001     3295
005     20180208230641.0
024 7 _ |2 DOI
|a 10.1016/S0169-4332(02)00802-4
024 7 _ |2 WOS
|a WOS:000180807900006
037 _ _ |a PreJuSER-3295
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Podgurski, V.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB9870
245 _ _ |a Ultra thin Al2O3films grown on Ni3Al(100)
260 _ _ |a Amsterdam
|b North-Holland
|c 2003
300 _ _ |a 29
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Surface Science
|x 0169-4332
|0 573
|v 206
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The oxidation of the Ni3Al(1 0 0) surface at 1100 K with 2000 1 was investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (EELS), and scanning tunneling microscopy (STM). Oxidation at 1100 K, leads to the formation of a well ordered, ultra thin Al2O3 film on top of Ni3Al(1 0 0). The oxide grows with the (1 1 1) plane of the gamma'-Al2O3 parallel to the surface plane of the substrate. The observed LEED pattern of the Al2O3 film is explained by a hexagonal structure in two domains which are perpendicularly oriented with respect to each other. The lattice constant of the hexagonal structure amounts to similar to3 Angstrom. In addition, two hexagonal superstructures with a lattice constant of 17.5 and 54 Angstrom were found on the oxide surface. (C) 2002 Published by Elsevier Science B.V.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a intermetallic alloys
653 2 0 |2 Author
|a oxidation
653 2 0 |2 Author
|a Ni3Al
653 2 0 |2 Author
|a Al2O3
653 2 0 |2 Author
|a Auger electron spectroscopy
653 2 0 |2 Author
|a scanning tunneling microscopy
653 2 0 |2 Author
|a low energy electron diffraction
653 2 0 |2 Author
|a high-resolution electron energy loss spectroscopy
700 1 _ |a Costina, I.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5492
700 1 _ |a Franchy, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5400
773 _ _ |a 10.1016/S0169-4332(02)00802-4
|g Vol. 206, p. 29
|p 29
|q 206<29
|0 PERI:(DE-600)2002520-8
|t Applied surface science
|v 206
|y 2003
|x 0169-4332
856 7 _ |u http://dx.doi.org/10.1016/S0169-4332(02)00802-4
909 C O |o oai:juser.fz-juelich.de:3295
|p VDB
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2003
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)10895
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21