(21) 0.9832(33) 1.4341(43) 1.6581(59)

10 3.23 0.0607(23) 4.95 0.4950(47) 0.7735(73) 1.127(10) 1.3074(82)

12 3.40 0.0545(13) 5.12 0.4268(23) 0.6669(35) 0.9711(62) 1.1282(71)

16 3.59 0.0405(6) 5.03 0.3146(23) 0.4916(36) 0.7099(35) 0.8278(28)

24 3.76 0.0270(6) 5.41 0.2256(18) 0.3524(28) 0.5081(29) 0.5933(29)

0.68 8 2.80 0.1050(11) 5.60 0.6993(22) 1.0284(32) 1.5286(52) 1.7401(65)

10 3.23 0.0796(21) 5.57 0.5574(52) 0.8198(76) 1.212(11) 1.389(10)

12 3.40 0.0693(12) 5.76 0.4798(30) 0.7055(44) 1.0354(47) 1.1903(52)

16 3.59 0.0506(7) 5.57 0.3483(22) 0.5122(32) 0.7495(30) 0.8590(41)

24 3.76 0.0343(9) 6.11 0.2546(25) 0.3744(37) 0.5434(38) 0.6242(39)
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of at most 1.2% at � ¼ 2:8. The extrapolations shown

exclude this data point but consistent results are obtained

by using all available data.

While we expect that our choice of the clover coefficient

is close to a nonperturbatively determined value, we cannot

exclude effects that are linear in the lattice spacing in

principle. The cutoff effects that we consider here are so

small that we cannot make a definitive statement, despite

the fact that we have very precise data and cover more than

a factor of 7 in a2. Assuming the lattice artifacts to be

linear in a results in an only marginally worse fit.

An alternative way of proceeding is doing a combined

chiral and continuum extrapolation with all data points at

once. Applying this procedure one obtains basically con-

sistent continuum limits and we assume the absolute dif-

ferences as our systematic errors.

For illustrative purposes, we set the scale by linearly

interpolating M� and M2
� to the point where

M�=M� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðM
phys
K Þ2 � ðM

phys
� Þ2

q

=M
phys

 � 0:67 (7)

and identify M� with the mass of the physical 
. In this

convention we cover lattice spacings from about 0.19 down

to 0.07 fm (see Fig. 9). In this range we find only small

scaling violations in the spectrum and those disappear

smoothly toward the continuum. The behavior is consistent

with that of an OðaÞ-improved theory.

The scaling of other observables, especially matrix ele-

ments, will be investigated in the future.

VII. SUMMARY

We have described an efficient algorithm to perform full

lattice QCD calculations with stout-link, improved clover

fermions and demonstrated its potential with a scaling

study of light baryon masses in Nf ¼ 3 QCD. We have

tested the algorithm and found it to be stable and reliable

down to relatively coarse lattices with a ’ 0:16 fm. We

have also monitored the stability of the MD integration and

the lowest eigenvalue of the (even-odd preconditioned)

fermion matrix and demonstrated that the latter is suffi-

ciently far away from zero on all of our ensembles.

Furthermore, we have shown that there is no sign of excep-

tional configurations even with substantially lighter pion

masses in an Nf ¼ 2þ 1 setting.

Upon performing a ‘‘thermal cycle’’ at � ¼ 3:3, with
M� ranging between �240 MeV and �440 MeV, we do

not see any sign of a hysteresis. In other words, there is no

indication of a nearby first-order phase transition, even on

fairly coarse lattices and for rather light quark masses.
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FIG. 8 (color online). MN and M�, the mass of the spin-1=2
and spin-3=2 baryon, in terms of M�, versus the lattice spacing

squared (in terms of M�1
� ). Each one of the three continuum

extrapolations is based on the data at � ¼ 3:76� 3:23, but the
curve is extended to � ¼ 2:8 to allow for comparison. The

continuum limits are MN=M� ¼ 2:378ð17Þð43Þ, 2.245(10)(51),
2.127(7)(34) and M�=M� ¼ 2:827ð23Þð40Þ, 2.626(17)(49),

2.446(16)(30), respectively. For all data points only statistical

errors are shown.
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1490ð7Þð27Þ MeV and M� ¼ 1720ð10Þð35Þ MeV. As in Fig. 8,

only statistical errors are shown.
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In a dedicated scaling test of light baryon masses, which

included five lattice spacings with a total variation by

almost a factor of 3, we have demonstrated that scaling

violations associated with the use of our stout-link clover

action in full QCD are small for these quantities. Indeed,

we have shown that discretization errors on light baryon

masses do not exceed 2% for lattice spacings up to 0.19 fm.

Moreover, all our data for a � 0:16 fm seem to be in the

scaling window. This is in line with the findings of [36]

where a different approach to link smearing is taken.

In conclusion, we find that the combination of a tree-

level Symanzik improved gauge action and a six-step

stout-smeared clover fermion action with cSW ¼ 1 is well

suited for precision calculations of physical observables.

We expect that the same will be true of other actions with

comparable improvements. We look forward to presenting

results for phenomenological quantities with this action in

forthcoming papers.
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