000003295 001__ 3295 000003295 005__ 20180208230641.0 000003295 0247_ $$2DOI$$a10.1016/S0169-4332(02)00802-4 000003295 0247_ $$2WOS$$aWOS:000180807900006 000003295 037__ $$aPreJuSER-3295 000003295 041__ $$aeng 000003295 082__ $$a670 000003295 084__ $$2WoS$$aChemistry, Physical 000003295 084__ $$2WoS$$aMaterials Science, Coatings & Films 000003295 084__ $$2WoS$$aPhysics, Applied 000003295 084__ $$2WoS$$aPhysics, Condensed Matter 000003295 1001_ $$0P:(DE-Juel1)VDB9870$$aPodgurski, V.$$b0$$uFZJ 000003295 245__ $$aUltra thin Al2O3films grown on Ni3Al(100) 000003295 260__ $$aAmsterdam$$bNorth-Holland$$c2003 000003295 300__ $$a29 000003295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000003295 3367_ $$2DataCite$$aOutput Types/Journal article 000003295 3367_ $$00$$2EndNote$$aJournal Article 000003295 3367_ $$2BibTeX$$aARTICLE 000003295 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000003295 3367_ $$2DRIVER$$aarticle 000003295 440_0 $$0573$$aApplied Surface Science$$v206$$x0169-4332 000003295 500__ $$aRecord converted from VDB: 12.11.2012 000003295 520__ $$aThe oxidation of the Ni3Al(1 0 0) surface at 1100 K with 2000 1 was investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (EELS), and scanning tunneling microscopy (STM). Oxidation at 1100 K, leads to the formation of a well ordered, ultra thin Al2O3 film on top of Ni3Al(1 0 0). The oxide grows with the (1 1 1) plane of the gamma'-Al2O3 parallel to the surface plane of the substrate. The observed LEED pattern of the Al2O3 film is explained by a hexagonal structure in two domains which are perpendicularly oriented with respect to each other. The lattice constant of the hexagonal structure amounts to similar to3 Angstrom. In addition, two hexagonal superstructures with a lattice constant of 17.5 and 54 Angstrom were found on the oxide surface. (C) 2002 Published by Elsevier Science B.V. 000003295 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000003295 588__ $$aDataset connected to Web of Science 000003295 650_7 $$2WoSType$$aJ 000003295 65320 $$2Author$$aintermetallic alloys 000003295 65320 $$2Author$$aoxidation 000003295 65320 $$2Author$$aNi3Al 000003295 65320 $$2Author$$aAl2O3 000003295 65320 $$2Author$$aAuger electron spectroscopy 000003295 65320 $$2Author$$ascanning tunneling microscopy 000003295 65320 $$2Author$$alow energy electron diffraction 000003295 65320 $$2Author$$ahigh-resolution electron energy loss spectroscopy 000003295 7001_ $$0P:(DE-Juel1)VDB5492$$aCostina, I.$$b1$$uFZJ 000003295 7001_ $$0P:(DE-Juel1)VDB5400$$aFranchy, R.$$b2$$uFZJ 000003295 773__ $$0PERI:(DE-600)2002520-8$$a10.1016/S0169-4332(02)00802-4$$gVol. 206, p. 29$$p29$$q206<29$$tApplied surface science$$v206$$x0169-4332$$y2003 000003295 8567_ $$uhttp://dx.doi.org/10.1016/S0169-4332(02)00802-4 000003295 909CO $$ooai:juser.fz-juelich.de:3295$$pVDB 000003295 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000003295 9141_ $$y2003 000003295 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000003295 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0 000003295 970__ $$aVDB:(DE-Juel1)10895 000003295 980__ $$aVDB 000003295 980__ $$aConvertedRecord 000003295 980__ $$ajournal 000003295 980__ $$aI:(DE-Juel1)PGI-3-20110106 000003295 980__ $$aUNRESTRICTED 000003295 981__ $$aI:(DE-Juel1)PGI-3-20110106